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Abstract  
 

Ultimate Shear Behaviour of Post-Tensioned Deep Transfer Girders 
University of Liège – Faculty of Applied Sciences 

Muhammed Furkan Ozkan – Master student in Civil Engineering 
Academic Year – 2017-2018 
Promoter – Boyan Mihaylov    

 
Deep beams are typically used as transfer girders in tall buildings, cap beams in bridges, in 
foundations and offshore structures. They are characterized by high shear resistance due to their 
small shear-span-to-effective-depth ratio a/d that does not exceed about 2.5. Due to the large loads 
they carry, the design of such members is very important in order to avoid partial or complete 
collapse of the structure. As opposed to slender beams, deep beams cannot be designed based on 
the simple but powerful hypothesis that plane sections remain plane. Experimental studies on deep 
beams have shown that the use of prestressing improves the shear resistance.  
 
The aim of this thesis is to study a Two-Parameter-Kinematic-Theory (2PKT) developed by 
Mihaylov et al. (2013) for reinforced concrete deep beams and to extend the theory to prestressed 
deep beams. The original theory is able to predict the ultimate shear strength of reinforced concrete 
deep beams using only two kinematic parameters. In order to cover the case of prestressed deep 
beams, an extended model is proposed. This extended model captures the effect of prestressing in 
three ways: 1) increase of the shear force derived from flexural equilibrium; 2) effect of the 
prestressing on the geometry and strength of the critical loading zone (CLZ); and 3) dowel action 
of the prestressing reinforcement. The extended model is validated against a collected database of 
tests conducted on rectangular deep beams without openings and with straight prestressing 
tendons. The extended theory is also compared to the original 2PKT approach. It is shown that 
the ultimate shear strengths predicted by the extended model agree very well with the experimental 
results. Compared to the results from the original model, the predictions are significantly improved. 
 
In order to further validate the extended theory, non-linear finite element modelling is also 
performed. It is shown that the 2PKT method that uses only two degrees of freedom produces 
very similar (or even better) results that the complex numerical models with thousands of degrees 
of freedom.  
 
Future investigations on this topic can study the effect of curved tendons on the shear resistance 
of deep beams. Moreover, I-girders can also be studied as they are very common in practice.  
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1. Introduction   

1.1 General Information 
 
Deep beams are those members whose shear-span-to-depth ratio does not exceed approximatively 
2.5 (Fig. 1.1). Such beams behave like a tied arch and the tension in the bottom longitudinal 
reinforcement is almost constant from support to support. Today, these beams have many 
applications as transfer girders in tall buildings, cap beams in bridges, in offshore structures and 
foundations. In particular, deep beams are commonly used at the lower levels of high-rise buildings 
to open large usable space for commercial and other purposes (Fig. 1.1). Because of their very low 
𝑎/𝑑 ratios, the classical assumption that supposes a linear distribution of strains over the height of 
the section is no longer valid for deep beams. For that reason, code provisions that are already 
developed for slender beams cannot be used for deep beams. Moreover, because of the relatively 
high shear forces in deep beams, they develop large shear deformations and are susceptible to shear 
failures. As shear failures are by nature very brittle, the design of deep beams is very important to 
avoid partial or complete collapse of the structure without prior warning. 
 

 
Figure 1.1 - Illustration of deep and slender beams in buildings (Mihaylov et al. 2013) 

 
A significant portion of the shear force in deep beams is carried by strut action, where compressive 
stresses flow directly from the load to the support (Mihaylov et al., 2013). For that reason, the use 
of strut-and-tie models (STM) for the design of deep beams is very common. However, as there 
are many parameters that have an effect on the shear behaviour of deep beams, the STMs can 
sometimes produce very conservative results. Mihaylov et al. (2013) proposed a kinematic model 
for deep beams that takes into account the main parameters on the shear behaviour. This approach 
is called a Two-Parameter-Kinematic-Theory (2PKT) and captures the deformed shape of deep 
beams using only two degrees of freedom. Once the deformed shape of the beams is described, 
the model is completed with equilibrium equations and stress-strain relationships to predict the 
shear failure of deep beams. This 2PKT method was extended later to a five-spring model for deep 
beams in order to predict the complete pre- and post-peak shear behaviour of the beam. Four of 
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the springs of the model correspond to the shear resistance components of the beam (shear resisted 
in the critical loading zone, by aggregate interlock, by stirrups and by dowel action), while the fifth 
spring models the flexural behaviour. Both models have been validated against a large number of 
test results producing excellent predictions.  

 

 
Figure 1.2 – Deformation patterns of deep and slender beams (Mihaylov et al. 2013) 

 
To improve the behaviour of reinforced concrete, prestressed concrete is used since the beginning 
of the 20th century. One of the biggest advantages of prestressed concrete is that for a given 
deformation, the load that can be supported is higher than in reinforced concrete. In particular, it 
is possible to design members which work without cracks under service loads as compared to 
reinforced concrete which necessarily works with cracks. In slender beams, where the simple but 
powerful hypothesis that plane sections remain plane is used, the prestressing has a positive impact 
on the strength by decreasing the crack widths, and therefore increasing the aggregate interlock 
resistance across the shear cracks. In the case of deep beams, experimental studies have showed 
again that the shear resistance is improved with the use of prestressing compared to reinforced 
deep beams. However, while many studies and experiments have been conducted for the behaviour 
of reinforced concrete deep beams, only few experiments exist for prestressed concrete deep beams 
(Alsheiger and Ramirez 1992, Tan and Mansur 1992, Teng, Kong and Poh 1998, Tan et al. 1999, 
Tan and Tong 1999, Arthur 1965). As a result, there are not sufficiently accurate and universally 
accepted models for such members.  

1.2 Objective of the thesis  
 
This thesis is a continuation of the development of the 2PKT and five-spring model proposed by 
Mihaylov et al. (2013 and 2015). These two models are capable to predict both the strength as well 
as the complete pre- and post-peak shear behaviour of reinforced concrete deep beams.  
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As discussed above, some experiments showed that the use of prestressing in deep beams improves 
the shear resistance and stiffness of deep beams. However, the current 2PKT and five-spring model 
do not take into account the effects of the prestressing. The goal of this thesis therefore consists 
of extending the 2PKT approach to take into account the effects of prestressing, and therefore to 
provide accurate results for the shear strength of pre- and post-tensioned deep beams.  
 
The first step in the thesis is to search the literature and collect as many experiments on prestressed 
deep beams as possible. Then, the existing model is applied to the experiments and an analysis of 
the results is performed to evaluate the parameters that influence the shear behaviour when 
prestressing is used. After that, the modifications brought to the model are explained. The 
predictions of the modified model are then compared to the experiments and non-linear finite 
element simulations. The thesis is finally concluded with some proposals for future developments.  
 

1.3 Thesis outline  
 
This thesis consists of 6 chapters including the chapter 1 that introduce the thesis and give some 
general information about the topic. 
 
Chapter 2 describes the experiments used to study the effect of prestressing on deep beams. The 
analysis of these experiments allowed to bring some modifications to the existing model. Therefore, 
these experiments are very important and they are all collected from scientific literature.  
 
Chapter 3 describes the modelling approaches of deep beams and specially the two-parameter 
kinematic theory.  
 
Chapter 4 consists of kinematic modelling of the collected deep beams. First, the original model is 
applied to the database collected. Then, the modifications on the existing model are described and 
finally, the results of the extended model are presented and compared with the previous ones. 
 
Chapter 5 consist of finite element modelling. The first point of this chapter is the explanation of 
the modelling procedure will all the supports, degrees of freedom, restraints etc. Then, the results 
of the finite element modelling are presented and then compared to both the experiments and the 
models.  
 
Chapter 6 is the last chapter of this thesis and it consists on a summary of all the work performed. 
Finally, it is also in this part that future improvements are proposed.  
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2. Tests on prestressed deep beams  

2.1 Introduction 
 
As discussed in the first chapter, the first work of this thesis is the collection of experiments on 
prestressed deep beams. This work is crucial for the following of this thesis because all the analysis 
performed are based on the experiments collected. Therefore, a mistake in the experiment or in 
the data of those has an impact on the results. For that reason, only scientific literature is used. The 
papers found must provide enough information about the layout of the beam and the properties 
of the material used. Again, as discussed in the first chapter some authors worked on prestressed 
deep beams but the amount of experimental work performed is still scarce today. 

2.2 Selection criteria  
 
The different specimens are collected based on several criteria. Given the small number of 
experiments on prestressed deep beams, the addition of these criteria led to a limited number of 
experiments that could be used in this thesis. The selected criteria are listed below:  
 

 Shear-span-to-effective-depth ratio (𝑎/𝑑) ratio less than approximatively 2.5 

 

 Rectangular section  

 

 Straight tendon for prestressing  

 

 Continuous beams without openings  

Members with large 𝑎/𝑑 ratio are dominated by beam action. The tension in the longitudinal 
reinforcement changes along the length of these beams. However, members with low 𝑎/𝑑 ratio 
behave like a tied arch and the longitudinal reinforcement carries an almost constant force. For 
that reason, selected specimens should have sufficiently low 𝑎/𝑑 ratio to behave like a deep beam. 
The transition from one to another occurs at about 𝑎/𝑑 =2.5.  
 
Due to their parabolic profile, curved tendons are causing an additional vertical force on the 
concrete as shown in Fig. 2.1. The vertical component of prestress forces can be subtracted from 
the acting shear force. For that reason, deep beams prestressed with curved tendons do not behave 
exactly like beams with straight tendons. Therefore, deep beams with curved tendons were 
excluded from the analysis.  
 
I-girders are commonly used in practice to reduce the self-weight of structural elements. However, 
the behaviour of those girders is different from the behaviour of rectangular section beams. 
Therefore, they also have been excluded from this study.  
 
Finally, it has also been shown in the literature that openings in deep beams cause a decreasing in 
first cracking and ultimate loads. So, all the specimens chosen for this study were continuous and 
without any openings.  
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Figure 2.1 – Beneficial effect of curved tendons  

2.3 Authors  
 
As discussed before, few experimental results exist on prestressed deep beams (Alsheiger and 
Ramirez 1992, Tan and Mansur 1992, Teng and Poh 1998, Tan et al. 1999, Tan and Tong 1999, 
Arthur 1965). Alsheiger and Ramirez (1992) tested three pre-tensioned deep beams to failure and 
established strut-and-tie models for them. The analysis of struts and ties were performed on a 
computer programme rather than a visible formula which was apparently unsuitable. The three 
beams studied had I-sections. Therefore, these specimens could not be studied in this work. Tan 
and Tong (1999) also carried out an experimental program on six large reinforced and pre-
tensioned deep I-girders. Even if the shear-span-to-depth-ratio 𝑎/𝑑 is very low, this test series is 
excluded again because of the I-section. Finally, Arthur performed an experimental program on 50 
pre-tensioned I-beams without web reinforcement. However, the specimens tested could not be 
used because of the section geometry. The test found from literature and that are suitable for this 
project are from Tan and Mansur (1992), Teng and Poh (1998) and Tan et al. (1999). Moreover, 
thanks to the help of Boyan Mihaylov, a new test setup that has never been published could be 
found. This test setup was conducted by Simionopoulos at the University of Toronto in 1998. 
 
2.3.1 Tan et al. (1999) 
 
Tan et al. (1999) conducted a study on twelve unbounded prestressed deep beams. The aim of the 
experiments was to study the size effect in large prestressed beams. The parameters that varied 
from one specimen to another were the height of the beam ranging from 500 to 1750mm and the 
shear-span-to-effective-depth ratio 𝑎/𝑑 ranging from 0.56 to 1.13. All the specimens were simply-
supported and were tested under two-point loading with an increasing load until failure. All beams 
had the same cylinder strength of about 40 MPa and the maximum aggregates size used was 10mm. 
The experimental setup is shown in Fig. 2.2. 
 

    
(a)                                                                     (b) 

Figure 2.2 – Experimental setup for (a) small and (b) large deep beams by Tan et al. (1999) 
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Straight strands of 15.2mm diameter were used for all specimens and the combined main-steel-
and-strand ratio was kept between 2.3 and 2.5% for all beams. This high ratio was needed to 
prevent flexural failure to occur. The prestressing force applied was around 80% of breaking load. 
The strands had an average yield stress of 1708 MPa and an ultimate stress of 1834 MPa. To 
measure the force in each strand during the post-tensioning, a load cell was used. A low amount 
of stirrups was used in the test in order to study the effect of beam size on concrete shear strength. 
These stirrups represent only 0.1% and therefore, they do not have a significant influence on the 
ultimate strength. The beams were divided into four groups based on their height h= 500, 1000, 
1400 and 1750mm. In each height group, three different beams were tested by varying the shear 
span. In order to maintain the same fracture energy, the width of the specimens were kept constant 
at 140mm. Moreover, in order to prevent premature crushing or bearing failure from taking place, 
local reinforcements were added at loading and support points.  
 
In all specimens, flexural cracks appeared first near the section of maximum moment. Then, with 
increasing loads, the cracks propagated towards the loading point. Among the twelve beams tested, 
three of them failed by web crushing. Two of them failed by bearing failure and the rest in shear-
compression or diagonal splitting. When the failure mode is studied with the size of the beam, the 
conclusion is that for larger prestressed beams (h=1400 and 1750mm), bearing failures occurred 
while typical diagonal splitting failures were expected. The reason for this failure mode may be the 
high location in the section of the prestressing strands that may delay and inhibit the diagonal crack. 
Failure modes are then dependent on the height of the section, the shear-span-to-height ratio, and 
the position of the prestressing strands. To prevent bearing failures, it is therefore recommended 
by the authors to use some reinforcing cages in loading zones.  

 
(a)                                                                     (b) 

Figure 2.3 – Typical cracking pattern at failure in (a) diagonal splitting and (b) by bearing failure 
by Tan et al. (1999) 

 
Based on the results, it is noticeable that as the beam becomes more rigid with decreasing the 𝑎/𝑑 
ratio, the lower the 𝑎/𝑑 ratio, the steeper the deflection curve. Therefore, for geometrically similar 
beams, brittleness is increased by increasing the height of the section. Also, an increased height 
leads to more extensive crack patterns at the same shear stress.  
 
Compared to reinforced concrete deep beams, prestressing improved the diagonal cracking and 
serviceability strengths. The ultimate stress was also improved with prestressing. A pronounced 
size effect was also observed in this test series. Figure 2.4 presents the variation of ultimate shear 

stress with ℎ and 𝑎/ℎ. For a given 𝑎/ℎ ratio, when the height is increased, a loss in the ultimate 
shear stress is captured. It is noted by the authors that the critical height beyond which no 
significant size effect is observed is comprised between 1400 and 1750mm in this test series while 
it was between 500 and 1000mm for the same beams without prestressing. However, while the size 
effect is evident for the height of the section, it seems relatively independent of the 𝑎/ℎ ratio.  
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Figure 2.4 – Variation of ultimate shear stress with h and a/h by Tan et al. (1999) 

 
2.3.1 Tan and Mansur (1992)  
 
Tan and Mansur (1992) conducted a study on 8 bounded pre-tensioned deep beams. The aim of 
their tests was to study the effects of partial prestressing on the behaviour and strength of deep 
beams. The main parameters that varied in this test are the degree of prestress, the shear-span-to-
effective-depth ratio 𝑎/𝑑 and the concrete strength 𝑓′𝑐. All the beams were simply supported and 
tested under one-point loading with an increasing load until failure. The deep beams were all 
400mm height. An extra length of 200 mm was added at each end in order to provide the 
transmission length required for the transfer of prestress to the concrete. The width of the section 
was equal to 150mm for all specimens. Four of the specimens were tested with a shear span of 
525mm while for the four others the shear span equals 700mm. Detail about the section and the 
setup of the experiment is shown in Fig. 2.5.  
 

