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ABSTRACT

The first passage time refers to the time required for a dynamical system to reach a target energy level for
the first time, starting from a known initial state. This concept has been developed as an efficient alternative
to the classical stability theories that are no longer relevant in the stochastic context. Analytical studies
of single-degree-of-freedom systems governed by the linear Mathieu equation and subjected to broadband
forced and parametric excitations have revealed the existence of different regimes for the first passage time.

This Master thesis aims at the experimental validation of the existence of these regimes for a real struc-
ture. The experimental set-up consists in a vertical strip pre-stressed by a mass and subjected to forced and
parametric excitations. The complete process, from the structure design to the experimental validation, is
conducted in this work.

A finite element model of the structure is built inMATLAB to get a numerical representation of the
dynamics of the structure. The model is updated by implementing various state-of-the-art techniques from
the field of experimental modal analysis. Data acquisition and signal processing are carried out using the
LMS Test.Lab software and theLMS SCADAS Lab acquisition system.

A model reduction of the full multi-degree-of-freedom system is introduced to match the conditions
of the analytical results. It is shown that the dynamics of the structure can be approached by a single-
degree-of-freedom reduced model if both the forced and parametric excitations are narrow-band processes
triggering only one mode of the structure. The influence of narrow-band excitations on the first passage
time is therefore studied numerically. Behaviors similar to the broadband excitations case considered in
the analytical study can be recovered when the frequency band of the forced excitation includes the natural
frequency of the oscillator and the frequency band of the parametric excitation contains the corresponding
second harmonic. Depending on the other parameters of the problem, small quantitative differences can be
observed but the dynamics remains qualitatively similar.

The results of this numerical preparatory study are used to define the conditions of the experimental
tests. First passage time maps are reproduced experimentally in the framework of the linear single-degree-
of-freedom Mathieu equation. Some tests are also carried out to get a first insight into the first passage
time maps of nonlinear or multi-degree-of-freedom systems.

This work provides the first physical evidence that the first passage time of real multi-degree-of-
freedom systems can be characterized with the physical properties of the structure. It also addresses for
the first time the influence of narrow-band excitations. Therefore, it opens the way to broadening the scope
of the first passage time theory beyond the context of one-degree-of-freedom linear systems subjected to
broadband excitations considered so far.
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INTRODUCTION

Many engineering problems involve systems subjected to both forced and parametric excitations. Paramet-
ric excitations differ from forced excitations since theiraction appears as a time varying modification of
a system parameter. The dynamics of many such systems can be modeled by the linear Mathieu equation
that, for a damped system, takes the general form

ẍ+2ξẋ+[1+u(t)]x= w(t),

wherew(t) andu(t) denote respectively the forced and parametric excitations. Applications of this equa-
tion are present in all fields of engineering. This equation can for instance model parametric vibrations of
cables subjected to axial oscillations, some aero-elasticstability problems or electromagnetic phenomena
in inhomogeneous media [21, 26, 32].

This equation has been widely studied in the deterministic case,i.e. when the forced and parametric
excitations have known deterministic analytical expressions, in particular in the harmonic case, with the
aim of characterizing its steady-state solution and its stability [9, 30]. In most realistic applications, how-
ever, the forced and parametric excitations are stochasticprocesses and the system is slightly damped, so
that the system spends most of its time in a stochastic transient regime.

In the stochastic context, the classical stability theories are no longer relevant and the theory of first
passage time has been developed as an efficient alternative.The first passage time can be defined as the
amount of time required for a stochastic process to reach a given threshold for the first time when starting
from a given initial state. This concept is not directly related to a stability criterion but answers the usual
engineer’s questions that can be expressed as “How much timedoes it take to [reach a given state starting
from a given initial condition]?”. This question can be customized by the reader in an infinite number of
ways for a wide range of applications in engineering, but also in science, economics or industry: “How
much time does it take for a disease to spread over?”, “How much time does it take for a mechanical system
to reach its limit state?”,“How much time does it take for theexchange rate of euro to U.S. dollar to reach
a given value?”, “How much time does it take to observe and measure an increase of 5°C at a weather
station?”, etc. Numerical studies, often based on Monte Carlo simulations, can provide a first and quick
answer to these questions. However, a better insight into the problem is obtained by solving the stochas-
tic equations analytically. Very recent developments using this analytical approach have highlighted the
influence of some dimensionless groups and the existence of different behavioral regimes for the first pas-
sage time of single-degree-of-freedom systems governed bythe linear Mathieu equation and subjected to
broadband excitations [36, 37].
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The analytical results have already been illustrated experimentally using a tower crane model tested in
a wind-tunnel [35]. These experimental tests validated theexistence of the different regimes but did not
relate them to the physical parameters of the problem. The initial aim of this Master thesis is to design
a new experimental set-up to observe and, hence, validate the existence of these different regimes. The
objective is also to be able to predict the first passage time with the physical parameters of the structure.
The complete process, from the structure design to the experimental validation, is conducted in this work.
This report is divided into several parts that correspond tothe different steps followed in the process.

The first part of the work summarizes the relevant backgroundmaterial about Mathieu equation in both
deterministic and stochastic contexts and the principal theoretical results about first passage time. Some
original contributions to these analytical results are also included. The second part is dedicated to the
design of an experimental set-up for the validation of the first passage time theory. The different compo-
nents of the measurement chain are also described. A finite element model of the structure is built in the
third part. Experimental modal analysis performed on the real structure allows to update the numerical
model to get a reliable model to be used in the sequel. The fourth and fifth parts constitute the heart of
the work. They are devoted respectively to the numerical andthe experimental studies of first passage time.