 
Figure 2.5 – Details of test specimens and experimental setup by Tan and Mansur (1992) 

 
Nine prestressing wires of 5mm diameter were used as primary reinforcement. These wires were 
placed symmetrically compared to the vertical axis of the section. The specimens were divided into 
2 groups depending on their 𝑎/𝑑 ratio (1.5 or 2). In each of these groups, the partial prestressing 
ratio (PPR) was varied by prestressing none, three (the middle column), six (the outer columns) or 
all of the wires. As a result, the corresponding values for the PPR were 0, 0.33, 0.67 and 1. Based 
on this arrangement, the effective depths with regard to prestressed bars and non-prestressed bars 
were kept identical. Moreover, the properties of prestressed and non-prestressed bars were also the 
same. The wires used had an average yield stress of 1480 MPa and an ultimate stress of 1623 MPa. 
No stirrups were used in the specimens and the maximum aggregates size was 20mm. The 
properties of the specimens in terms of the varying parameters are presented in Fig. 2.6.  
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Figure 2.6 – Properties of test specimens by Tan and Mansur 

 
All the specimens were completed with some instruments to measure the strains in the 
reinforcements and the mid-span deflection. A transducer (LVDT) and electrical resistance strain 
gages were used to measure the deflection and strains respectively.  
In all specimens, flexural cracks appeared first near the section of maximum moment. Then, with 
increasing loads, the cracks propagated towards the loading point. Among the eight beams tested, 
five of them failed in shear-compression while three beams failed in flexure. The specimens failed 
in flexure when the partial prestressing ratio (PPR) was high and in shear when it was low. Figure 
2.7 shows one typical beam failing in shear-compression and another failing in flexure.  
 

  
(a)                                                                            (b) 

Figure 2.7 – Typical cracking pattern at failure (a) in shear compression and (b) in flexure (b) by 
Tan and Mansur (1992) 

 
Results showed that stiffness and cracking moment increased with the partial prestressing ratio 
(PPR). The ultimate shear strength of the specimens was increased when decreasing the  𝑎/𝑑 ratio, 
increasing the degree of prestress and increasing the concrete strength.  
 
2.3.3 Teng, Kong and Poh (1998) 
 
In order to study the effect of various tendon profiles and different degrees of prestressing, Teng, 
Kong and Poh (1998) tested 34 unbounded deep beams where 13 of them were reinforced while 
21 were prestressed. Of the remaining 21 beams, 15 were prestressed with straight tendons while 
six were prestressed with tendons having various profiles and eccentricities. Based on our selection 
criteria, only the specimens with straight tendons are studied. Among these selected beams, the 
main parameters that varied in this test were the initial prestressing force and the vertical and 
horizontal reinforcement ratio. Some beams were provided with some vertical reinforcement, some 
were provided with both vertical and horizontal reinforcement while the others did not have any 
vertical and horizontal reinforcement ratio. All the deep beams were simply supported and tested 
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under one-point loading with an increasing load until failure of the specimens. The depth of all 
specimens equals 600mm. An extra length of 200 mm was added at each end in order to provide 
the transmission length required for the transfer of prestress to the concrete.  
 
Straight strands of 15.2mm diameter were used for all specimens. The prestressing force applied 
was varied from 113 to 266kN. The strands had an average yield stress of 1725 MPa. Four kinds 
of unstressed steel were used: R8, R10, T10 and T22. The letters R and T denote round bars and 
deformed bars respectively. Load cells were used to measure the force in the tendon during the 
test. The experimental setup is shown in Fig. 2.8. 
 

 
Figure 2.8 – Experimental setup by Teng, Kong and Poh (1998) 

 
In all tested specimens, flexural cracks appeared first near the section of maximum moment. The 
load corresponding to first flexural crack was about 35% of the ultimate failure loads. Then, with 
increasing loads, the cracks propagated towards the loading point. At 50% of the failure load, the 
first major diagonal crack appeared. This crack started to form at about one third of the beam 
depth from the beam soffit. Then, it propagated quickly through the depth of the beam. It is also 
observed that the first diagonal cracking load was increased by the use of prestressing but not by 
the use of vertical or orthogonal reinforcement. Among the 15 selected beams, two of them failed 
in flexure while the rest failed in shear.  
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Figure 2.9 – Typical cracking pattern at failure in shear for tests by Teng, Kong and Poh (1998) 

 
The effect of prestressing enhanced the shear strength. It is noted that the contribution of 
prestressing was most effective in beams with minimum or no web reinforcement and became less 
effective in beams with heavy orthogonal reinforcement.  
 
2.3.4 Simionopoulos (1998) 
 
This test series has been conducted by Simionopoulos at Mark Huggins Structural Laboratory at 
the University of Toronto in 1998. However, it has never been published because the results were 
not expected and they could not be understood. Thanks to the help of Professor Boyan Mihaylov, 
the data for this experiment could be collected. The aim of this study was to compare the 
predictions of the new general shear design method developed in University of Toronto and of the 
traditional ACI shear design procedures. For that purpose a large-scale experimental program was 
initiated. Eight prestressed deep beams with horizontal tendon profile were tested and two others 
with draped tendon profile. The two specimens having draped tendon profile are excluded from 
our study. The main parameters that varied in the test were the height of the beam and the position 
of the prestressing tendon. The beams were separated into four groups based on their height 
h=125, 250, 500, 1000mm. In each height group, one beam was tested with the tendon in the 
centre of the section while another beam was provided with a tendon having a certain eccentricity.   
Various kind of deformed reinforcing bars were used during the test. These bars and their 
properties are listed in Fig. 2.10.  
 

 
Figure 2.10 – Properties of reinforcing bars used by Simionopoulos (1998) 

 
The prestress force in all specimens was induced by post-tensioning. 13mm diameter seven-wire 
strands were used for all beams and the ultimate tensile strength of these strands equals 1950 MPa. 
The number of strands used per beam varied from one to eight. All beams had the same cylinder 
strength of about 43 MPa. The specimens were all simply supported and tested under one-point 
loading as shown in Fig. 2.11.  
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Figure 2.11 – Experimental setup by Simionopoulos (1998) 

 
As the experiment has never been published, no information/study about the results is available 
except the ultimate failure loads. 
 
2.3.5 Test database of deep prestressed beams  
 
The complete database for the four tests described in this chapter is shown from Table 2.1 to 2.4. 
Values highlighted in blue correspond to the values that are not referenced by the authors and 
that were guessed for this study.
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Authors Beam name a/d 
b 

(mm) 
h 

(mm) 

a = 
M/V 
(mm) 

𝒍𝒃𝟏 
(mm) 

𝒍𝒃𝟐 
(mm) 

V/P 
𝝆𝒍 

(%) 

# of 
RC 
bars 

𝒅𝒔 
(mm) 

RC bar 
diam. 
(mm) 

𝒇𝒚 

(MPa) 

Es 
(MPa) 

𝒂𝒈 

(mm) 

Tan and 
Mansur -

1992 

S13 1,5 150 400 525 100 100 0,5 0,34 9 350 5 1480 193500 20 

S23 1,5 150 400 525 100 100 0,5 0,34 6 350 5 1480 193500 20 

S33 1,5 150 400 525 100 100 0,5 0,34 3 350 5 1480 193500 20 

S43 1,5 150 400 525 100 100 0,5 0,34 0 350 5 1480 193500 20 

S14 2 150 400 700 100 100 0,5 0,34 9 350 5 1480 193500 20 

S24 2 150 400 700 100 100 0,5 0,34 6 350 5 1480 193500 20 

S34 2 150 400 700 100 100 0,5 0,34 3 350 5 1480 193500 20 

S44 2 150 400 700 100 100 0,5 0,34 0 350 5 1480 193500 20 

 

Tan et al. 
- 1999 

1P-500/0,50 0,56 140 500 250 250 250 1 2,30 4 425 20 510 200000 10 

1P-500/0,75 0,84 140 500 375 250 250 1 2,30 4 425 20 510 200000 10 

1P-500/1,00 1,13 140 500 500 250 250 1 2,30 4 425 20 510 200000 10 

2P-1000/0,50 0,56 140 1000 500 250 250 1 2,30 6 915 25 510 200000 10 

2P-1000/0,75 0,84 140 1000 740 250 250 1 2,30 6 915 25 510 200000 10 

2P-1000/1,00 1,13 140 1000 1000 250 250 1 2,30 6 915 25 510 200000 10 

3P-1400/0,50 0,56 140 1400 705 250 250 1 2,50 8 1275 25 510 200000 10 

3P-1400/0,75 0,84 140 1400 1050 250 250 1 2,50 8 1275 25 510 200000 10 

3P-1400/1,00 1,13 140 1400 1420 250 250 1 2,50 8 1275 25 510 200000 10 

4P-1750/0,50 0,56 140 1750 880 250 250 1 2,50 10 1535 25 510 200000 10 

4P-1750/0,75 0,84 140 1750 1320 250 250 1 2,50 10 1535 25 510 200000 10 

4P-1750/1,00 1,13 140 1750 1760 250 250 1 2,50 10 1535 25 510 200000 10 

 
Table 2.1 – Collected database of prestressed deep beams 
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Authors Beam name a/d 
b 

(mm) 
h 

(mm) 

a = 
M/V 
(mm) 

𝒍𝒃𝟏 
(mm) 

𝒍𝒃𝟐 
(mm) 

V/P 
𝝆𝒍 

(%) 

# of 
RC 
bars 

𝒅𝒔 
(mm) 

RC bar 
diam. 
(mm) 

𝒇𝒚 

(MPa) 
𝑬𝒔 

(MPa) 
𝒂𝒈 

(mm) 

Teng, 
Kong 

and Poh 
- 1998 

P-1c 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-1a 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-1b 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-2a 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-2b 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-3a 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-3b 1,64 150 600 900 150 150 0,5 1,09 2 550 22 754 200000 10 

P-1b(2) 1,64 160 600 900 150 150 0,5 1,02 2 550 22 478 200000 10 

P-1c(2) 1,64 160 600 900 150 150 0,5 1,02 2 550 22 478 200000 10 

P-1-1,5-WO 1,64 160 600 900 150 150 0,5 1,18 2 550 22 478 200000 10 

P-1-1,5-WV 1,64 160 600 900 150 150 0,5 1,18 2 550 22 478 200000 10 

P-1-1,5-WVH 1,64 160 600 900 150 150 0,5 1,18 2 550 22 478 200000 10 

P-1-1,0-WO 1,09 160 600 600 150 150 0,5 1,18 2 550 22 478 200000 10 

P-1-1,0-WV 1,09 160 600 600 150 150 0,5 1,18 2 550 22 478 200000 10 

P-1-1,0-WVH 1,09 160 600 600 150 150 0,5 1,18 2 550 22 478 200000 10 

 

Simiono
poulos - 

1998 

BP100 2,92 300 1000 2700 150 150 0,5 1,04 3 925 29,9 550 200000 10 

BP100E 2,92 300 1000 2700 150 150 0,5 1,04 3 925 29,9 550 200000 10 

BP50 3,00 300 500 1350 150 150 0,5 1,04 5 450 16 437 200000 10 

BP50E 3,00 300 500 1350 150 150 0,5 1,04 5 450 16 437 200000 10 

BP25 3,00 300 250 675 60 60 0,5 1,19 3 225 16 437 200000 10 

BP25E 3,00 300 250 675 60 60 0,5 1,19 3 225 16 437 200000 10 

 
Table 2.2 – Collected database of prestressed deep beams (continued) 
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Authors Beam name 
𝒇′𝒄 

(MPa) 
𝝆𝒗 
(%) 

𝒅𝒃𝒗 
(mm) 

𝒇𝒚𝒗 

(MPa) 
𝝆𝒉 
(%) 

# of 
prestr. 
bars 

Prestr. bar 
diameter 

(mm) 

𝒅𝒑 

(mm) 
P 

(kN) 
𝒇𝒑𝒚 

(MPa) 

𝑬𝒑 

(MPa) 
Failure 
mode 

𝑽𝒆𝒙𝒑.  

(kN) 

Tan and 
Mansur - 

1992 

S13 58,5 0 10 508 0 0 5 350 0,0 1480 193500 Shear 159 

S23 71,2 0 10 508 0 3 5 350 55,2 1480 193500 Flexure 198 

S33 62,2 0 10 508 0 6 5 350 126,3 1480 193500 Flexure 202 

S43 32,6 0 10 508 0 9 5 350 157,2 1480 193500 Shear 144 

S14 32,5 0 10 508 0 0 5 350 0,0 1480 193500 Shear 62 

S24 74,3 0 10 508 0 3 5 350 57,5 1480 193500 Flexure 156 

S34 55,3 0 10 508 0 6 5 350 126,3 1480 193500 Shear 115 

S44 58,5 0 10 508 0 9 5 350 179,2 1480 193500 Shear 144 

 

Tan et 
al. - 
1999 

1P-500/0,50 46,6 0 6 510 0 1 15,2 380 126,8 1709 200000 Shear 815 

1P-500/0,75 42,7 0 6 510 0 1 15,2 380 133,9 1709 200000 Shear 590 

1P-500/1,00 39,3 0 6 510 0 1 15,2 380 138,9 1709 200000 Shear 450 

2P-1000/0,50 43,5 0,12 6 510 0,12 2 15,2 760 301,2 1709 200000 Bear. Fail. 1350 

2P-1000/0,75 40,6 0,12 6 510 0,12 2 15,2 760 301,9 1709 200000 Shear 1200 

2P-1000/1,00 35,8 0,12 6 510 0,12 2 15,2 760 336,9 1709 200000 Shear 900 

3P-1400/0,50 34,8 0,12 6 510 0,12 3 15,2 1080 450,0 1709 200000 Shear 1300 

3P-1400/0,75 33,5 0,12 6 510 0,12 3 15,2 1080 472,2 1709 200000 Bear. Fail. 1250 

3P-1400/1,00 39,5 0,12 6 510 0,12 3 15,2 1080 450,0 1709 200000 Shear 950 

4P-1750/0,50 38 0,12 6 510 0,12 4 15,2 1200 589,5 1709 200000 Bear. Fail. 1100 

4P-1750/0,75 38,3 0,12 6 510 0,12 4 15,2 1200 604,9 1709 200000 Shear 1325 

4P-1750/1,00 40,9 0,12 6 510 0,12 4 15,2 1200 662,3 1709 200000 Shear 1100 

 
Table 2.3 – Collected database of prestressed deep beams (continued) 
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Authors Beam name 
𝒇′𝒄 

(MPa) 
𝝆𝒗 
(%) 

𝒅𝒃𝒗 
(mm) 

𝒇𝒚𝒗 

(MPa) 
𝝆𝒉 
(%) 

# of 
prestr. 
bars 

Prestr. bar 
diameter 

(mm) 

𝒅𝒑 

(mm) 
P 

(kN) 
𝒇𝒑𝒚 

(MPa) 

𝑬𝒑 

(MPa) 
Failure 
mode 

𝑽𝒆𝒙𝒑.  