The numerical results discussed in this report are obtainedwith home madeMATLAB [42] implemen-
tations of the different algorithms, methods and techniques that constitute the state of the art in the fields
of modal analysis and stochastic dynamics. Some heavy calculations are also performed inWolfram Math-
ematica [46]. The softwareSAMCEF Field developed by Siemens [43] is used to validate some results
obtained withMATLAB. The LMS Test.Lab software, which is also developed by Siemens, is used for
signal processing in all the experimental tests.
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PART 1

MATHIEU EQUATION - STATE OF THE ART AND ORIGINAL
DEVELOPMENTS

This first part of the work summarizes the theoretical background required to understand the studies de-
scribed in the following parts. The first section describes the main results about the deterministic version
of Mathieu equation. The second section focuses on the stochastic version of Mathieu equation and intro-
duces the concept of first passage time. The main theoreticalresults related to first passage time are also
summarized.

This work focuses on the study of a generalization of the Mathieu equation. For a single-degree-of-
freedom damped system, the extended Mathieu equation considered here takes the general dimensionless
form

ẍ(t)+2ξẋ(t)+ [1+u(t)]x(t) = w(t), (1.1)

wherex is the state variable,t is a dimensionless time andξ is the damping coefficient. The right-hand
sidew(t) is an external force applied to the system that will be referred to in the following as the forced
excitation. By contrast, the functionu(t) is called the parametric excitation, as it induces variation in time
of a parameter of the dynamical system (its stiffness in the current case). This excitation does not appear
in the governing equation as an external force applied to thesystem. The deterministic, undamped and
unforced version of (1.1) was first introduced in 1868 by the French mathematiciańEmile Mathieu when
studying the vibrations of an elliptic membrane [24]. Even if (1.1) does not exactly correspond to the
equation initially studied býEmile Mathieu and commonly called the Mathieu equation in the literature, it
will be referred to in the following as the Mathieu equation to ease the reading of the report.

This equation can be used to model many physical problems in all fields of engineering. For instance,
it describes the oscillations of a pendulum in the gravity field when its support is subjected to a vertical
motion that causes its stiffness to vary in time [17]. This equation also allows to study the deflection of a
cable subjected to axial oscillations at one of its ends [21]. The rotative equilibrium of a crane in a turbulent
wind can also be modeled by this equation [35]. The linear stability of Faraday waves that occur when a
container of liquid is periodically oscillating in the vertical direction can also be described by a Mathieu
equation [29].
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1.1 Deterministic version of Mathieu equation

The Mathieu equation has been widely studied in the particular case where the parametric excitation is
deterministic, and often harmonic. The equation is then rewritten for the state variablex(t) as

ẍ(t)+2ξẋ(t)+ [1+Aucos(ωut)]x(t) = w(t), (1.2)

where the stiffness of the oscillator varies at a pulsationωu with an amplitudeAu. The natural pulsation
of this oscillator isω0 = 1. The externally and parametrically excited oscillator isusually studied to deter-
mine the stability zones, the amplitude of the limit cycle oscillations or the steady-state solutions.

In the specific case without damping nor external excitation, the equation takes the simple form

ẍ(t)+ [1+Aucos(ωut)]x(t) = 0 (1.3)

and corresponds to the equation initially studied byÉmile Mathieu [24]. This equation can be rewritten as
[

ẋ1

ẋ2

]

= A(t)

[

x1

x2

]

, (1.4)

wherex1(t) = x(t), x2(t) = ẋ(t) and

A(t) =

[

0 1
−[1+Aucos(ωut)] 0

]

(1.5)

is periodic with periodT = 2π/ωu. According to Floquet theory [38], the solution does not need to be
periodic but will, in general, be a linear combination of elementary solutions of the form

eµt
[

x1(t)
x2(t)

]

, (1.6)

wherex1(t) andx2(t) have periodT andµ is a so-called Floquet exponent. The system has two such Flo-
quet exponentsµ1 andµ2 which may be complex. The Floquet exponents can be used to characterize the
stability of the unforced Mathieu equation.

The Floquet exponents are related to the Floquet multipliers ρ = eµT, which are the eigenvalues of the
fundamental matrix

B =

[

x(1)1 (T) x(2)1 (T)

ẋ(1)1 (T) ẋ(2)1 (T)

]

(1.7)

associated to the fundamental set of solutions
[

x(1)1 (t)

x(1)2 (t)

]

,

[

x(2)1 (t)

x(2)2 (t)

]

(1.8)

of (1.4) generated by considering the initial conditions
[

x(1)1 (0)

x(1)2 (0)

]

=

[

1
0

]

and

[

x(2)1 (0)

x(2)2 (0)

]

=

[

0
1

]

. (1.9)

The Floquet multipliersρ1 andρ2 are such that

ρ1ρ2 = 1 and ρ1+ρ2 =
1
2

tr(B) = 2φ, (1.10)

so that
ρ1,2 = φ±

√

φ2−1. (1.11)
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Different cases can be considered.

• If φ > 1, thenρ1 > 1> ρ2 > 0. The solution is unstable and has the form

x(t) = c1eµ1tp1(t)+c2e−µ1tp2(t), (1.12)

wherep1(t) andp2(t) have a periodT.

• If φ = 1, thenρ1 = ρ2 = 1. The solution is unstable and has the form

x(t) = (c1+ tc2)p1(t)+c2p2(t), (1.13)

wherep1(t) andp2(t) have a periodT.

• If −1< φ < 1, thenρ = exp(± j σT) (|ρ1| = |ρ2| = 1). The solution is stable and pseudo-periodic
and has the form

x(t) = c1ℜ[ej σtp(t)]+c2ℑ[ej σtp(t)], (1.14)

wherep(t) has a periodT.