(kN) 

Teng, 
Kong 

and Poh 
- 1998 

P-1c 38,4 0 0  0 1 15,2 300 129,1 1725 200000 Shear 275 

P-1a 38,4 0 0  0 1 15,2 475 132,1 1725 200000 Shear 290 

P-1b 38,3 0 0  0 1 15,2 475 186,0 1725 200000 Shear 200 

P-2a 38,4 0,70 10 406 0 1 15,2 475 141,8 1725 200000 Shear 412,5 

P-2b 38,3 0,70 10 406 0 1 15,2 475 160,4 1725 200000 Flexure 425 

P-3a 38,5 0,70 10 406 1,23 1 15,2 475 130,6 1725 200000 Flexure 437,5 

P-3b 38,4 0,70 10 406 1,23 1 15,2 475 179,5 1725 200000 Shear 460 

P-1b(2) 40,1 0 0  0 1 15,2 475 112,8 1734 200000 Shear 214 

P-1c(2) 40,1 0 0  0 1 15,2 300 134,1 1734 200000 Shear 287,5 

P-1-1,5-WO 43,4 0 0  0 2 15,2 450 266,4 1734 200000 Shear 370 

P-1-1,5-WV 43,5 0,42 8 412 0 2 15,2 450 265,4 1734 200000 Shear 437,5 

P-1-1,5-WVH 43,5 0,42 8 412 0,84 2 15,2 450 266,1 1734 200000 Shear 400 

P-1-1,0-WO 43,2 0 0  0 2 15,2 450 219,2 1734 200000 Shear 417,5 

P-1-1,0-WV 43,3 0,65 10 348 0 2 15,2 450 211,5 1734 200000 Shear 537,5 

P-1-1,0-WVH 43,3 0,65 10 495 1,31 2 15,2 450 225,4 1734 200000 Shear 560 

 

Simiono
poulos - 

1998 

BP100 42,6 0 0 0 0 8 12,9 500 1038,0 1755 195000 Shear 464 

BP100E 42,6 0 0 0 0 8 12,9 667 1036,0 1755 195000 Shear 561 

BP50 42,6 0 0 0 0 4 12,9 250 495,0 1755 195000 Shear 224 

BP50E 43 0 0 0 0 4 12,9 333 496,0 1755 195000 Shear 299 

BP25 43 0 0 0 0 2 12,9 125 247,0 1755 195000 Shear 142,4 

BP25E 43 0 0 0 0 2 12,9 167 250,0 1755 195000 Shear 164 

BP12 43,5 0 0 0 0 1 12,9 62,5 114,0 1755 195000 Shear 73,5 

BP12E 43,5 0 0 0 0 1 12,9 83,5 113,0 1755 195000 Shear 60,4 

 
Table 2.4 – Collected database of prestressed deep beams (continued)
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3. Modelling approaches for prestressed deep beams  

3.1 Strut-and-tie models  
 
Strut-and-tie models (STM) are a very effective engineering approach that transforms complex 
stress patterns into simple flow of tensile (ties) and compressive (struts) forces. They are commonly 
used to design shear critical structures and more generally, disturbed regions in concrete beams 
(Eurocode2). They are very easy to use and can be adopted to many different concrete structures 
as well as to deep beams. When a deep beam is idealized with a strut-and-tie model, the prestressing 
and the main flexural reinforcement are represented by a tie, the force path between loading zones 
and support zones as an inclined strut, and when the beam is subjected to two-point loading, the 
path between both loading points is represented as an horizontal strut (Fig. 3.1).  
Alsheiger and Ramirez (1992) proposed detailed strut and tie models for three pre-tensioned deep 
beams with I-sections. However, analyses with these models were performed with a computer 
program rather than a simple formula. For this reason, these analyses were unsuitable for every-
day design. To address this issue, Tan et al. (2001) proposed a strut-and-tie model for simply 
supported prestressed concrete deep beams and developed a relevant formula (Fig. 3.1). A linear 
failure criterion modified from the Mohr-Coulomb theory was used to take into account the 
concrete softening effect in the struts.  

 
Figure 3.1 – Strut and tie model proposed by Tan et al. (2001) 

  
Finally, Wang and Meng (2008) developed a modified strut and tie model for simply supported 
prestressed concrete deep beams (Fig. 3.2). Equivalent external loads were used to take into 
account the effects of prestressing.  

 
Figure 3.2 – Equivalent loads of prestressing effects and modified strut and tie model proposed 

by Wang and Meng (2008) 
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The model proposed by Wang and Meng (2008) as well as the one of Tan et al. (2001) were 
compared to 56 prestressed deep beams resulting in conservative shear strength predictions as 
shown in Fig. 3.3.  

 
Figure 3.3 – Shear strength predictions by Wang and Meng (2008) 

 
However, even if strut and tie models are very easy to use and very powerful, they are not always 
able to produce adequate results for the ultimate failure strength of deep beams because of the 
large number of parameters that influence the shear behaviour of those beams. Furthermore, as 
strut-and-tie models are based on the flow of forces in the member, they are not well suited for 
predicting deformations. 

3.2 Finite element models  
 
Non-linear finite element models (FEM) are a numerical approach used to solve complex 
engineering problems. The method divides a continuous domain into multiple finite elements with 
deformation patterns. Due to material and geometrical nonlinearities, FE models are solved 
iteratively until the conditions for equilibrium between internal and external forces are satisfied. 
Sophisticated FEMs tend to be generally more accurate than strut-and-tie models. However, this 
method requires long time for modelling and computations as well as significant expertise to be 
used safely.  
 
The FEM software used in this thesis is called VecTor2. It has been developed at the University of 
Toronto since the 1980s. It is based on the Modified compression Field Theory (Vecchio and 
Collins 1986) and Disturbed Stress Field Model (Vecchio 2000). The software implements a 2D 
plane-stress formulation and is able to model both monotonic and cyclic loading. The prestressing 
can be easily implemented in the model by means of prestrains in the prestressing reinforcement. 
Second order effects are also incorporated into the program’s analysis algorithms. Moreover, 
multiples behaviour models for cracked concrete are available to use. 
 
The finite elements implemented in VecTor2 are linear, triangular, rectangular, and quadrilateral. 
The reinforcements can be represented in the model either by linear elements or as smeared 
reinforcement in the concrete elements. 
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3.3 Two-parameter kinematic Theory  
 
The two-parameter kinematic theory (2PKT) has been developed by Mihaylov et al. in 2013. The 
model is able to describe the deformed shape of deep beams using just two kinematic parameters 
(degrees of freedom, DOF). This model is combined with equilibrium equations and stress-strain 
relationships to predict the shear strength and deformation patterns of deep beams at shear failure. 
More recently, the 2PKT method was extended to a five-spring model to predict the complete pre- 
and post-peak shear behaviour of deep beams (Mihaylov 2015). This new model keeps the same 
philosophy as the 2PKT but calculations are repeated at every load stage and not only at ultimate. 
This thesis however focuses on extending the original 2PKT to prestressed deep beams.  
 
The 2PKT was developed based on an experimental study conducted by Mihaylov et al. (2010). 
Ten large reinforced concrete deep beams were tested to failure under cyclic or monotonic and 
reversed-cyclic loading. The results indicated that cyclic loading does not have a significant effect 
on the ultimate shear strength. Figure 3.4 shows one of the specimens after failure, including its 
measured crack and deformation patterns. The figure illustrates a shear failure with a critical crack 
extending between the loading and support zones. The crack diagram as well as the deformations 
diagram indicate that the concrete zone above the critical crack deforms relatively little and the 
shear deformations are concentrated around the crack.  
 

     
(a)                                                                          (b) 

 
(c)  

Figure 3.4 – (a) Photo of specimen S1C after failure, (b) Cracks width at failure, (c) Deformations 
at failure X30 (Mihaylov et al., 2013) 

 
Based on these observations, it is assumed in the 2PKT that the critical shear crack of deep beams 
develop along a straight line that extends from the inner edge of the support to the far edge of the 
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loading plate. The concrete zone above the critical crack is modelled as a rigid block while the 
concrete under the crack is represented by a series of rigid radial struts (“fan” of struts) that connect 
the loading point to the bottom longitudinal reinforcement. These two zones are connected by the 
critical loading zone (CLZ) where the concrete crushes, the stirrups and the bottom longitudinal 
reinforcement.  
 

 
Figure 3.5 – Details of 2PKT (Mihaylov et al. 2013) 

 
The main assumption of the model is that the motion of the concrete block above the critical crack 
consists of a rotation about the top of the crack and a vertical translation with respect to the fan 
of struts. The rotation is proportional to the average strain in the bottom reinforcement 𝜀𝑡,𝑎𝑣𝑔 while 

the vertical translation equals the displacement 𝛥𝑐 that develops in the critical loading zone 
(Mihaylov et al.,2013). Therefore, 𝜀𝑡,𝑎𝑣𝑔 and 𝛥𝑐 are the two degrees of freedom of the model. Strain 

𝜀𝑡,𝑎𝑣𝑔 is associated with widening of the critical crack while displacement 𝛥𝑐  in the critical loading 

zone causes both widening and slip displacement in the crack. Finally, the angle of the critical crack, 
α1 is assumed equal to the angle of the diagonal of the shear span α, but should not be taken smaller 
than 35° to represent the transition from deep to slender beams.  
 

 
(a)                                                                     (b) 

Figure 3.6 – Degrees of freedom of 2PKT (Mihaylov et al. 2013) 
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Based on these assumptions, the displacements of all points above and below the critical crack can 
be derived in terms of the two degrees of freedom:   
 

- For points below the critical crack:  

                                                                     𝛿𝑥(𝑥, 𝑧) = 𝜀𝑡,𝑎𝑣𝑔𝑥                                                           (3.1) 

 

                                                                    𝛿𝑧(𝑥, 𝑧) =  
𝜀𝑡,𝑎𝑣𝑔𝑥2

ℎ − 𝑧 
                                                        (3.2) 

 
- For points above the critical crack:  

                                                         𝛿𝑥(𝑥, 𝑧) = 𝜀𝑡,𝑎𝑣𝑔(ℎ − 𝑧) 𝑐𝑜𝑡 𝛼                                                (3.3) 
 
                                                         𝛿𝑧(𝑥, 𝑧) = 𝜀𝑡,𝑎𝑣𝑔𝑥 𝑐𝑜𝑡 𝛼 + 𝛥𝑐                                                  (3.4) 
 
It can be seen from Eq. 3.1 that the strain for point below the critical crack remains constant along 
the depth of the section. Therefore, no matter the position of prestressing tendon, the strain in it 
will be the same as the strain in the bottom non-prestressed reinforcement. Using this displacement 
field, the width of the critical diagonal crack at mid-depth is expressed as:  
 

                                                           𝑤 =  𝛥𝑐 𝑐𝑜𝑠 𝛼1 +  
𝜀𝑡,𝑎𝑣𝑔𝑙𝑘 

2 𝑠𝑖𝑛 𝛼1 
                                                   (3.5) 

 
where the two terms of this equation are associated with the two degrees of freedom. Length 𝑙𝑘 is 
shown in Fig. 3.6 and is estimated as: 
 

                                                            𝑙𝑘 = 𝑙0 + 𝑑(𝑐𝑜𝑡 𝛼 − 𝑐𝑜𝑡 𝛼1)                                                 (3.6) 
 

                                                          𝑙0 = 1.5(ℎ − 𝑑) 𝑐𝑜𝑡 𝛼1 ≥ 𝑠𝑚𝑎𝑥                                              (3.7) 
 

                                                           𝑠𝑚𝑎𝑥 =
0.28 𝑑𝑏 

𝜌𝑙
 
2.5(ℎ − 𝑑) 

𝑑
                                                (3.8) 

 
where 𝑠𝑚𝑎𝑥 is the spacing of the cracks along the bottom reinforcement,  𝑑𝑏 is the diameter of the 
bottom bars, 𝜌𝑙  is the flexural reinforcement ratio and 𝑙0 is the length of heavily cracked zone at 
bottom of critical diagonal crack. 
In addition to deformations, the 2PKT also models the mechanisms of shear resistance across the 
critical diagonal crack. A big portion of the shear is carried by the critical loading zone, while the 
other mechanisms are the aggregate interlock along the crack, the tension in the transverse 
reinforcement (stirrups) as well as the dowel action of the bottom reinforcement. Therefore, the 
shear strength of a deep beam is expressed as:  
 

                                                                𝑉 = 𝑉𝐶𝐿𝑍 + 𝑉𝑐𝑖 + 𝑉𝑠 + 𝑉𝑑                                                   (3.9) 
 
Where subscripts “CLZ”, “ci”, “s” and “d” stand for critical loading zone, crack interface 
(aggregate interlock), stirrups, and dowel action respectively. In order to calculate the shear strength 
of a given member, the four components of the equation above should be expressed in terms of 
the two degrees of freedom defined. 
The shear resisted by aggregate interlock is given by: 
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                                                            𝑉𝑐𝑖 =
0.18√𝑓′𝑐 

0.31 +
24𝑤

𝑎𝑔𝑒 + 16

 𝑏𝑑                                                  (3.10) 

 
where 𝑓′𝑐  is the concrete cylinder strength, 𝑏 is the cross section width and where the effective 
aggregate size 𝑎𝑔𝑒 equals the maximum aggregate size 𝑎𝑔 for concrete strengths less than 60 MPa 

and zero for strengths larger than 70 MPa. A linear interpolation is used for intermediate concrete 
strengths.  
The shear resisted by the stirrups is given by:  
 

                                               𝑉𝑠 = 𝜌𝑣𝑏(𝑑 𝑐𝑜𝑡 𝛼1 − 𝑙0 − 1.5𝑙𝑏1𝑒)𝑓𝑣 ≥ 0                                    (3.11) 
 
where 𝜌𝑣 is the ratio of transverse reinforcement and where 𝑙𝑏1𝑒 is the effective width of the loading 
plate and is expressed as:  

                                                                  𝑙𝑏1𝑒 = (
𝑉

𝑃
) 𝑙𝑏1 ≥ 3 𝑎𝑔                                                    (3.12) 

where 
𝑉

𝑃
 is the ratio of shear force to applied point load and 𝑙𝑏1 is the longitudinal length of the 

loading plate. The stress in the stirrups 𝑓𝑣  is calculated by assuming an elastic-perfectly plastic 
behaviour of the steel:  
 

                                                                       𝑓𝑣 =  𝐸𝑠 𝜀𝑣 ≤ 𝑓𝑦𝑣                                                       (3.13) 

 
where 𝐸𝑠 is the elastic modulus of steel and where the transverse strain 𝜀𝑣  halfway along the critical 
crack is derived from the kinematic model as:  
 

                                        𝜀𝑣 =  
1

0.9𝑑
(𝛥𝑐 + 0.25𝜀𝑡,𝑎𝑣𝑔𝑑 𝑐𝑜𝑡2 𝛼1) ≈  

1.5𝛥𝑐

0.9𝑑
                             (3.14) 

 
The expression for the shear resisted by dowel action of the bottom reinforcement is derived based 
on the assumption that the dowels of length 𝑙𝑘 work in double curvature with plastic hinges 
forming at each end:  
 

                                                                   𝑉𝑑 =  𝑛𝑏𝑓𝑦𝑒

𝑑𝑏
3

3𝑙𝑘
                                                              (3.15) 

 
where 𝑛𝑏 represents the number of bars and 𝑑𝑏 the bar diameter. The effective yield strength of 
the steel in the plastic hinges is given by: 
 

                                                   𝑓𝑦𝑒 = 𝑓𝑦 [1 − (
𝑇

𝑓𝑦𝐴𝑠
)

2

] ≤ 500𝑀𝑃𝑎                                        (3.16)  

 
and accounts for the tension T in bar-dowels :  
 

                                                                    𝑇 = 𝐸𝑠 𝜀𝑡,𝑎𝑣𝑔 𝐴𝑠                                                            (3.17)  
 
The last component of the shear force is the shear carried in the critical loading zone. This zone is 
a key component of the two-parameter kinematic theory and is illustrated in Fig. 3.7. 
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(a)                                                                    (b) 

 
(c) 

Figure 3.7 – (a) CLZ after failure, (b) dimensions of CLZ, (c) deformations and shear capacity of 
CLZ (Mihaylov et al., 2013) 

 
A simple linear stress analysis was used to determine the dimensions of the critical loading zone. 
The concrete above the critical crack was modelled as a variable depth elastic cantilever fixed on 
the left side and loaded with diagonal compressive stresses on the opposite side. Based on the 
analysis, it can be seen that the compressive stress along the bottom edge of the cantilever reaches 
the maximum value at a distance 1.5𝑙𝑏1𝑒 𝑐𝑜𝑠 𝛼 from the tip section and returns to the applied stress 
at a distance of 3𝑙𝑏1𝑒 𝑐𝑜𝑠 𝛼 from the same section. A triangular critical loading zone could be 
defined based on this result as illustrated in Fig. 3.7b. It is however noted that the effective width 
of the loading 𝑙𝑏1𝑒 should not be taken less than three times the maximum size of coarse 
aggregate 𝑎𝑔 as it is shown in equation 3.12.  