• If φ =−1, thenρ1 = ρ2 =−1. The solution is unstable and has the form

x(t) = (c1+ tc2)q1(t)+c2q2(t), (1.15)

whereq1(t) andq2(t) have a period 2T.

• If φ <−1, thenρ1 <−1< ρ2 < 0. The solution is unstable and has the form

x(t) = c1eγtq1(t)+c2e−γtq2(t), (1.16)

whereq1(t) andq2(t) have a period 2T.

Approximations of the boundary between stability and instability zones of the Mathieu equation can
be found in the literature [38]. Here, the Floquet multipliers are computed numerically usingWolfram
Mathematica. Fig. 1.1(a) shows the norm of the largest Floquet multiplier as a function of the parametric
excitation amplitudeAu and pulsationωu. The solution becomes unstable and grows unbounded when
a Floquet multiplier is larger than one. These parametric instabilities appear when the pulsation of the
excitation is close to the critical pulsations

ω(k)
u = 2

ω0

k
, ∀k∈ N0, (1.17)

whereω0 is the natural pulsation of the system. For small amplitude excitations, the most critical behavior
is observed at twice the natural frequency of the system. Theother unstable modes appear only in very
narrow bands around the critical frequencies. In the unstable regions, the Floquet multipliers increase with
the amplitudeAu of the excitation. Periodic solutions of periodT and 2T occur at the boundary between
the stable and unstable regions.

The same reasoning can be followed in the presence of damping. The damped Mathieu equation can
be expressed as

ẍ(t)+2ξẋ(t)+ [1+Aucos(ωut)]x(t) = 0. (1.18)

This equation can be transformed into the undamped Mathieu equation

ÿ(t)+ [1−ξ2+Aucos(ωut)]y(t) = 0 (1.19)

by defining
x(t) = e−ξty(t). (1.20)
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(a) Undamped case (ξ = 0).
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(b) Damped case (ξ = 0.02).

FIGURE 1.1 - Largest Floquet multiplier of the unforced Mathieu equation (1.18) as a function of the
amplitude and the pulsation of the parametric excitation.

For small values of the damping coefficientξ, parametric instabilities still develop at the critical pulsations

ω(k)
u (1.17) but the Floquet multipliers are decreased by a factore−ξT (Fig. 1.1(b)). Therefore, parametric

instabilities only occur for excitations with a sufficiently large amplitude. As schematized in Fig. 1.2 and
pointed out by [21], damping has an erosive effect on the boundary of the instability regions. The ampli-
tude of the parametric excitation required to trigger the parametric instability increases withk.

FIGURE 1.2 - Qualitative representation of the boundary between stable and unstable zones of the
Mathieu equation as a function of the excitation frequency,the excitation amplitude and the damping [21].
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Figs. 1.3 and 1.4 represent the time responses of the undamped and damped unforced Mathieu equa-
tions (1.3) and (1.18) to parametric excitations of amplitude Au = 0.2. From Fig. 1.1, it is expected that
the response is unstable forωu = 2ω0 in the undamped case and forξ = 0.02. It is indeed observed that
the response grows exponentially in both cases. The growth is more rapid in the undamped case. For
ωu = 1.5ω0, the response is stable. The effect of damping is clearly seen in Fig. 1.4(a).

(a) Stable solution (Au = 0.2, ωu = 1.5ω0). (b) Unstable solution (Au = 0.2, ωu = 2ω0).

FIGURE 1.3 - Solutions of the undamped Mathieu equation (1.3) with parametric excitation only.

(a) Stable solution (Au = 0.2, ωu = 1.5ω0). (b) Unstable solution (Au = 0.2, ωu = 2ω0).

FIGURE 1.4 - Solutions of the damped Mathieu equation (1.18) with parametric excitation only
(ξ = 0.02).

When the oscillator is subjected to an external harmonic forced excitation, the governing equation
writes

ẍ(t)+2ξẋ(t)+ [1+Aucos(ωut)]x(t) = Awcos(ωwt) (1.21)

and can no longer be studied with the Floquet theory. When only the forced excitation is considered
(Au = 0), the dynamics of the system shows the classical characteristics. For an undamped system excited
at its natural frequency, the response grows linearly (Fig.1.5(a)). In the damped case, the response even-
tually reaches an asymptotic value (Fig. 1.5(b)).

When the oscillator is subjected to both forced and parametric excitations, similar conclusions can be
drawn. Both instabilities combine when the forced excitation has a pulsationωw = ω0 and the parametric
excitation a pulsationωu = 2ω0 (Fig. 1.6(a)). Damping has still an erosive effect on the instability zones.
A forced excitation characterized by a pulsationωw different fromω0 has also an erosive effect on the
instability zones. As shown in Fig. 1.6(b) forωw = 0.5ω0 andωu = 2ω0, the parametric instability is less
pronounced when the forced excitation amplitudeAw increases.
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(a) Undamped solution (ξ = 0). (b) Damped solution (ξ = 0.02).

FIGURE 1.5 - Solutions of Mathieu equation (1.21) with forced excitation only (Aw = 0.2, ωw = ω0).

(a) Aw = 0.2, ωw = ω0. (b) ωw = 0.5ω0, ξ = 0.02.

FIGURE 1.6 - Solutions of Mathieu equation (1.21) with forced and parametric excitations
(Au = 0.2, ωu = 2ω0).

1.2 Stochastic version of Mathieu equation

The generalized Mathieu equation of a damped system submitted to forced and parametric excitations takes
the general form

ẍ+2ξẋ+[1+u(t)]x= w(t), (1.22)

with x(t) the state variable function of the dimensionless timet, ξ the damping coefficient andw(t) and
u(t) the forced and parametric excitations that are now random processes.

As in the deterministic case, the stochastic oscillator canalso be studied with the aim to characterize
the stability zones or steady-state solutions. However, when damping is absent or very small, these ob-
jectives have little interest since the system spends a longtime in a stochastic regime. Accordingly, the
problem has to be studied from a different point of view.

When damping is small, it is more interesting to study the time required for the system to reach a given
energy level starting from a known initial condition. Such aproblem is referred to in the literature as a
first passage problem [33]. In a stochastic context (i.e. when the excitation is stochastic and/or when the
parameters of the system vary in a random way), the first passage time is a random variable characterized
by its probability density function. The complete statistical distribution of the first passage time is avail-
able for very few problems only. In order to characterize thedistribution, the first statistical moments can
be obtained numerically (through Monte Carlo simulations for instance) or, in some rare cases, analytically.
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The next sections are devoted to the presentation of the mainanalytical results available to define
the probability density function. This state of the art related to the stochastic version of the Mathieu
equation is mainly based on two papers by H. Vanvinckenroye about the first passage time theory: [36]
for the statement of the problem and the development of analytical expressions for the first moment of the
first passage time and [37] for the development of analyticalexpressions for the second moment of the
first passage time. Some original contributions are also added to these analytical results in sections 1.2.4
and 1.2.5.

1.2.1 Generalized Pontryagin equation for then-th statistical moment

The energy balance of the governing equation (1.22) is obtained by time integration of the power fluxes
∫

(ẍ+2ξẋ+[1+u(t)]x) ẋdt=
∫

wẋdt, (1.23)

which yields
ẋ2

2
+

x2

2
+

∫
(

2ξẋ2+uxẋ
)

dt =
∫

wẋdt. (1.24)

The Hamiltonian of the system is composed of a potential energy and a kinetic energy and is defined by

H =
x2

2
+

ẋ2

2
. (1.25)

If the damping coefficient and the amplitudes of the excitations are small,i.e. if

{ξ,u,w} ≪ 1, (1.26)

the Hamiltonian evolves on a slow time scale since

Ḣ = wẋ−2ξẋ2−uxẋ ≪ 1. (1.27)

It can therefore be assumed that the energy is nearly constant along one period of oscillation,i.e. that the
system is quasi-Hamiltonian. In the following, only quasi-Hamiltonian systems will be considered. When
the system is not quasi-Hamiltonian, the steady-state regime is reached fast enough and the theory of first
passage time is of limited interest.

The conservative system evolves along closed trajectoriesof constant HamiltonianH. The period of
revolution of a complete orbit of the unperturbed system (u= w= ξ = 0) is independent of the considered
energy levelH and is given by

T = 2π. (1.28)

In order to derive an analytical equation characterizing the probability density function of the first
passage time of an oscillator, the problem is first represented in the state-space by its Itô formulation for
Markov times. Under the assumption of a quasi-Hamiltonian system, the stochastic averaging of the Itô
equation over one revolutionT = 2π provides the averaged Itô equation governing the time-evolution of
the HamiltonianH [5]. The drift and diffusion coefficientsm(H) and σ2(H) can then be obtained as
functions of the HamiltonianH and the parameters of the problem. When the excitationsu(t) andw(t) are
Brownianδ-correlated noises of small amplitudes measured by their power spectral densitiesSu andSw

(see appendix A for the definitions and conventions adopted in the current work), the drift and diffusion
coefficients are given by

m(H) =
H
2

Su+
1
2

Sw−2ξH and σ2(H) =
H2

2
Su+HSw. (1.29)
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Let D be a closed domain in the phase plane defined byD = {H : 06 H 6 Hc} and an initial condition
H0 ∈D. Then-th statistical moment of the first passage timeUn =E [tn

1] (n= 1,2,3, ...) to reach the bound-
ary ∂D starting from the initial HamiltonianH0 is governed by the generalized Pontryagin equation [28]

1
2

σ2(H0)
d2

dH2
0

Un+m(H0)
d

dH0
Un =−nUn−1, (1.30)

with U0 = 1 and the boundary conditions

Un(H0) = 0 ∀H0 ∈ ∂D and |Un(0)| < ∞. (1.31)

It is interesting to note that the governing equation is independent of the correlation between the para-
metric and forced excitation,i.e. independent of the cross-spectral densitySuv. Some analytical solutions
of (1.30) have been recently derived in specific cases and show interesting behaviors of the first passage
time of quasi-Hamiltonian systems [36, 37]. Those are discussed in the following sections.

1.2.2 Undamped oscillator

In the undamped case, the studied Mathieu equation can be written as

ẍ+[1+u(t)]x= w(t), (1.32)

whereu(t) andw(t) are Brownianδ-correlated noises of small intensitiesSu andSw.

Mean first passage timeU1

The mean first passage time of the system at an energy levelHc starting from an energy levelH0 is obtained
by solving (1.30) forn= 1 and takes the simple form

U1(H0) =
4
Su

ln

(

HcSu+2Sw

H0Su+2Sw

)

=
4
Su

ln

(

1+
∆HSu

H0Su+2Sw

)

, (1.33)

where
∆H = Hc−H0. (1.34)

This solution is only valid for positive first passage times,i.e. for a target energy higher than the initial
energy (∆H > 0). This expression presents two limiting cases without parametric or forced excitation.

When there is no parametric excitation,i.e. Su = 0, the average first passage time becomes

U1(H0) = 2
∆H
Sw

. (1.35)

The average first passage time varies linearly with the energy increment. This is referred to as an incuba-
tion regime. Increasing the forced excitation decreases the first passage time.