Moreover, knowing the geometry of the critical loading zone, the analysis showed that the vertical 
displacement of the critical loading zone at failure is given from: 
 

                                                                 𝛥𝑐 = 0.0105𝑙𝑏1𝑒 𝑐𝑜𝑡 𝛼                                                   (3.18) 
 
Therefore, the conclusion is that the vertical displacement is not anymore an unknown at failure. 
The only unknown DOF that remains is the strain in the bottom reinforcement 𝜀𝑡,𝑎𝑣𝑔. Based on 

the vertical displacement, the shear resisted by the critical loading zone can be expressed as:  
 

                                                               𝑉𝐶𝐿𝑍 = 𝑘𝑓𝑎𝑣𝑔 𝑏𝑙𝑏1𝑒𝑠𝑖𝑛2𝛼                                                (3.19)  
 
Where k is a crack shape coefficient that is equal to 1 for beams having 𝑐𝑜𝑡 𝛼 < 2 and 0 for beams 
with 𝑐𝑜𝑡 𝛼 >2.5. A linear transition for intermediate values of 𝑐𝑜𝑡 𝛼 is supposed for the value of k. 
The average compressive stress is calculated by:  
 

                                                                       𝑓𝑎𝑣𝑔 = 1.43𝑓′
𝑐
0.8

                                                        (3.20)  
 



33 
 

As mentioned before, the ultimate shear strength is given by the sum of the shear four mechanisms 
accounted for in the 2PKT. However, the strain in the bottom reinforcement 𝜀𝑡,𝑎𝑣𝑔 should be 

found at failure. So far, the shear behaviour of the beam is presented. In order to find the ultimate 
shear strength, the flexural behaviour will be studied as well. From moment equilibrium of the 
shear span about the point of application of the compression force C in the section with maximum 
moment, the shear force can be expressed as:  
 

                                                                       𝑉 =  
𝑇(0.9𝑑)

𝑎
                                                              (3.21) 

Where T is the tension force in the bottom reinforcement. 
The equilibrium of forces written below can then be solved to find the value of DOF 𝜀𝑡,𝑎𝑣𝑔.  

 

                                                 𝑉 =  
𝑇(0.9𝑑)

𝑎
=  𝑉𝐶𝐿𝑍 + 𝑉𝑐𝑖 + 𝑉𝑠 + 𝑉𝑑                                        (3.22) 

 
Once the strain 𝜀𝑡,𝑎𝑣𝑔 is found, all the shear mechanisms that contribute to the shear resistance can 

be calculated and the sum of all these mechanisms give the predicted shear strength of the member. 
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4. Kinematic Modelling of Prestressed Deep Beams  

4.1 Application of the original 2PKT to tests database 
  
The first step in the kinematic modelling of prestressed deep beams is to apply the 2PKT method 
without modifications to the tests discussed in Chapter 2. In this way it will be identified whether 
the original 2PKT provides reasonable accuracy and whether it requires significant improvement. 
In this context, as the original model does not take into account the prestressing, the prestressed 
reinforcement will be treated as non-prestressed. The total amount of flexural reinforcement in the 
section is then given by: 
 

                                                                        𝐴∗
𝑠 = 𝐴𝑠 + 𝐴𝑝                                                              (4.1) 

 
and the effective depth of this reinforcement is given from: 
 

                                                                   𝑑∗ =  
𝐴𝑠𝑑𝑠 + 𝐴𝑝𝑑𝑝

𝐴𝑠 + 𝐴𝑝
                                                          (4.2) 

 
To study the specimens and their shear strength at failure, it is also important to compare the 
maximum shear strength at shear failure to the shear strength of the same specimen at flexural 
failure. In order to calculate the maximum bending moment resisted by the specimens, all of them 
were modelled on the software Response 2000 which is a computer program capable of predicting 
the full load-deformation response of reinforced and prestressed concrete members. The program 
is based on the modified compression field theory and was developed at the University of Toronto 
by Evan Bentz under the supervision of Professor Michael P. Collins. Once the maximum bending 
moment was found by Response 2000, as all the specimens were tested under one or two-point 
loading, the shear force at flexural failure was computed from:  

                                                         𝑉 𝑎𝑡 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =  
𝑀𝑚𝑎𝑥

𝑎
                                          (4.3) 

 
Where 𝑎 is the shear span of the specimens.  

 
Figure 4.1 – Bending moment and shear diagram under one-point loading and two-point loading 

 
In addition to calculation of the shear strength based on the 2PKT and the flexural strength based 
on the classical plane-sections-remain plane approach, it is also needed to account for potential 
bearing failures due to high stresses under the point loads. Assuming that such failures occur when 
the stresses under the loading plates reach 𝑓′𝑐, the shear corresponding to bearing failure is: 
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                                                       𝑉𝑚𝑎𝑥 𝑏𝑦 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
𝑉

𝑃
𝑏𝑙𝑏1𝑒 𝑓′𝑐                               (4.4) 

 
The final shear strength prediction at failure is given by:  
 

      𝑉𝑚𝑎𝑥 = 𝑀𝑖𝑛 {𝑉 𝑎𝑡 𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒; 𝑉𝑚𝑎𝑥 𝑏𝑦 2𝑃𝐾𝑇; 𝑉𝑚𝑎𝑥 𝑏𝑦 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑎𝑖𝑙𝑢𝑟𝑒}    (4.5) 
 
4.1.1 Tests by Tan et al. (1999)  
 
Tan et al. (1999) tested twelve unbounded prestressed deep beams. The objective of their 
experiment was to study the size effect in prestressed deep beams. For that reason, the main 
parameters that varied in this experiment are the shear-span-to-effective-depth ratio 𝑎/𝑑 and the 
height of the beams. The specimens were divided into four height groups (h=500, 1000, 1400 and 
1750mm). Then, in each group, the shear span was varied in order to have 3 different shear-span-
to-effective-depth ratio (a/d=0,56; 0,84; 1,13).  
 

 
Figure 4.2 – Contribution to shear strength of the different shear mechanisms for specimen 3P-

1400/1.0 from tests by Tan et al. (1999) 
 
To illustrate how the 2PKT method works, it is first applied to specimen 3P-1400/1.00. The 
solution of the 2PKT equations is shown graphically in Fig. 4.2. On the horizontal axis of the plot 
is the unknown DOF 𝜀𝑡,𝑎𝑣𝑔 while on the vertical axis are the shear forces. The solution begins with 

calculating the geometry of the kinematic model and DOF 𝛥𝑐  (Eq. 3.18). Then, with the obtained 
𝛥𝑐 and for each value of DOF 𝜀𝑡,𝑎𝑣𝑔 on the horizontal axis, the shear strength 

components 𝑉𝐶𝐿𝑍, 𝑉𝑐𝑖, 𝑉𝑠 and 𝑉𝑑  are calculated from Eq. 3.10, 3.11, 3.15 and 3.19. Therefore, the 
sum of the shear components equals the shear resistance of the beam which is plotted with a thick 
green line. To ensure equilibrium of the shear forces, the shear resistance must be equal to the 
shear force obtained from the moment equilibrium of the beam (Eq. 3.22). This shear force is 
plotted with a thick blue line and increases linearly with 𝜀𝑡,𝑎𝑣𝑔 due to the elastic behaviour of the 

flexural reinforcement. Therefore, the solution of the 2PKT equations lies at the intersection of 
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the thick green and blue lines which can be viewed as shear capacity and shear demand lines, 
respectively. The abscissa of the intersection point is the predicted DOF 𝜀𝑡,𝑎𝑣𝑔 while the ordinate 

is the predicted shear strength. For beam 3P-1400/1.0, the predicted shear strength is 693 kN while 
the experimentally obtained value is 950 kN. This results in a shear-strength experimental-to-
predicted ratio of 1.371. Flexural and bearing failures were not governing as they corresponded to 
higher shear forces (1765 and 1383 kN, respectively). 
It can also be seen from Fig. 4.2 that a big portion of the shear strength is provided by the critical 
loading zone. Indeed, at failure, shear component 𝑉𝐶𝐿𝑍 represents 67% of the total shear strength 
while the interlocking, the dowel action and the stirrups represents respectively 13%, 8% and 12%.  
It is also important to note that, as evident from the figure, the shear strength provided by the 
critical loading zone is independent of the strain in the bottom reinforcement while the interlocking 
strength decreases with the increase of the strain and the opening of cracks. It will therefore be a 
key issue to study how the critical loading zone behave with the variation of strain in the 
longitudinal reinforcement for prestressed deep beams.  
 

 
Figure 4.3 – Comparison experiments/predictions of the original 2PKT for tests by Tan et al. 

(1999) 
 
Similar calculations were performed with all 12 beams tested by Tan et al. (1999) and the results 
are shown in Fig. 4.3. On the horizontal axis is the main variable in the tests, namely the ratio 
between the yield force of the prestressed reinforcement to that of the total flexural reinforcement. 
The predicted shear strengths are plotted with continuous lines while the measured strengths are 
presented with discrete points. It can be seen that the results predicted by the original 2PKT are 
inaccurate. All the predictions are conservative except for beams of 500mm height. The trend of 
the prediction curve seems to follow the experiments. However, the predictions are too low 
compared to the experimental failure loads. For specimen 4P-1750/0,50 that has a height of 1750 
mm and an 𝑎/𝑑 ratio of 0.56, a bearing failure occurred. For that reason, this specimen has an 
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experimental failure load that is already under the prediction curve. This specimen will be therefore 
excluded from the analysis. 
 
Surprisingly, it is also shown that the height of the specimens does not influence a lot the prediction 
curve. Indeed, the prediction curves for specimens of height 1000mm and 1400mm are nearly one 
on top of the other. This result is due to the fact that the shear strength is mainly governed by the 
shear resisted by the critical loading zone. However, as the length of the loading plates are the same 
for all specimens, and as the concrete compressive strength is relatively constant, there are not 
significant differences in the shear resisted by the critical loading zone for different height of 
specimens. The small increase of the shear strength for higher specimens that is shown in Fig. 4.3 
comes from the increase of interlocking with the height of the beam.  
 
Finally, Table 4.1 presents the experimental results and corresponding predictions for the tests by 
Tan et al. (1999). As shown at the bottom of the table, the average value of the ratio between the 
experimental results and the predictions equals 1.23 and the coefficient of variation is equal to 
22,2%. These values show that the model should be improved. 
 

Beam Name 
V exp. 
(kN) 

V by flexure 
(kN) 

V by 2PKT 
(kN) 

V by bearing 
failure (kN) 

V pred. 
(kN) 

V exp./V 
pred. 

1P-500/0,50 815 1248 963 1631 963 0,84 

1P-500/0,75 590 816 702 1495 702 0,84 

1P-500/1,00 450 597 514 1376 514 0,87 

2P-1000/0,50 1350 2606 1093 1523 1093 1,23 

2P-1000/0,75 1200 1737 823 1421 823 1,45 

2P-1000/1,00 900 1237 595 1253 595 1,51 

3P-1400/0,50 1300 3381 1067 1218 1067 1,21 

3P-1400/0,75 1250 2234 798 1173 798 1,56 

3P-1400/1,00 950 1765 693 1383 693 1,37 

4P-1750/0,50 1100 4293 1187 1330 1187 0,92 

4P-1750/0,75 1325 2875 899 1341 899 1,47 

4P-1750/1,00 1100 2224 746 1432 746 1,47 

Average 1,23 
Coefficient of variation  22,2% 

Table 4.1 – Summary of predictions of the original 2PKT for tests by Tan et al. (1999) 
 
4.1.2 Tests by Tan and Mansur (1992) 
 
As mentioned in chapter 2, Tan and Mansur (1992) conducted a study on 8 pretensioned deep 
beams. The goal of their experiment was to study the effect of partial prestressing on the strength 
of deep beams. The specimens were divided into two groups based on their shear-span-to-
effective-depth ratio (𝑎/𝑑 = 1.5 or 2). In each group, the degree of prestress was varied from one 
specimen to another. Figure 4.4 shows the predictions of the original 2PKT model compared to 
the experimental results. 
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Figure 4.4 – Comparison experiments/predictions of the original 2PKT for tests by Tan and 

Mansur (1992) 
 
It can be seen that the results predicted by the original 2PKT are reasonable. For beams having 
𝑎/𝑑 ratio of 1.5 the predictions are conservative except for the first beam which was not 
prestressed. This observation is also repeated for the second group where the 𝑎/𝑑 ratio equals 2. 
This result seems surprising because the 2PKT was developed for non-prestressed beams. It should 
also be noted that the experimental results show a very significant scatter, which accounts in part 
for the unconservative predictions obtained for the non-prestressed beam with 𝑎/𝑑 of 2.0. 
 
Finally, Table 4.2 summarizes the experimental results and corresponding predictions for the tests 
by Tan and Mansur (1992). As shown at the bottom of the table, the average value of the ratio 
between the experimental results and the predictions is equal to 1.09 which is already a reasonable 
value. The coefficient of variation equals 16,8%.   
 