When there is no forced excitation,i.e. Sw = 0, the average first passage time becomes

U1(H0) =
4
Su

ln

(

Hc

H0

)

=
4
Su

ln

(

1+
∆H
H0

)

. (1.36)

The average first passage time scales with the ratioHc/H0 on a logarithmic scale. This is called the multi-
plicative regime. Increasing the parametric excitation decreases the first passage time.
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These two limiting cases reflect that the parametric and forced excitations influence the dynamics of
the problem in two distinct ways. As illustrated in section 1.1 when describing the instabilities observed
for forced or parametric excitation only, this is also the case for deterministic excitations.

When both parametric and external forced excitations are considered, three regimes characterized by
different behaviors of the average first passage time can be identified, depending on the relative values of
the parametersSu, Sw, H0 andHc. To ease the notation, the reduced groups

H∗
0 =

H0Su

2Sw
and ∆H∗ =

∆HSu

2Sw
(1.37)

are introduced. The average first passage time (1.33) takes the form

U1 =
4
Su

ln

(

1+
∆H∗

H∗
0 +1

)

. (1.38)

Fig. 1.7 shows the ratioU1Su/4 as a function ofH∗
0 and∆H∗. The bottom left corner in the figure corre-

sponds to the limiting case where there is no parametric excitation and the upper right corner to the limiting
case where there is no forced excitation.

FIGURE 1.7 - Reduced average first passage time
U1Su/4 as a function ofH∗

0 and∆H∗ for an
undamped system. Identification of the additive

(A), multiplicative (M) and incubation (I) regimes.

FIGURE 1.8 - Linearity of the average first passage
time in the incubation regime. Cross-sections of the
reduced average first passage time map (Fig. 1.7)

for U1 <U1,incub andH∗
0 equal to 1 and 10.

The incubation regime is defined as the regime where the average first passage time may be linearized.
This is the case when the argument of the logarithm is close to1, i.e. when

∆H∗ ≪ H∗
0 +1. (1.39)

In the incubation regime, the average first passage time may be written as

U1 =
4
Su

∆H∗

H∗
0 +1

(1.40)

and scales therefore linearly with∆H∗. This approximation ceases to be valid when condition (1.39) is no
longer met,i.e. for

U1 ≃
4
Su

. (1.41)
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A characteristic incubation timeU1,incub can therefore be defined by

U1,incub :=
1

2Su
. (1.42)

From a practical point of view, this means that the first passage time is proportional to∆H∗, might be
estimated by (1.40) and that the resulting estimate is validprovided it is shorter thanU1,incub. The in-
cubation zone is located on the bottom of Fig. 1.7 and conveniently limited by the curveU1Su/4 = 1/8.
Fig. 1.8 highlights the behavior of the average first passagetime in the incubation regime. It corresponds to
cross-sections of the map for constant values ofH∗

0 . The linear dependency in∆H∗ can be clearly observed.

Expression (1.38) reveals the existence of two other regimes, respectively whenH∗
0 is large or small

compared to 1. These two regimes overlap with the incubationregime as shown in Fig. 1.7.

If H∗
0 ≫ 1, the mean first passage is given by

U1 =
4
Su

ln

(

1+
∆H∗

H∗
0

)

. (1.43)

This regime is called the multiplicative regime because thefirst passage time depends on the factor by
which the initial energy is multiplied to obtain the target energy level. The mean first passage time is inde-
pendent of the forcing excitation intensitySw. This regime corresponds to the right part of Fig. 1.7 which
shows oblique asymptotes of unit slopes.

If H∗
0 ≪ 1, the mean first passage time is independent ofH∗

0 and is given by

U1 =
4
Su

ln(1+∆H∗) . (1.44)

This regime is called the additive regime. The expected firstpassage time only depends on the energy
increment∆H∗. This regime corresponds to the left part of Fig. 1.7 which shows horizontal asymptotes.

Mean square first passage timeU2

The general form of the generalized Pontryagin equation (1.30) is the same for all ordersn so that strong
similarities are expected between the first and higher moments of the statistical distribution of the first
passage time. For the undamped system governed by (1.32), the mean square first passage timeU2 =
E[t2

1], solution of the Pontryagin equation (1.30) forn= 2, can be expressed in terms of the same reduced
parametersH∗

0 and∆H∗ by

U2 =
32
S2

u

[

P (1+H∗
0)−P (1+H∗

0 +∆H∗)+ ln(1+H∗
0 +∆H∗) ln

(

1+H∗
0 +∆H∗

H∗
0 +∆H∗

)

(1.45)

− ln(1+H∗
0) ln

(

1+H∗
0 +∆H∗

H∗
0

)

+ ln

(

1+
∆H∗

1+H∗
0

)

]

,

whereP stands for the real part of the polylogarithm of order 2 (the dilogarithm) and is defined for any
realx by

P (x) = Re[Polylog(2,x)] =−Re

[∫ x

0

ln(1− t)
t

dt

]

. (1.46)

Fig. 1.9 shows the ratioU2S2
u/32 as a function ofH∗

0 and∆H∗. The asymptotic behaviors of the mean
square first passage time in the three previously identified regimes can be developed.
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FIGURE 1.9 - Reduced mean square first passage
timeU2S2

u/32 as a function ofH∗
0 and∆H∗ for an

undamped system. Identification of the additive (A),
multiplicative (M) and incubation (I) regimes.

FIGURE 1.10 - Coefficient of variationCV as a
function ofH∗

0 and∆H∗ for an undamped system.

In the incubation regime (∆H∗ ≪ H∗
0 +1), the mean square scales linearly with∆H∗ and is given by

U2 =
32
S2

u

∆H∗

H∗
0 +1

[

1− ln(1+H∗
0)

H∗
0

]

. (1.47)

For H∗
0 ≫ 1, the second order moment becomes

U2 =
32
S2

u

[

ln

(

1+
∆H∗

H∗
0

)

+
1
2

ln

(

1+
∆H∗

H∗
0

)2
]

. (1.48)

This corresponds to the multiplicative regime previously identified. This expression only depends on the
ratio ∆H∗/H∗

0 , which explains the unit slope in the right part of Fig. 1.9.

The additive regime is now restricted to the upper left corner (H∗
0 ≪ 1 and∆H∗ ≫ 1). The mean square

writes

U2 =
32
S2

u

[

−π2

6
+

ln(∆H∗)
2∆H∗ {4+∆H∗ ln(∆H∗)}+ ln(1+∆H∗)

]

(1.49)

and does not depend onH∗
0 , which confirms the horizontal asymptote in Fig. 1.9. There is no overlap

between the incubation and the additive regime.

Knowing the first and second moments of the statistical distribution of the first passage time, the
variance is easily computed by

σ2 =U2−U2
1 . (1.50)

The spread in the distribution of the first passage time can bebetter evaluated with the coefficient of
variationCV defined as

CV =

√
σ2

U1
. (1.51)

The coefficient of variation is represented in Fig. 1.10 as a function ofH∗
0 and∆H∗. The lower the coeffi-

cient of variation, the smaller the sample size needs to be toprovide estimates of the average first passage
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time with small confidence intervals. The lowest coefficients of variation are found in the upper left corner,
i.e. for the transition of a system from a low energy level to a muchhigher energy level. By contrast, the
largest coefficients of variation are obtained in the bottomright corner,i.e. for small energy increments of
a system starting from a high energy level. ForCV >

√
2/2, the coefficient of variation depends in good

approximation only on the ratio∆H∗/H∗
0 . The behavior of the coefficient of variation is different inthe

upper left corner (additive regime).

1.2.3 Damped oscillator

In the damped case, the Mathieu equation takes the general form

ẍ+2ξẋ+[1+u(t)]x= w(t). (1.52)

Mean first passage timeU1

Solving the Pontryagin equation (1.30), the average first passage time can be expressed as

U1 =
4

Su(1−a)

[

(1+H∗
0 +∆H∗)a− (1+H∗

0)
a

a
−

∫ H∗
0+∆H∗

H∗
0

(1+ t)a−1
t

dt

]

, (1.53)

with the damping factora defined by

a=
8ξ
Su

. (1.54)

This solution is only valid for positive first passage times since the Itô formulation on which it is based
is only valid in this case. The two limiting cases corresponding to the absence of parametric or forced
excitation can be discussed.

When there is no parametric excitation,i.e. Su = 0, the average first passage time becomes

U1(H0) =− 1
2ξ

ln

(

1+
∆H∗

H∗
0

)

+
Ei(aH∗

0 +a∆H∗)−Ei(aH∗
0)

2ξ
, (1.55)

with Ei the exponential integral defined by

Ei(x) =
∫ x

−∞

et

t
dt. (1.56)

The linear behavior identified in the undamped case disappears when damping is introduced.

When there is no forced excitation,i.e. Sw = 0, the average first passage time becomes

U1 =
4

Su(1−a)
ln

(

1+
∆H∗

H∗
0

)

. (1.57)

It is interesting to note that, in this case, damping does notmodify the form of the first passage time for
a< 1. It still increases with the logarithm of the ratioHc/H0. This solution is positive as long asa< 1,
which means that the energy of the system can increase, on average, if the damping ratio is below a certain
thresholdξ = Su/8.

Fig. 1.11 shows the reduced average first passage timeU1Su/4 as a function ofH∗
0 and∆H∗ for different

values ofa. The three regimes identified in the undamped case are recovered in the figure. In the additive
regime, damping tends to increase the average first passage time. In the multiplicative regime, damping
changes the slope of the iso-time curves. In the whole map, increasing damping increases the first passage
time as expected. Details about the asymptotic behaviors ofthe average first passage time in the three
regimes can be found in section 1.2.4.
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FIGURE 1.11 - Reduced average first passage timeU1Su/4 as a function ofH∗
0 and∆H∗ for damped

systems witha equal to 0.5, 0.8, 1.5, 2, 3 and comparison with the undamped system.

Mean square first passage timeU2

No general analytical results related to the mean square first passage time of a damped system have been
developed up to now. Section 1.2.5 presents some personal contributions to the analytical developments
for specific damping conditions.

1.2.4 New developments about the asymptotic behavior of theaverage first passage time
of a damped oscillator in the three regimes

In this section, the asymptotic behaviors of the mean first passage time of a damped system are derived in
the three regimes. The limits of the different regimes are also estimated. The analytical developments are
carried out usingWolfram Mathematica.

The general expression of the mean first passage time is givenby (1.53). The integral appearing in the
definition ofU1 can be written in terms of the hypergeometric function2F1 [22] as

∫ H∗
0+∆H∗

H∗
0

(1+ t)a

t
dt =

(1+H∗
0 +∆H∗)1+a

a(H∗
0 +∆H∗) 2F1

(

1,1,1−a,− 1
H∗

0 +∆H∗

)

− (1+H∗
0)

1+a

aH∗
0

2F1

(

1,1,1−a,− 1
H∗

0

)

. (1.58)

Fig. 1.12 shows the reduced average first passage timeU1Su/4 as a function ofH∗
0 and∆H∗ for different

values ofa.
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(a) a= 0.5.

(b) a= 1.5.

(c) a= 2.5.