Beam 
Name 

V exp. 
(kN) 

V by flexure 
(kN) 

V by 2PKT 
(kN) 

V by bearing 
failure (kN) 

V pred. 
(kN) 

V exp./V 
pred. 

S13 159 179,6 168,7 412 168,7 0,94 

S23 198 184,0 172,2 502 172,2 1,15 

S33 202 188,8 185,2 439 185,2 1,09 

S43 144 188,8 119,9 229 119,9 1,20 

S14 62 127,1 84,3 229 84,3 0,74 

S24 156 136,9 113,3 524 113,3 1,38 

S34 115 136,9 112,5 391 112,5 1,02 

S44 144 139,6 116,1 412 116,1 1,24 

Average 1,09 

Coefficient of variation 16,8% 

Table 4.2 – Summary of predictions of the original 2PKT for tests by Tan and Mansur (1992) 
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4.1.3 Tests by Teng, Kong and Poh (1998) 
 
Teng, Kong and Poh (1998) tested 15 prestressed deep beams with straight tendons. The objective 
of their experiment was to study the effect of curved tendons on deep beams. However, the 
specimens tested differ from several parameters. Therefore, for this test series it is really 
complicated to show clear experiments/predictions curves for all specimens. The ratio 
experiment/predictions was therefore studied for each specimen. However, Fig. 4.5 shows 
comparison between experiments and predictions for some similar specimens: 
 

  
Figure 4.5 – Comparison experiments/predictions of the original 2PKT for tests by Teng, Kong 

and Poh (1998) 
 

It can be seen again based on these plots that the original 2PKT does not take into account the 
prestressing. All the predictions are conservative for this test. However, the predictions are far 
from the experimental results except for one specimen. It can also be seen that the model does not 
take into account the presence of horizontal web reinforcement.  
 
The other specimens that are not represented in Fig. 4.5 are quiet different from each other. For 
that reason, the ratio between the experimental failure force and the predicted failure force was 
studied for each specimen thanks to Fig. 4.6. It can be seen that the ratios between the experimental 
results and the predictions range between 1 and 2. The predictions should be increased to improve 
the results.  
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Figure 4.6 – Experiment/predictions ratios of the original 2PKT for tests by Teng, Kong and 

Poh (1998) 
 

Finally, Table 4.3 summarizes the different shear strengths and predictions for all the specimens in 
this test. The average value of the ratio between the experimental results and the predictions equals 
1.31 and the coefficient of variation equals 14.4 %. These values show again that the model could 
be improved. 
 

Beam Name 
V exp. 
(kN) 

V by flexure 
(kN) 

V by 2PKT 
(kN) 

V by bearing 
failure (kN) 

V pred. 
(kN) 

V exp./V 
pred. 

P-1c 275 397 196 432 196 1,40 

P-1a 290 466 196 432 196 1,48 

P-1b 200 464 195 431 195 1,02 

P-2a 413 451 371 431 371 1,11 

P-2b 425 444 371 431 371 1,14 

P-3a 438 481 372 432 372 1,17 

P-3b 460 481 371 431 371 1,23 

P-1b(2) 214 362 195 480 195 1,09 

P-1c(2) 288 288 195 481 195 1,47 

P-1-1,5-WO 370 420 208 520 208 1,78 

P-1-1,5-WV 438 420 326 521 326 1,34 

P-1-1,5-WVH 400 444 326 522 326 1,22 

P-1-1,0-WO 418 631 320 518 320 1,30 

P-1-1,0-WV 538 631 385 519 385 1,39 

P-1-1,0-WVH 560 667 389 519 389 1,43 

Average 1,31 

Coefficient of variation 14,4% 

Table 4.3 – Summary of predictions of the original 2PKT for tests by Teng, Kong and Poh. 
(1998) 
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4.1.4 Tests by Simionopoulos (1998) 
 
In order to compare the new general shear design method developed at the University of Toronto 
(1998) with the traditional ACI shear design procedures, eight deep beams prestressed with straight 
tendons were tested under one-point loading. The specimens were separated into four groups 
based on their height h=125, 250, 500, 1000mm. In each height group, one beam was tested with 
the tendon in the centre of the section while another beam was provided with an eccentric tendon. 
The smallest specimens (h=125mm) are excluded from our analysis due to a lack of information. 
Figure 4.7 shows the predictions of the original 2PKT model compared to the experimental results.  
 

 
Figure 4.7 – Comparison experiments/predictions of the original 2PKT for tests by 

Simionopoulos (1998) 
 
It can be seen based on these plots that the position of the tendon does not have an influence on 
the predictions of the model while the experiment shows that deeper tendons increase the shear 
strength. However, the size effect is well presented by the predictions. Indeed, the normalized 
failure stress tend to decrease when the height of the section is increased.  
 

Table 4.4 summarizes the different shear strengths and predictions for all specimens in this test. 
The average value of the ratio between the experimental results and the predictions equals 1.93 and 
the coefficient of variation equals 20.4 %. Compared to previous tests, these results are inaccurate. 
The main reason for these values is that the specimens have 𝑎/𝑑 ratio of 2.9 and they are out of 
the range of deep beams. However, as they behaved like a tied arch, they are still studied in our 
analysis.  

 

Beam 
Name 

V exp. 
(kN) 

V by 2PKT 
(kN) 

V by bearing 
failure (kN) 

V pred. 
(kN) 

V exp./V pred. 

BP100 464 211 959 211 2,19 

BP100E 561 209 959 209 2,68 

BP50 224 148 959 148 1,51 

BP50E 299 149 968 149 2,00 

BP25 142,4 90,6 387 90,6 1,57 

BP25E 164 90,7 387 90,7 1,80 

Average 1,93 
Coefficient of variation 20,4% 

Table 4.4 – Summary of predictions of the original 2PKT for Tests by Simionopoulos (1998) 
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4.2. Modifications to the 2PKT  
 
As evident from the results presented in Section 4.1, the original 2PKT requires certain 
modifications to take into account the effects of prestressing. This section describes the 
modifications which concern three different aspects: the shear force obtained from flexural 
equilibrium, the geometry of the CLZ and the dowel action contribution of the prestressing 
reinforcement.  
 
4.2.1 Shear force from flexural equilibrium  
 
The first modification on the existing model concerns the shear force obtained from flexural 
equilibrium. So far, the shear force from flexural equilibrium was calculated from Eq. 3.21 which 
does not account for the prestrain applied to the prestressing tendons in the section. Indeed, when 
no external loads act on the member, there is still a significant tension force in the tendon. 
Therefore, the contribution to shear force of the prestressed and non-prestressed reinforcement 
should be separated as follows:  
 

                                𝑉 =   
 𝐸𝑠 𝜀𝑡,𝑎𝑣𝑔  𝐴𝑠  (0.9 𝑑𝑠)

𝑎
+

 𝐸𝑝 𝐴𝑝 (𝜀𝑡,𝑎𝑣𝑔 + 𝛥𝜀𝑝) (0.9 𝑑𝑝)

𝑎
                 (4.6) 

 
where 𝑑𝑝 and  𝑑𝑠 are respectively the effective depths of prestressed and non-prestressed 

reinforcement and 𝛥𝜀𝑝 is the prestrain applied to the tendon (i.e. the difference between the strain 

in the tendon and the strain in the surrounding concrete). 
 
Figure 4.8 illustrates the contribution to the shear force of both prestressed and non-prestressed 
reinforcement. The shear force from flexural equilibrium (blue line) corresponds to the sum of the 
contribution of both contributions. Therefore, as the intersection of the shear force from flexural 
equilibrium and the total strength of the beam is at a higher location, the effect of prestressing on 
the shear derived from flexural equilibrium increase the ultimate shear strength. However, as the 
total strength curve (green curve) is quite flat, the increase of the shear strength is relatively low. In 
particular, for beams where the amount of non-prestressed reinforcement is much bigger than the 
amount of prestressed reinforcement, the effect of prestressing on the shear derived from flexural 
equilibrium tend to be insignificant.  
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Figure 4.8 – Effect of prestressing on the shear derived from flexural equilibrium 

 
4.2.2 Geometry of CLZ 
 
As mentioned before, the critical loading zone is a key component of the 2PKT because it typically 
represents the mechanism that carries the biggest portion of the shear force. It is expected, based 
on the intermediate results presented in Section 4.1, that the prestressing force on the member 
should influence the geometry of the CLZ and therefore its strength. Also, it can be supposed that 
the size of the CLZ depends on the depth of the flexural compression zone. The deeper is the 
compression zone, the larger is the critical loading zone. Therefore, as a first step, it is needed to 
express the depth of the compression zone 𝑥 as a function of DOF 𝜀𝑡,𝑎𝑣𝑔. 

 
The depth of the compression zone is derived based on assumptions illustrated in Fig. 4.9 for a 
rectangular section with both prestressed and non-prestressed reinforcement. To derive the 
formula for the depth of the compression zone, the strain distribution along the height of section 
is needed. Based on Eq. 3.1, it is known that the strain remains constant along the height of the 
section and equals 𝜀𝑡,𝑎𝑣𝑔. However, in order to be able to derive an expression for the depth of the 

compression zone, a linear distribution of the strain is supposed from the position of the tendon 
to the top of the section, while under the prestressing tendon the strain is assumed to be constant 
and equal to 𝜀𝑡,𝑎𝑣𝑔. In addition, it is assumed that both the bottom reinforcement and the concrete 

in the compression zone are in the linear elastic range. This will allow for the derivation of a closed-

form expression for 𝑥. 
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Figure 4.9 – Strain distribution supposed to derive the depth of compression zone 

 
Based on this strain distribution, the strain in the top of the section is given by:  
 

                                                                      𝜀𝑡𝑜𝑝 =
− 𝜀𝑝

(−1 +
1
𝑥  𝑑𝑝)

                                                     (4.7) 

 

Then, assuming a linear elastic behaviour, the stresses in the reinforcements and the concrete can 
be expressed as follows:  

                                                                         𝜎𝑡𝑜𝑝 =  𝜀𝑡𝑜𝑝 𝐸𝑐                                                             (4.8) 

 

                                                                    𝜎𝑝 =  𝐸𝑝(𝜀𝑝 + 𝛥𝜀𝑝)                                                        (4.9) 

 

                                                                           𝜎𝑠 =  𝐸𝑠 𝜀𝑠                                                                (4.10) 
 

where 𝜀𝑝 =   𝜀𝑠 =  𝜀𝑡,𝑎𝑣𝑔. The forces acting on the section are then given from:  

 

                                                                         𝐶 =
𝜎𝑡𝑜𝑝𝑥 𝑏

2
                                                              (4.11) 

 

                                                                              𝐹𝑝 = 𝜎𝑝 𝐴𝑝                                                            (4.12) 

 

                                                                             𝐹𝑠 = 𝜎𝑠 𝐴𝑠                                                               (4.13) 
 
To ensure horizontal equilibrium, the following equation must be satisfied: 
  

                                                          ∑  𝐹𝑥 =  0 → 𝐶 +  𝐹𝑝 +  𝐹𝑠 = 0                                         (4.14) 

 
Replacing the three terms in the right hand side of the equation above, one obtains:  
 

                                                             
 𝜎𝑡𝑜𝑝 𝑥 𝑏 

2
+ 𝜎𝑝 𝐴𝑝 + 𝜎𝑠 𝐴𝑠 = 0                                         (4.15) 

 

After rearranging the different terms, a quadratic equation for 𝑥 is obtained:  

 

                           
−  𝜀𝑡,𝑎𝑣𝑔 𝐸𝑐 𝑏 𝑥2 

2
− 𝑥 (𝜎𝑝 𝐴𝑝 + 𝜎𝑠 𝐴𝑠) + (𝜎𝑝 𝐴𝑝 + 𝜎𝑠 𝐴𝑠) 𝑑𝑝 = 0            (4.16) 

 

This equation has two solutions as follows:  
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      𝑥 =
(𝜎𝑝 𝐴𝑝 + 𝜎𝑠 𝐴𝑠) ± √(𝜎𝑝 𝐴𝑝 + 𝜎𝑠 𝐴𝑠)

2
+ 2 𝜀𝑡,𝑎𝑣𝑔 𝐸𝑐  𝑏 (𝜎𝑝 𝐴𝑝 + 𝜎𝑠 𝐴𝑠) 𝑑𝑝 

− 𝜀𝑡,𝑎𝑣𝑔 𝐸𝑐 𝑏
      (4.17) 

 

The solution with the positive sign does not have physical meaning because it gives negative values 
for the depth of compression zone. Therefore, the required solution is obtained by using the 
negative sign in Eq. (4.17).  
 
Now that the depth of the compression zone is derived, the geometry of the critical loading zone 
should be expressed as a function of it. The geometry of this critical zone is given by two 
parameters 𝛼 and  𝑙𝑏1𝑒 that represent the angle of the critical diagonal crack and the effective width 
of the loading plate, respectively. As the angle 𝛼 is computed from the geometry of the specimens, 
the parameter that has to be determined is only 𝑙𝑏1𝑒. So far, this parameter depended only on the 
width of the loading plate and the maximum aggregate size as shown in Eq. 3.12. To link the 
effective width of the loading plate to the depth of the compression zone, the crack patterns of 
collected specimens were studied. Based on this study, three different methods were identified and 
tested. Figure 4.10 illustrates the new geometry of the critical loading zone as well as the relation 
between the effective width of the loading plate and the depth of the compression zone for each 
method.  

 
 
Figure 4.10 – Tested methods to establish the link between the depth of the compression zone x 

and the effective width of the loading plate 𝑙𝑏1𝑒.   
 
Among these three methods, the first one produced the best results when it was implemented in 
the 2PKT and the shear strength predictions were compared with experimental results. The main 
assumption of this method is that the critical diagonal crack extends above the flexural crack as 
shown in Fig. 4.11 that represents the crack pattern of one specimen (specimen BP100E) from the 
tests by Simionopoulos (1998).  

 
Figure 4.11 – Crack pattern of specimen BP100E from tests by Simionopoulos (1998).  

 
Mihaylov et al. (2013) showed in the original 2PKT that the length of the critical loading zone along 
the critical diagonal crack is 3𝑙𝑏1𝑒 𝑐𝑜𝑠 𝛼 (Fig. 4.12). Based on this result, the horizontal length at 

which the depth of the compression zone is reached is 3𝑙𝑏1𝑒 𝑐𝑜𝑠2 𝛼. Therefore, the effective width 
of the loading plate can be expressed from:  
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                       𝑡𝑎𝑛 𝛼 =
𝑥

3𝑙𝑏1𝑒 𝑐𝑜𝑠2 𝛼
→  𝑙𝑏1𝑒 =

𝑥

3 𝑡𝑎𝑛 𝛼 𝑐𝑜𝑠2 𝛼
=

𝑥

3 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
                  (4.18) 

 

 
Figure 4.12 – Proposed geometry of the critical loading zone in prestressed beams 

 
Finally, it is also clear that the effective width of the loading plate should be at least equal to the 
real width of the loading plate. For that reason, the final expression for the effective width is given 
by:  

                                                    𝑙𝑏1𝑒 = 𝑚𝑎𝑥 {
𝑥

3 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
; 

𝑉

𝑃
𝑙𝑏1}                                           (4.19) 

 
After these modifications of the effective width, the shear strength of the critical loading zone 
becomes also a function of the depth of the compression 𝑥, and therefore of the strain  𝜀𝑡,𝑎𝑣𝑔 in 

the bottom reinforcement. Moreover, now that the effective width is a function of the strain in the 
bottom reinforcement, the vertical shear displacement of the critical loading zone 𝛥𝑐 becomes also 
a function of the strain 𝜀𝑡,𝑎𝑣𝑔. In the original model, this displacement was computed as a constant 

value depending only on the width of the loading plate.  
 