FIGURE 1.12 - Reduced average first passage timeU1Su/4 as a function ofH∗
0 and∆H∗ for damped

systems characterized bya= 0.5, 1.5 and 2.5. Identification of the additive (A), multiplicative (M) and
incubation (I) regimes. Dotted gray lines indicate the asymptotic behavior in the multiplicative regime.
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Additive regime

The additive regime is characterized by the fact that the mean first passage time does not depend on the
initial level of energyH∗

0 . The following developments show that this is the case whenH∗
0 ≪ 1. The

corresponding asymptotic value is also derived.

Since, fora 6= 0,

2F1

(

1,1,1−a,−1
x

)

∼ axlnx, (x→ 0), (1.59)

it comes
∫ H∗

0+∆H∗

H∗
0

(1+ t)a

t
dt ∼ (1+∆H∗)1+a

a∆H∗ 2F1

(

1,1,1−a,− 1
∆H∗

)

− lnH∗
0 , (H∗

0 → 0), (1.60)

and eventually

U1 ∼
4

Su(1−a)

[

ln∆H∗+
(1+∆H∗)a−1

a
− (1+∆H∗)1+a

a∆H∗ 2F1

(

1,1,1−a,− 1
∆H∗

)]

, (H∗
0 → 0).

(1.61)
This result shows that the mean first passage time tends to be independent ofH∗

0 when the initial energy
level is small. This behavior can be observed in Fig. 1.12 where horizontal asymptotes appear forH∗

0 ≪ 1.
Note that this result is not valid ifa= 0 ora= 1 since (1.53) and/or (1.59) must be adapted in these cases.

Multiplicative regime

In the multiplicative regime, the first passage time dependson the ratio of the target energy and the initial
energy. It is shown here that this is the case forH∗

0 ≫ 1.

The hypergeometric function behaves asymptotically as

2F1(1,1,1−a,x) ∼ 1+
x

1−a
+O(x2), (x→ 0). (1.62)

Therefore, whenH∗
0 ≫ 1, the integral in (1.53) can be approximated by

∫ H∗
0+∆H∗

H∗
0

(1+ t)a

t
dt ∼ (1+H∗

0 +∆H∗)1+a

a(H∗
0 +∆H∗)

[

1− 1
(1−a)(H∗

0 +∆H∗)

]

(1.63)

− (1+H∗
0)

1+a

aH∗
0

[

1− 1
(1−a)H∗

0

]

, (H∗
0 → ∞).

This leads to

U1 ∼
4

Su(1−a)

[

∆H∗

H∗
0

− ∆H∗

(H∗
0)

2−a

]

, (H∗
0 → ∞). (1.64)

The dominant behavior therefore depends on the value ofa. If a< 1, one has

U1 ∼
4

Su(1−a)
∆H∗

H∗
0
, (H∗

0 → ∞). (1.65)

In the first passage time map (with axes in logarithmic scale), this behavior appears as oblique asymptotes
with unit slope (Fig. 1.12(a)). Ifa> 1, then

U1 ∼
4

Su(a−1)
∆H∗

(H∗
0)

2−a , (H∗
0 → ∞), (1.66)

and oblique asymptotes with slope 2−a are observed in the first passage time map. These asymptotes have
therefore positive slopes fora< 2 (Fig. 1.12(b)) and negative slopes fora> 2 (Fig. 1.12(c)).
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Incubation regime

In the incubation regime, the first passage time evolves linearly with ∆H∗. This is the case when∆H∗ ≪ 1.
The two terms of the general expression (1.53) become

(1+H∗
0 +∆H∗)a− (1+H∗

0)
a

a
∼ (1+H∗

0)
a−1∆H∗

− 1
2
(1−a)(1+H∗

0)
a−2(∆H∗)2+O({∆H∗}3), (∆H∗ → 0), (1.67)

and

∫ H∗
0+∆H∗

H∗
0

(1+ t)a−1
t

dt ∼ ∆H∗ (1+H∗
0)

a−1
H∗

0

+
(∆H∗)2

2(H∗
0)

2

[

1− (1+H∗
0)

a+aH∗
0(1+H∗

0)
a−1]+O({∆H∗}3), (∆H∗ → 0), (1.68)

so that

U1 ∼
4∆H∗

Su(1−a)H∗
0

[

H∗
0(1+H∗

0)
a−1− (1+H∗

0)
a+1

]

=
4∆H∗

Su(1−a)H∗
0

[

1− (1+H∗
0)

a−1] . (1.69)

This expression is positive whatever the value ofa.

In (1.67), the second order term can be neglected with respect to the term in∆H∗ if
∣

∣

∣(1−a)(1+H∗
0)

a−2(∆H∗)2
∣

∣

∣≪
∣

∣

∣(1+H∗
0)

a−1∆H∗
∣

∣

∣, (1.70)

i.e. if

|1−a| ∆H∗

(1+H∗
0)

≪ 1. (1.71)

In (1.68), the second order term can be neglected with respect to the term in∆H∗ in the evaluation of the
integral if

∆H∗

H∗
0

∣

∣

∣

∣

aH∗
0(1+H∗

0)
a−1

(1+H∗
0)

a−1
−1

∣

∣

∣

∣

≪ 1. (1.72)

The first condition (1.71) is always more restrictive than the second one (1.72) so that the incubation
regime can be observed for values of∆H∗ andH∗

0 such that

|1−a| ∆H∗

(1+H∗
0)

≪ 1. (1.73)

For values ofa less than 1, this domain can be approached by

U1 <
1

2Su(1−a)
(1.74)

and the boundary of the incubation region can therefore be described by a curve of constant reduced average
first passage time as for undamped systems. For values ofa greater than 1, the limit does not follow a curve
of equal mean first passage time. The domain can be approachedby

U1 <
1

2Su(1−a)|1−a|
(1+H∗

0)− (1+H∗
0)

a

H∗
0

. (1.75)

The limits of the incubation regime are represented in Fig. 1.12 for different values ofa. Fora= 0.5,
the limit can indeed be approached by a curve of constant value ofU1Su/4. Fora= 1.5 anda= 2.5, the
limit does not follow a curve of the map.
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1.2.5 New developments about the mean square first passage time of damped systems

The mean square first passage timeU2 of a damped system is obtained by solving the Pontryagin equa-
tion (1.30) forn= 2. Compact solutions can be found withWolfram Mathematica whena= k+1/2 with
k integer. Indeed, for sucha, the hypergeometric functions appearing in the solution ofthe Pontryagin
equation can be easily expressed with logarithm functions.