4.2.3 Dowel action contribution of prestressing reinforcement  
 
Finally, the last modification on the model is to add the contribution of the prestressing 
reinforcement to the shear carried by dowel action. The shear carried by dowel action of the 
prestressing reinforcement is then expressed as follows:  

 

                                                                          𝑉𝑑 =  𝑛𝑏𝑓𝑦𝑒

𝑑𝑏
3

3𝑙𝑘
                                                       (4.20) 

 

where 𝑛𝑏 represents the number of prestressing bars and where the effective yielding stress is 
computed from:  

 

                                                                  𝑓𝑦𝑒 = 𝑓𝑦 [1 − (
𝑇

𝑓𝑦𝐴𝑠
)

2

]                                                (4.21) 

 

The tension force in the prestressing tendon is calculated with the tension stiffening effect as 
follow:  

                                                                  𝑇 = 𝐸𝑝𝐴𝑝(𝜀𝑡,𝑎𝑣𝑔 + 𝛥𝜀𝑝)                                               (4.22) 
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4.3 Validation of the modified 2PKT   
 
4.3.1 Tests by Tan et al. (1999) 
 
The solution of the extended 2PKT equations is shown graphically in Fig. 4.13. 

 
Figure 4.13 - Contribution to shear strength of the different shear mechanisms for specimen 3P-

1400/1.0 from tests by Tan et al. (1999) 
 
For beam 3P-1400/1.0, the predicted shear strength is 939 kN while the experimentally obtained 
value is 950 kN. This results in a shear-strength experimental-to-predicted ratio of 1.01. Flexural 
and bearing failures were not governing as they corresponded to higher shear forces (1765 kN and 
1383 kN, respectively). Again, the shear resisted by the critical loading zone governs the total shear 
strength. However, compared to Fig. 4.2 where the solutions of the original 2PKT were shown, it 
is important to note that the shear strength provided by the critical loading zone is now dependent 
on the strain in the bottom reinforcement and decreases with the increase of the strain. This result 
is due to the fact that the size of CLZ is now dependent on the depth of the compression zone 
(Eq. 4.19) which is itself dependent on the strain in the bottom reinforcement (Eq. 4.17) 
 
Moreover, the shear strength provided by the CLZ increased significantly compared to the original 
model. At failure, the shear resisted by the different shear mechanisms for the original and the 
extended model are compared in Table 4.5. It can be seen that the contribution of the critical 
loading zone increased thanks to the modification of its geometry with the effect of prestressing. 
However, based on the results, it can be seen that the strength given by interlocking reduces in the 

extended 2PKT. This is due to the fact that the shear displacement 𝛥𝑐 of the critical loading zone 
increases because it is now a function of the strain in the bottom reinforcement. Therefore, as the 
crack width 𝑤 depends on the displacement of the critical loading zone, it increases as well and the 
interlocking is reduced.  
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 Original 2PKT Extended 2PKT 

Critical loading zone 67% 77% 

Aggregate interlock  13% 7% 

Stirrups  8% 6% 

Dowel action 12% 9% 

Table 4.5 - Contribution to the shear strength at failure of the different mechanism for the 
original and extended 2PKT for specimen 3P-1400/1.00 from Tan et al. (1999) 

 

The predictions of the extended two-parameter-kinematic-theory are presented from Fig. 4.14 to 
4.17.  

 
Figure 4.14 – Comparison experiments/predictions of the extended 2PKT for specimens of h= 

1750mm from Tan et al. (1999) 

 

 
Figure 4.15 – Comparison experiments/predictions of the extended 2PKT for specimens of h= 

1400mm from Tan et al. (1999) 

0

200

400

600

800

1000

1200

1400

1600

0,5 0,6 0,7 0,8 0,9 1 1,1

V
 (

kN
)

a/d 

Bearing failures 

Experiments Extended 2PKT Original 2PKT

shear resisted by CLZ shear resisted by interlocking shear resisted by dowel action

shear resisted by stirrups

0

200

400

600

800

1000

1200

1400

1600

0,5 0,6 0,7 0,8 0,9 1 1,1

V
 (

kN
)

a/d 

Bearing failures 

Experiments Extended 2PKT Original 2PKT
shear resisted by CLZ shear resisted by interlocking shear resisted by dowel action
shear resisted by stirrups



49 
 

 

 
Figure 4.16 – Comparison experiments/predictions of the extended 2PKT for specimens of h= 

1000mm from Tan et al. (1999) 
 

 
Figure 4.17 – Comparison experiments/predictions of the extended 2PKT for specimens of h= 

500mm from Tan et al. (1999) 
 

The predictions of the extended model are plotted with continuous and thick black lines while the 
predictions of the original model are shown with thick dashed lines. Thin and coloured lines 
correspond to the shear strength provided by the different shear mechanisms. Finally, the results 
of the experiments are plotted with discrete black points. It can be seen from the figures above 
that the extended model improves considerably the predictions.  
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For the specimens with a depth of 1750 mm, the new model is very close to the experiment except 
for the specimen that has 𝑎/𝑑 ratio of 0.56 for which a bearing failure occurred. For a shear span 
to effective depth ratio between 0.5 and 0.88, the model predicted some bearing failures. These 
failures are the reason for the flat parts of the curves.  
 
For specimens of 1400 mm height, the model is very accurate across the entire range of 𝑎/𝑑 ratios. 
The prediction curve follows really well the trend given by the experimental results. Compared to 
the original 2PKT, the predictions are increased considerably. 
 
For specimens of 1000 mm height, the prediction curve follows relatively well the experiments and 
the predictions are increased compared to the original model. However, for the experimental points 
at 𝑎/𝑑 equal to 0.83 and 1.13, the experimental shear strengths are still about 30% higher than the 
predicted values.  
 
Finally, for the smaller specimens of 500 mm height where web-crushing failures occurred, the 
original model was already predicting non-conservative results. The extended model ranges just a 
little higher than the previous results and the trend of the predictions is still reasonable because it 
follows well the trend of the experiments. 
 
Figure 4.18 shows the effect of the height h and of the shear-span-to-depth ratio 𝑎/ℎ on the 
nominal predicted shear stress at failure. As it was the case for the experiments (Fig. 2.4), a 
pronounced size effect is observed. For a given 𝑎/ℎ ratio, a significant decrease in the nominal 
shear stress can be seen with increasing heights. However, this decrease tend to reduce beyond a 
certain critical height that is comprised between 1400 and 1750mm. The size effect seems to be 
less dependent on the 𝑎/ℎ ratio. It can be seen that a loss in the nominal shear stress occurs when 
the shear span is increased and the height is kept constant. However, this effect is mainly evident 
for smaller specimens (h=500 and 1000mm). Indeed, for bigger specimens, the size effect do not 
depend on the 𝑎/ℎ ratio. These observations can be repeated for the experimental results as shown 
in Fig. 2.4. It can be concluded then that the extended 2PKT captures well the size effect. 
Moreover, as the size effect is mainly due to the interlocking, it is important to note that the critical 
crack width is therefore adequately estimated by the extended model.  

 

 
Figure 4.18 – Variation of predicted nominal shear stress with h and a/h for the tests by Tan et 

al. (1999) 
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Table 4.6 summarizes the results for the test by Tan et al. (1999). An average value for the ratio 
between the experimental results and the predictions of 1.0 is obtained and the coefficient of 
variation equals 16.6%. These values show again that the predictions are adequate. It should be 
kept in mind that deep beams exhibit a significant scatter in the experimental data, and for this 
reason the coefficient of variation cannot be improved very significantly. Compared to the original 
2PKT, these values are however significantly improved.  

 

Beam Name 
V 

exp. 
(kN) 

V pred. by 
original 2PKT 

(kN) 

V pred. by 
extended 2PKT 

(kN) 

V exp./V pred. by 
original  2PKT 

V exp./V pred. by 
extended 2PKT 

1P-500/0,50 815 963 985 0,84 0,82 

1P-500/0,75 590 702 722 0,84 0,81 

1P-500/1,00 450 514 532 0,87 0,84 

2P-1000/0,50 1350 1093 1392 1,23 0,97 

2P-1000/0,75 1200 823 931 1,45 1,28 

2P-1000/1,00 900 595 670 1,51 1,34 

3P-1400/0,50 1300 1067 1703 1,21 1,06 

3P-1400/0,75 1250 798 1148 1,56 1,08 

3P-1400/1,00 950 693 939 1,37 1,01 

4P-1750/0,50 1100 1187 2046 0,92 0,82 

4P-1750/0,75 1325 899 1401 1,47 0,98 

4P-1750/1,00 1100 746 1131 1,47 0,97 

Average 1,23 1,00 

Coefficient of variation 22,2% 16,5% 

Table 4.6 – Summary of predictions of original and extended 2PKT for tests by Tan et al. (1999) 
 

Finally, Fig. 4.19 compares the results of the extended 2PKT and of the original 2PKT in terms of 
the ratio between experimental and predicted shear strengths. It can be seen that the extended 
2PKT significantly improves the results compared to the original model. The average ratio is closer 
to 1 and the variation of the results is reduced.   
 

 
(a)                                                                           (b) 

Figure 4.19 – Comparison between (a) original and (b) extended 2PKT for tests by Tan el al. 
(1999) 
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4.3.2 Tests by Tan and Mansur (1992) 
 
The predictions of the extended two-parameter kinematic theory for the tests conducted by Tan 
and Mansur (1992) are presented in Fig. 4.20:  
 

 
Figure 4.20 – Comparison experiments/predictions of the extended 2PKT for Tan and Mansur 

(1992) 
 
The predictions of the extended model are plotted in continuous lines while the predictions of the 
original model are shown with dashed lines. The results of the experiments are plotted with discrete 
points.  
 
For specimens having 𝑎/𝑑 ratio of 1.5, the shear strength predicted by the original 2PKT equals 
164kN and is the same for all the specimens. This result is due to the fact that all the specimens 
having a shear span to depth ratio of 1.5 have the same geometry. Therefore, the only difference 
between those specimens is the amount of prestressed bars. However, as the original model does 
not take into account the prestressing, there are no differences in the shear strengths predicted. In 
the extended model, the effect of prestressing is taken into account. The failure is predicted to be 
by shear for a partial prestressing ratio less 0.65. Then, the flexural failure that occurs at 184kN is 
predicted by the extended 2PKT. It can be seen for these specimens (𝑎/𝑑=1.5) that the prediction 
curve (in green continuous lines) follows the experiments. Compared to the original 2PKT, the 
predictions are nearly all increased and they get closer to the experiments.  
 
The same observations can be repeated for the second batch of specimens where the shear span 
to effective depth ratio was kept at 2. The predictions are increased with the extended model.  
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At failure, the shear resisted by the different shear mechanism for the original and the extended 
model are compared in Table 4.7. It can be seen that there are nearly no differences between both 
theory for the contribution percentage to the shear strength.  
 

 Original 2PKT Extended 2PKT 

Critical loading zone 66% 65% 

Aggregate interlock  34% 35% 

Stirrups  0% 0% 

Dowel action 0% 0% 

Table 4.7 - Contribution to the shear strength at failure of the different mechanism for the 
original and extended 2PKT for specimen S33 from Tan and Mansur (1992) 

 

Table 4.8 summarizes the different shear strengths and predictions for all the specimens in this 
test. An average value for the ratio between the experimental results and the predictions of 1.01 is 
obtained and the coefficient of variation equals 16.8%. Compared to the original 2PKT, these 
values are significantly improved.  

 

Beam 
Name 

V exp. 
(kN) 

V pred. by 
original  

2PKT (kN) 

V pred. by 
extended 2PKT 

(kN) 

V exp./V pred.  by 
extended 2PKT 

V exp./V pred. by 
original  2PKT 

S13 159 168,7 166,0 0,95 0,94 

S23 198 172,2 174,2 1,13 1,15 

S33 202 174,8 183,8 1,09 1,09 

S43 144 119,9 153,3 0,93 1,20 

S14 62 84,3 84,1 0,73 0,73 

S24 156 113,3 116,8 1,33 1,37 

S34 115 112,5 132,2 0,87 1,02 

S44 144 116,1 139,6 1,03 1,24 

Average 1.01 1.09 

Coefficient of variation  16.8% 16.8% 

Table 4.8 – Summary of predictions of original and extended 2PKT for tests by Tan and Mansur 
(1992) 

 

Finally, Fig. 4.21 compares the results of the extended 2PKT and of the original 2PKT in terms of 
the ratio between experimental and predicted shear strengths. It can be seen that the extended 
2PKT improves the results compared to the original model. However, the difference is not 
significant as the predictions of the original model were already reasonable. 

 

 
                                      (a)                                                                       (b) 

Figure 4.21 – Comparison between (a) original and (b) extended 2PKT for tests by Tan and 
Mansur (1992) 
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4.3.3 Tests by Teng, Kong and Poh (1998) 
 
Some predictions of the extended two-parameter kinematic theory for the tests conducted by Teng, 
Kong and Poh (1998) are presented in Fig. 4.22:  
 

 
Figure 4.22 – Comparison experiments/predictions of the extended 2PKT for tests by Teng, 

Kong and Poh (1998) 
 

It can be seen that the extended model improves the predictions and is closer to the experimental 
values. It also seems that the prestressing force does not show a significant influence on the 
predictions as well as the experiments. Indeed, for the specimens provided with vertical and/or 
horizontal web reinforcement, for a difference of 50kN in the prestressing force, the difference on 
the ultimate shear strength is not significant for both the predictions and the experiments. This 
observation is mainly due to the fact that the prestrain 𝛥𝜀𝑝 applied to the tendon shows very small 

differences in the depth of the compression zone. Therefore, the shear resisted by the critical 
loading zone remains almost the same.  
 
For the specimens that are not provided with vertical and horizontal web reinforcement, it can be 
seen that for an increase in the prestressing force, the strength measured experimentally decreases. 
This result is surprising because the prestressing should normally increase the failure strength, the 
decrease of strength for this specimen may be due to an experimental mistake or lack of precision.  
The ratios between the experimental failure force and the predicted failure force for each specimen 
are presented in Fig. 4.23. It can be seen that the predictions are closer to the experiments for the 
extended 2PKT. Moreover, a smaller dispersion of the results occurred compared to the original 
model.  
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(a)                                                                             (b) 

Figure 4.23 – Experiment/predictions ratios of (a) the original and (b) extended 2PKT for tests 
by Teng, Kong and Poh (1998) 

 

At failure, the shear resisted by the different shear mechanism for the original and the extended 
model are compared in Table 4.9. Even if the contribution of the critical loading zone increases in 
the extended 2PKT, the contribution of the stirrups governs the total strength. 

 

 Original 2PKT Extended 2PKT 

Critical loading zone 28% 38% 

Aggregate interlock  16% 11% 

Stirrups  56% 51% 

Dowel action 0% 0% 

Table 4.9 - Contribution to the shear strength at failure of the different mechanism for the 
original and extended 2PKT for specimen P-2a from Teng, Kong and Poh (1998) 

 

Finally, Table 4.10 summarizes the different shear strengths and predictions for all the specimens 
in this test. An average value for the ratio between the experimental results and the predictions of 
1.04 is obtained and the coefficient of variation equals 13.8%. These values shows again that the 
predictions are accurate. Compared to the original 2PKT, these values are significantly improved.  

 

Beam Name 
V exp. 
(kN) 

V pred. by 
original 

2PKT (kN) 

V pred. by 
extended 

2PKT (kN) 

V exp./V pred. 
by extended 

2PKT 

V exp./V pred. by 
original  2PKT 

P-1c 275 196,5 224 1,22 1,40 

P-1a 290 195,6 258 1,12 1,48 

P-1b 200 195,2 267 0,75 1,02 

P-2a 413 371 432 0,95 1,11 

P-2b 425 371 431 0,98 1,14 

P-3a 438 372 433 1,01 1,17 

P-3b 460 371 431 1,06 1,23 

P-1b(2) 214 195 249 0,85 1,09 

P-1c(2) 288 195 218 1,32 1,47 

P-1-1,5-WO 370 208 299 1,23 1,78 

P-1-1,5-WV 438 326 419 1,04 1,34 

P-1-1,5-WVH 400 326 420 0,95 1,22 

P-1-1,0-WO 418 320 446 0,93 1,30 

P-1-1,0-WV 538 385 519 1,03 1,39 

P-1-1,0-WVH 560 389 520 1,07 1,44 

Average 1,04 1,31 

Coefficient of variation 13,8% 14.5% 
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Table 4.10 – Summary of predictions original and extended 2PKT for tests by Teng, Kong and 
Poh (1998) 

 
4.3.4 Tests by Simionopoulos (1998)  
 
The predictions of the extended two-parameter kinematic theory for the tests conducted by 
Simionopoulos (1998) are presented in Fig. 4.24:  
 

 
Figure 4.24 – Comparison experiments/predictions of the extended 2PKT for tests by 

Simionopoulos (1998) 
 

It can be seen from these plots that the extended 2PKT illustrates relatively well the behaviour of 
these beams. The prediction curves follow the experiments. The position of the tendon in the 
section affects the ultimate strength. Indeed, the deeper the tendon, the higher the ultimate shear 
strength. In the original model, however, the position of prestressing strands was not causing 
significant differences. Moreover, a size effect is also seen based on these plots. A loss in the 
ultimate strength can be seen for increasing values of the height of the section.  
 
At failure, the shear resisted by the different shear mechanism for the original and the extended 
model are compared in Table 4.11. It can be seen that the contribution of the critical loading zone 
increases considerably between both models. Indeed, the contribution of the critical loading zone 
doubles. Again, the force resisted by interlocking reduces with the extended model because the 
crack width increases as it is now function of the strain in bottom reinforcement.  
 

 Original 2PKT Extended 2PKT 

Critical loading zone 40% 88% 

Aggregate interlock  55% 9% 

Stirrups  0% 0% 

Dowel action 5% 3% 

Table 4.11 - Contribution to the shear strength at failure of the different mechanism for the 
original and extended 2PKT for specimen BP100E from tests by Simionopoulos (1998) 
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Table 4.12 summarizes the different shear strengths and predictions for all the specimens in this 
test. As the specimens are not exactly considered deep beams, the results are not as good as the 
ones for previous test series. However, the results are not uncoherent. An average value for the 
ratio between the experimental results and the predictions of 1.28 is obtained and the coefficient 
of variation equals 4.92%. Compared to the original 2PKT, these values are significantly improved.  

 

Beam 
Name 

V exp. 
(kN) 

V pred. by 
original 

2PKT (kN) 

V pred. by 
extended 

2PKT (kN) 

V exp./V pred. 
by 

extended 2PKT 

V exp./V pred. 
by 

original  2PKT 

BP100 464 211 358 1,29 2,20 

BP100E 561 209 419 1,33 2,69 

BP50 224 148 194 1,15 1,51 

BP50E 299 149 222 1,34 2,00 

BP25 142,4 91 113 1,25 1,57 

BP25E 164 91 126 1,29 1.80 

Average 1,28 1,96 

Coefficient of variation 4,92% 20,4% 

Table 4.12 – Summary of predictions of original and extended 2PKT for tests by Simionopoulos 
(1998) 

 
Finally, Figure 4.25 compares the results of the original and extended 2PKT in terms of the ratio 
between experimental and predicted shear strengths. It can be seen that the predictions of the 
extended model get closer to the experiments and the dispersion of the results is significantly 
reduced.   
 

  
(a)                                                                             (b) 

Figure 4.25 – Comparison between (a) original and (b) extended 2PKT for tests by 
Simionopoulos (1998) 

 
4.3.5 Global discussion of the results 
 
To conclude with the results of the extended 2PKT, the comparison between the predictions and 
the experiments was studied only for the beams that failed in shear. For that reason, some 
specimens were excluded from the analysis for each test series.  
 
For the test series realised by Tan and Mansur (1992), the specimens S23, S33 and S24 failed in 
flexure. This is why they are excluded from the final analysis.  
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For the test series conducted by Tan el al. (1999), all the beams that failed in bearing failure were 
excluded. These beams are 2P-1000-0.5, 3P-1400-0.75 and 4P-1750-0.5. 
 
For the tests conducted by Teng, Kong and Poh (1998), two specimens failed in flexure and they 
are removed from the final analysis. These specimens are P-2b and P-3a. 
 
Finally, in order to present only the values for prestressed deep beams, the test series conducted at 
the University of Toronto were not included in the final analysis because the shear-span-to-
effective-depth ratio of these beams is not small enough to be considered as deep beams.  
 
The model can therefore be validated for 27 specimens. The results are listed in Table 4.13. The 
average ratio between the experimental values and the predicted one equals 1.01. The coefficient 
of variation for this average equals 16.08%. These values are considered adequate for deep beams. 
 

Authors Beam Name 
V exp. 
(kN) 

V pred. by 
original 
2PKT 
(kN) 

V pred. by 
extended 

2PKT (kN) 

V exp./V 
pred. by 
original 
2PKT 

V exp./V 
pred. by 
extended 

2PKT 

Tan and 
Mansur 
(1992) 

S13 159 168,7 166,0 0,94 0,95 

S43 144 119,9 153,3 1,20 0,93 

S14 62 84,3 84,1 0,73 0,73 

S34 115 112,5 132,2 1,02 0,87 

S44 144 116,1 139,6 1,24 1,03 

Tan et al. 
(1999) 

1P-500/0,50 815 963 985 0,84 0,82 

1P-500/0,75 590 702 722 0,84 0,81 

1P-500/1,00 450 514 532 0,87 0,84 

2P-1000/0,75 1200 823 931 1,45 1,28 

2P-1000/1,00 900 595 670 1,51 1,34 

3P-1400/0,50 1300 1067 1703 1,21 1,06 

3P-1400/1,00 950 693 939 1,37 1,01 

4P-1750/0,75 1325 899 1401 1,47 0,98 

4P-1750/1,00 1100 746 1131 1,47 0,97 

Teng, Kong 
and Poh 
(1998) 

P-1c 275 196,5 224 1,40 1,22 

P-1a 290 195,6 258 1,48 1,12 

P-1b 200 195,2 267 1,02 0,75 

P-2a 412,5 371 432 1,11 0,95 

P-3b 460 371 431 1,23 1,06 

P-1b(2) 214 195 249 1,09 0,85 

P-1c(2) 287,5 195 218 1,47 1,32 

P-1-1,5-WO 370 208 299 1,78 1,23 

P-1-1,5-WV 437,5 326 419 1,34 1,04 

P-1-1,5-WVH 400 326 420 1,22 0,95 

P-1-1,0-WO 417,5 320 446 1,30 0,93 

P-1-1,0-WV 537,5 385 519 1,39 1,03 

P-1-1,0-WVH 560 389 520 1,44 1,07 

Average 1.24 1,01 

Coefficient of variation 20.1% 16.1% 

Table 4.13 – Summary of predictions of original and extended 2PKT for all collected specimens 
failing in shear  
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5. Finite element modelling (FEM)  
 
This chapter presents the finite element analyses that was carried out for the database. The aim of 
these analyses is to compare the results predicted by the extended 2PKT model with those from 
the finite element model. First, the finite element analysis will be presented in terms of the 
modelling assumptions that were used. Then, for each test series, the results will be presented and 
compared in terms of the ultimate strength to both the predictions of the extended 2PKT and to 
the experiments.  

5.1 Description of the models and assumptions  
 
As the collected specimens were all known in detail in terms of the geometry, material properties 
and boundary conditions, they were all modelled accurately in the software. The same assumptions 
and modelling approaches were used for all specimens. The model for the specimen 4P-1750-1.0 
from the tests conducted by Tan et al. (1999) is chosen as an illustration and is presented in Fig. 
5.1.  
  

 
Figure 5.1 - FEM model for specimen 4P-1750-1.0 from tests by Tan et al. (1999) 

 
In order to limit as much as possible the time consumed by the FEM analysis, only one-half was 
modelled for each specimen since all beams were symmetric. Therefore, this operation reduced the 
calculation time without any influence on the ultimate shear strength.  
 
It can be seen in Fig. 5.1 that three different materials are used. First, material 1 represents the 
concrete part of the specimen. Material 2 has the same properties as material 1 except that the latter 
includes a certain amount of smeared transverse reinforcement while no transverse reinforcement 
is added in material 1. It is therefore supposed that the top and bottom concrete cover of the beam 
are not provided with transverse reinforcement. However, while transverse reinforcement was 
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smeared in the beams, both prestressed and non-prestressed longitudinal reinforcements were 
modelled as discrete elements as shown in blue and purple in Fig. 5.1. Finally, to model the loading 
and support plates, material 3 was created and include steel properties. 
  
In terms of support conditions, a vertical roller is used for the support of the beam. Moreover, as 
only one-half of the beams were modelled, horizontal rollers were added in the axis of symmetry. 
To get ultimate results at failure, an increasing load was added in the loading zones.   
 
Only linear or rectangular elements were used in the model. The mesh used to model the beam is 
composed of elements whose size depends on the geometry of the specimens. Indeed, bigger 
specimens require bigger element size to provide accurate results in a limited time. For that reason, 
a sensibility analysis was conducted for each specimen and the element size under which no 
significant difference occur for the failure load was selected.  
 
The compression pre-peak model that was chosen for the concrete is Popovics (NSC) and the 
post-peak model is Base curve as suggested by VecTor2 users. The rest of the material models were 
the default options provided in VecTor2 to ensure that the results can be easily reproduced by 
other researchers.  
 

5.2 Results of finite element modelling  
 
5.2.1 Tests by Tan et al. (1999) 
 
Figure 5.2 shows the crack pattern predicted by finite element modelling and the crack pattern 
observed in specimen 4P-1750-1.0 from the tests conducted by Tan et al. (1999). Red lines on the 
picture represents the cracks and wider cracks are represented by thicker lines.  
 

 

 
Figure 5.2 – Crack pattern (a) by experiment and (b) by FEM of specimen 4P-1750-1.0 
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It can be seen that a diagonal shear crack develops in the prediction by FEM. The predicted shear 
failure modes match well the observed failure mode for most of the beams. For the specimens for 
which the failure mode does not match with the observed failure mode, some properties of the 
specimen can be modified to improve the predicted failure mode. However, the modification of 
the properties lead in general to worst results in terms of ultimate shear strength evaluation. For 
this reason and to avoid “calibration”, even if the predicted failure mode by FEM was not correct, 
the results of the FEM were taken without any modification of the properties.  
 
Figures 5.3 to 5.6 show the predictions of the finite element modelling and of the extended 2PKT.  
 
It can be seen for the specimens that are 1750 mm high that the predictions of the extended 2PKT 
are better for all the three experiments. The predictions of the FEM are however close to the 
extended 2PKT.  
 
For specimens that are 1400 mm high, it can be seen again that the extended 2PKT predictions are 
closer to the experimental failure strengths except for one specimen where the FEM predicts 
exactly the failure load.  
 
For the specimens that are 1000 mm high, all the predictions of the extended 2PKT are bigger than 
the ones of finite element models. Moreover, they are also closer to the experiments.  
 
Finally, for the smaller specimens that are 500mm high, the extended 2PKT predicts higher failure 
loads again. The experimental failure loads range just between the predictions of both models.  
 

 
Figure 5.3 – Comparison between FEM and extended 2PKT for h=1750mm for tests by Tan et 

al. (1999) 
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Figure 5.4 – Comparison between FEM and extended 2PKT for h=1400mm for tests by Tan et 

al. (1999) 

 
Figure 5.5 – Comparison between FEM and extended 2PKT for h=1000mm for tests by Tan et 

al. (1999) 

 
 

Figure 5.6 – Comparison between FEM and extended 2PKT for h=500mm for tests by Tan et al. 
(1999) 
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To conclude, Table 5.1 summarizes the predictions of the finite element model and of the extended 
2PKT:  
 

Beam Name 
V exp. 
(kN) 

V pred. by 
extended 

2PKT (kN) 

V pred. 
by  FEM 

(kN) 

V exp./V 
pred. by 
extended 

2PKT 

V exp./V 
pred. by 

FEM 

V pred. by 
extended 
2PKT /V 

pred. by FEM 

1P-500/0,50 815 964 600 0,83 1,36 1,64 

1P-500/0,75 590 702 508 0,82 1,16 1,42 

1P-500/1,00 450 514 362 0,85 1,24 1,47 

2P-1000/0,50 1350 1094 834 0,97 1,62 1,67 

2P-1000/0,75 1200 824 698 1,29 1,72 1,33 

2P-1000/1,00 900 595 639 1,34 1,41 1,05 

3P-1400/0,50 1300 1218 1152 1,07 1,13 1,06 

3P-1400/0,75 1250 798 1102 1,09 1,13 1,04 

3P-1400/1,00 950 693 946 1,01 1,00 0,99 

4P-1750/0,50 1100 1330 1492 0,83 0,74 0,89 

4P-1750/0,75 1325 1341 1247 0,99 1,06 1,08 

4P-1750/1,00 1100 746 1180 0,97 0,93 0,96 

Average 1,00 1.21 1.22 

Coefficient of variation 16,6% 22.2% 21.7% 

Table 5.1 – Summary of FEM and extended 2PKT predictions for tests by Tan et al. (1999) 
  
It can be seen that for this test setup the predictions of the extended 2PKT are better than the ones 
of FEM. Indeed, for most of the specimens, FEM underestimates the failure load while the 
extended 2PKT produces adequate results except for the smallest specimens where the predictions 
are unconservative.  
 
5.2.2 Tests by Tan and Mansur (1992)  
 
Figure 5.7 shows the crack pattern predicted by finite element modelling and the crack pattern 
observed in specimen S43 from the tests conducted by Tan and Mansur (1992).  
 

 

 
Figure 5.7 – Crack pattern (a) by experiment and (b) by FEM of specimen S43 
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The predicted failure mode by FEM is a typical diagonal shear crack as it is also the case for the 
experiment. The failure mode is then well estimated by the software for this specimen. However, 
for some other specimens, the failure mode doesn’t always match with the predictions.  
 
Figures 5.8 and 5.9 show for different values of the shear-span-to-effective-depth ratio a/d the 
predictions of the finite element modelling and of the extended 2PKT.  
 
For specimens having 𝑎/𝑑 ratio of 1.5, it can be seen that the predictions of the finite element 
model are close to the experiments. Compared to the extended 2PKT, FEM predicts better results 
for the specimens that have a partial prestressing ratio PPR equal to 0.33 and 0.66. For the other 
specimens, the predictions of extended 2PKT are more accurate. It can be noted that the 
predictions of FEM seems better for the last specimen (PPR=1). However, this result is due to the 
fact that average properties for all the four specimens were used to plot the predictions of the 
extended 2PKT in order to ensure a continuous prediction curve and to avoid noisy results. When, 
the extended 2PKT is applied to the real properties of the specimen, it predicts better results than 
the finite element model as it can be seen in Table 5.1.  
 
For specimens having 𝑎/𝑑 ratio of 2, it can be seen that for the specimens with low partial 
prestressing ratio, FEM predicts better results than the extended 2PKT while the extended 2PKT 
predictions are better for the last two specimens that have a partial prestressing ratio of 0.66 and 
1. Specially, for the first specimen where no prestressing force is applied, the results of the FEM is 
much more accurate than the kinematic model for which the ratio between the experimental and 
predicted results for the shear strength was 0.74.  
 
 

 
Figure 5.8 – Comparison between FEM and extended 2PKT for a/d=1.5 for tests by Tan and 

Mansur (1992) 
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Figure 5.9 – Comparison between FEM and extended 2PKT for a/d=2 for tests by Tan and 

Mansur (1992) 
  
Table 5.2 presents a summary of the predictions of the finite element model and of the extended 
2PKT. It can be seen based on this table that, as opposed to the previous test setup by Tan et al. 
(1999), the finite element modelling predicts better results than the extended 2PKT. Indeed, the 
average ratio between experimental and predicted shear strength equals 0.98 and a variation of 
11.5% is seen. This variation coefficient is very low compared to the extended 2PKT. 
 

Beam 
Name 

V exp. 
(kN) 

V pred. by 
extended 

2PKT (kN) 

V pred. 
by  FEM 

(kN) 

V exp./V 
pred. by 
extended  

2PKT 

V exp./V 
pred. by 

FEM 

V pred. 
by extended 2PKT 
/ V pred. by FEM 

S13 159 166 179 0,96 0,89 0,93 

S23 198 174,2 193 1,14 1,04 0,90 

S33 202 183,8 199 1,10 1,03 0,96 

S43 144 153,3 174 0,95 0,84 0,89 

S14 62 84,1 55 0,74 1,14 1,54 

S24 156 116,8 137 1,35 1,14 0,85 

S34 115 132,2 136 0,87 0,85 0,98 

S44 144 139,6 137 1,03 1,05 1,07 

Average 1.01 0.99 1.01 

Coefficient of variation 16.8% 11.5% 20.2% 

Table 5.2 – Summary of FEM and extended 2PKT predictions for tests by Tan and Mansur 
(1992) 
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5.2.3 Tests by Teng, Kong and Poh (1998) 
 
Figure 5.10 shows the crack pattern predicted by finite element modelling and the crack pattern 
observed in specimen P-1b(2) from the tests conducted by Teng, Kong and Poh (1998).  
 

 
 

 
 

Figure 5.10 – Crack pattern (a) by experiment and (b) by FEM of specimen P-1b(2) 
 

It can be seen that a typical diagonal shear crack develops and propagates from the support plate 
to the loading plate. The same diagonal crack appears for the experiment where some crushing of 
concrete also occurred near the loading plate. The failure mode is then well estimated by the 
software for this specimen. However, as previous test setups, some specimens failed in a different 
failure mode than the one indicated in the experiment.  
 
Figure 5.11 shows for some specimens the predictions of the finite element modelling and of the 
extended 2PKT.  
 
For specimens that are not provided with vertical and horizontal web reinforcement, it can be seen 
that the predictions of the FEM are very close to the predictions of the extended 2PKT and they 
also seem to follow the same evolution as the extended 2PKT with increasing values of the 
prestressing force.  
 
For the specimens that are provided with vertical reinforcement, the extended 2PKT predictions 
are closer to the experiment than the FEM that underestimates the failure load.  
 
Finally, for the specimens that are provided with both vertical and horizontal web reinforcement, 
FEM predictions are more accurate than the extended 2PKT.  
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Figure 5.11 – Comparison between FEM and extended 2PKT for specimens from Tan et al. 

(1999) 
 

The ratios between the experimental failure force and the predicted failure force by the kinematic 
and by the FEM for each specimen are presented in Fig. 5.12. For most of the specimens, it can 
be seen that the extended 2PKT predictions are closer to the experiments. It can also be seen that 
the variation of the predictions is smaller in the extended 2PKT.  
 
 

 
Figure 5.12 – Comparison between Extended 2PKT and FEM predictions for tests by Teng, 

Kong and Poh (1998) 
 

Finally, Table 5.3 summarizes the predictions of the finite element model and of the extended 
2PKT. Again, the predictions listed on the table show that the extended 2PKT is closer to the 
experiments for most of the specimens. However, the predictions of the FEM are in general very 
close to the predictions of the extended 2PKT.  
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Beam Name 
V exp. 
(kN) 

V pred. by 
extended 

2PKT (kN) 

V pred. 
by  FEM 

(kN) 

V exp./V pred. 
by extended  

2PKT 

V exp./V 
pred. by 

FEM 

V pred. 
by extended 
2PKT / V 

pred. by FEM 

P-1c 275 224 184 1,23 1,49 1,22 

P-1a 290 258 262 1,12 1,11 0,98 

P-1b 200 267 258 0,75 0,77 1,03 

P-2a 413 432 382 0,96 1,08 1,13 

P-2b 425 431 384 0,99 1,11 1,12 

P-3a 438 433 446 1,01 0,98 0,97 

P-3b 460 431 457 1,07 1,01 0,94 

P-1b(2) 214 249 280 0,86 0,76 0,88 

P-1c(2) 288 218 192 1,32 1,49 1,13 

P-1-1,5-WO 370 299 283 1,24 1,31 1,05 

P-1-1,5-WV 438 419 374 1,04 1,17 1,12 

P-1-1,5-WVH 400 420 423 0,95 0,95 0,99 

P-1-1,0-WO 418 446 397 0,94 1,05 1,12 

P-1-1,0-WV 538 519 452 1,04 1,19 1,14 

P-1-1,0-WVH 560 520 627 1,08 0,89 0,82 

Average 1,05 1,09 1.05 

Coefficient of variation 13,8% 19,5% 10.1% 

Table 5.3 – Summary of FEM and extended 2PKT predictions for tests by Teng, Kong and Poh 
(1998) 

 
5.2.4 Tests by Simionopoulos (1998)  
 
Figure 5.13 shows the crack pattern predicted by finite element modelling and the crack pattern 
observed in specimen BP25E from the tests conducted by Simionopoulos (1998). 

 

 
Figure 5.13 – Crack pattern (a) by experiment and (b) by FEM of specimen BP25E 

  
The crack pattern of FEM shows a flexure-shear crack. Indeed, the critical shear crack develops 
from the flexural crack. An almost horizontal crack develops along the bottom reinforcement 
towards the support. The crack pattern given by experiment is similar to the one predicted by FEM. 
For the other specimens of this test setup, FEM predicts also relatively well the failure mode.  
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Figures 5.14, 5.15 and 5.16 compare the predictions of the FEM and of the extended 2PKT. It can 
be seen for the smallest specimens that are 250mm high that the predictions of the FEM get closer 
to the experiments. However, they are still closer to the predictions of the kinematic model than 
to the experiments. Moreover, they seem to follow the same trend as the extended 2PKT. The 
same observations can be repeated for the specimens that are 500mm high. For the biggest 
specimens of the test setup that are 1000mm high, the FEM give almost the same results as the 
extended 2PKT.  
 

  
Figure 5.14 – Comparison between FEM and extended 2PKT for specimens of h=250mm from 

tests by Simionopoulos (1998) 
 
 

 
Figure 5.15 – Comparison between FEM and extended 2PKT for specimens of h=500mm from 

tests by Simionopoulos (1998) 
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Figure 5.16 – Comparison between FEM and extended 2PKT for specimens of h=1000mm from 

tests by Simionopoulos (1998) 
 
Finally, Table 5.4 summarizes the predictions of the finite element model and of the extended 
2PKT:  
 

Beam 
Name 

V exp. 
(kN) 

V pred. by 
extended 

2PKT (kN) 

V pred. 
by  FEM 

(kN) 

V exp./V pred. 
by extended  

2PKT 

V exp./V 
pred. by 

FEM 

V pred. 
by extended 
2PKT / V 

pred. by FEM 

BP100 464 358 354 1,29 1,31 1,01 

BP100E 561 419 423 1,33 1,32 0,99 

BP50 224 194 204 1,15 1,09 0,94 

BP50E 299 222 234 1,34 1,27 0,95 

BP25 142,4 113 122 1,25 1,16 0,92 

BP25E 164 126 130 1,29 1,26 0,97 

Average 1,28 1.24 0.97 

Coefficient of variation (%) 4,92% 6.63% 2.92% 

Table 5.4 – Summary of FEM and extended 2PKT predictions for tests by Simionopoulos (1998) 

5.3 Summary of finite element modelling 
 
Based on the results discussed in the previous sections, some conclusions about the finite element 
modelling can be drawn. First, the finite element modelling is more complex and more time 
consuming than the kinematic model. Indeed, for specimens that are higher than 1000mm, the 
finite element modelling took a significant time to provide the solutions. Consequently, the element 
size for bigger specimens should be chosen adequately to avoid a large amount of elements in the 
model. 
 
Also, even if the finite element modelling is a powerful tool when it is adequately used, the failure 
mode of the specimens does not always correspond to the real failure mode observed in 
experiments. It is therefore important to keep a critical mind when this kind of models are used to 
predict failure loads.  
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Finally, for most of the specimens, it can be seen that the predictions of the finite element models 
are close to the predictions of the extended 2PKT. Therefore, the predictions of the kinematic 
model seems to be accurate and consistent. Moreover, it is discovered that for most of the 
specimens, the predictions of the kinematic model are slightly better than the ones predicted by 
FEM. Among the four test setups that are studied, the predictions for the tests conducted by Tan 
and Mansur (1992) and the tests conducted by Simionopoulos are better than the kinematic model. 
For the other test setups, the extended 2PKT predicts generally slightly better results. For the 27 
specimens that failed in shear among the collected specimens, the extended 2PKT produced an 
average shear strength experimental-to-predicted ratio equal to 1.01 and the coefficient of variation 
is equal to 16.1%. For comparison, the FEM produced an average shear strength experimental-to-
predicted ratio equal to 1.11 and the coefficient of variation is equal to 20.8%. It can be concluded 
that the extended 2PKT which uses only two degrees of freedom produces better predictions than 
the complex numerical models with thousands of degrees of freedom. 
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6. Summary and Conclusions 
 
The first step in this thesis was to collect as many tests performed on prestressed deep beams as 
possible. However, while many studies and experiments have been conducted on the behaviour of 
reinforced concrete deep beams, there are relatively few experiments devoted to the effects of 
prestressing. Taking also into account that this thesis focused on rectangular beams with straight 
tendons, a total of 41 tests were collected from four experimental studies performed by Tan et al. 
(1999), Tan and Mansur (1992), Teng, Kong and Poh (1998) and Simionopoulos (1998). All these 
tests showed clearly that the prestressing increased the ultimate shear strength of deep beams, and 
therefore this thesis focused on capturing this positive effect. 
 
To capture the effect of prestressing, a Two-Parameter-Kinematic-Theory (2PKT) proposed by 
Mihaylov et al. (2013) for reinforced concrete deep beams was studied and extended. The original 
theory is able to predict the ultimate shear strength of reinforced concrete deep beams using only 
two kinematic parameters (degrees of freedom). This approach was summarized in detailed and 
was first applied to the tests of prestressed deep beams without modifications. It was shown that 
the predictions of the original model were reasonably conservative but could be improved. It was 
identified that the main source of the conservative shear strength predictions was the modelling of 
the critical loading zones (CLZ). While in the original 2PKT the resistance of the CLZ is 
independent of the strain in the bottom reinforcement 𝜀𝑡,𝑎𝑣𝑔, it became clear that this assumption 

needed modifications for prestressed members. 
 
The main modification concerning the CLZ was its size. Based on observed crack patterns, the 
characteristic length of the CLZ was linked to the depth of the flexural compression zone which 
in turn dependents on strain 𝜀𝑡,𝑎𝑣𝑔. This modification led to larger CLZs with higher resistance, 

where the resistance decreases as the strains in the bottom reinforcement increase. 
 
In addition to the CLZ, two other modifications that were proposed to account for the effect of 
prestressing. First, the shear force obtained from flexural equilibrium was modified to account for 
the fact that the prestressing tendons work with high tension from the beginning of loading. This 
modification lead to increased shear forces derived from flexural equilibrium, and therefore 
increased shear resistance. An increased resistance was also obtained due to the last modification, 
namely the inclusion of the dowel action of the prestressing reinforcement. 
 
The extended model was validated against the collected experimental data. The model showed 
adequate predictions in terms of ultimate shear strength. The trends of the predictions followed 
well the experiments points as a function of the tests variables. Based on such comparisons with 
all 27 tests failing in shear, it was found that the average shear strength experimental-to-predicted 
ratio was 1.01 with a coefficient of variation of 16.1%. In comparison, the original 2PKT produced 
an average value of 1.24 with a coefficient of variation of 20.1%. These results are considered 
adequate taking into account the large natural scatter typically observed in deep beam tests 
 
In order to further validate the extended 2PKT, non-linear finite element modelling was performed 
with program VecTor2 based on the Modified Compression Field Theory (Vecchio and Collins 
1986) and Disturbed Stress Field Model (Vecchio 2000). The program implements a 2D plane-
stress version of these models and is able to model both monotonic and cyclic loading. The finite 
element models were built to reflect as accurately as possible the beam properties and boundary 
conditions used in the tests. The comparisons with the experimental data and earlier results showed 
that the extended 2PKT method, which uses only two degrees of freedom to capture the 
deformations in deep beams, produces very similar (or even better) results to those provided by 
the complex numerical models with thousands of degrees of freedom.   
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Finally, it is important to note that this study was carried out only for deep beams with straight 
tendons and rectangular sections. At the same time, it is known that curved tendons will further 
increase the shear resistance of the member, and therefore the 2PKT requires further modifications 
in the future. Moreover, I-girders can also be studied as they are very common in practice. The key 
issue in I-girders will be to study the geometry of the critical loading zone and to evaluate the 
strength provided by this zone. To conclude, it is important to note that the results from this thesis 
are promising and the extended model is an easier and faster alternative to non-linear finite element 
modelling. However, the model cannot be validated against only 27 specimens collected from four 
different test series. More experimental studies are therefore needed to improve this model and to 
pave the way for the proposed future investigations.  
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