For instance, introducing the variablesX =
√

1+H∗
0 andY =

√

1+H∗
0 +∆H∗ to simplify the expres-

sion, the mean square of a damped oscillator characterized by a= 0.5 writes

U2 =
512
S2

u

[

P

(

1+X
2

)

−P

(

1+Y
2

)

− ln(1+X)+ ln(1−X)(ln{1+X}− ln2) (1.76)

+ ln2· ln(1−Y)+ ln(1+Y)(1+2 atanh{Y}− ln{1+X})
]

,

whereP is defined by (1.46).

This analytical result can be compared with the mean square first passage timeU2 obtained numerically
with Monte Carlo simulations of the oscillator. The different curves of Fig. 1.13 correspond to different
initial energy levelsH∗

0 . A good match is observed between the analytical and numerical results.

The mean square first passage time map is represented in Fig. 1.14 for a = 0.5 and compared to the
undamped case. Even if a large shift between the curves is observed, the general behavior of the mean
square first passage time is recovered for damped systems. The different regimes are also present. For
small initial energy levels,U2S2

u/32 does not depend onH∗
0 . This corresponds to the additive regime. For

large initial energy levels, the curves show the same slope.The incubation regime can also be highlighted
by looking at Fig. 1.13. For small∆H∗, the mean square first passage time evolves linearly with theenergy
increment.

FIGURE 1.13 - Reduced mean square first passage
timeU2S2

u/32 as a function of∆H∗ for different
values ofH∗

0 . Monte Carlo simulations (cross
markers) and analytical solution (full lines).

FIGURE 1.14 - Reduced mean square first passage
timeU2S2

u/32 as a function ofH∗
0 and∆H∗ for an

undamped system (a= 0) and a damped system
(a= 0.5).
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PART 2

EXPERIMENTAL SET-UP

This second part of the work is dedicated to the design of the experimental set-up used to illustrate the
first passage time theory. In the first section, the design of the set-up is described and justified. Then, the
real set-up is described in detail and the geometrical and physical properties of the structure are carefully
identified. The measurement chain used in all the experimental tests is described in the last section.

2.1 Preliminary design

The final objective of the experimental set-up is to validatethe existence of the different regimes for the
first passage time. As explained in section 1.2, the theory studied is based on the one-degree-of-freedom
Mathieu equation. This first section therefore aims at designing a structure governed by the Mathieu equa-
tion, i.e. subjected to an external forced excitation and a parametricexcitation that modifies the stiffness
of the dynamical structure. It will be shown further (section 4.1) how the assumption of a single-degree-
of-freedom system can be verified in good approximation witha real intrinsically multi-degree-of-freedom
structure.

It was initially suggested to study the oscillations of a simple pendulum of massm and lengthℓ in the
gravity field when the pendulum is excited by a random motion of its support (Fig. 2.1, left). A horizontal
excitation (perpendicular to the pendulum at rest) of its support ẍ0 can be seen as the forced excitationw(t)
in Mathieu equation (1.22). A vertical excitation (alignedwith the pendulum at rest) ¨y0 makes the stiffness
of the pendulum vary in time and therefore constitutes the parametric excitationu(t).

FIGURE 2.1 - Schematic views of a simple pendulum in the gravity fieldwith random excitation of its
support (left: non-stiffened pendulum, middle: stiffenedpendulum, right: inverted pendulum).
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The small oscillationsθ of the pendulum around its stable equilibrium positionθ = 0 are governed by

mℓ2θ̈+cℓθ̇+[mgℓ+mÿ0ℓ]θ =−mẍ0ℓ. (2.1)

Introducing the characteristic timeT =
√

ℓ/g, the equation of motion writes in dimensionless form

θ′′+
c

m
√
ℓg

θ′+
[

1+
ÿ0

g

]

θ =
−ẍ0

g
. (2.2)

Numerical simulations show, however, that such a set-up is not feasible from a practical point of view
because it does not allow to reach a HamiltonianH = θ2/2+θ′2/2 larger than 10−2 (which is required to
observe the different regimes of the first passage time) in a reasonable amount of time. In order to have
sufficiently small first passage times, prohibitively largeforces have to be applied or the natural frequency
of the pendulum has to be increased by decreasing its lengthℓ down to a few millimeters. This second
solution would require very sensitive transducers, which are not available at the lab, to measure the mass
position with accuracy. The same conclusions hold for an inverted pendulum or a stiffened pendulum
(Fig. 2.1, middle and right). Moreover, such a set-up does not allow to extend the theory for multi-degree-
of-freedom systems since a pendulum is fundamentally designed to be a single-degree-of-freedom system.

After careful consideration of the problem, an experimental set-up consisting in a vertical strip pre-
stressed by a mass has been developed. A schematic representation of the set-up is given in Fig. 2.2. A
horizontal force (perpendicular to the strip)Fw applied to the structure can play the role of the forced ex-
citation w(t) of Mathieu equation (1.22). The shakers used to excite the structure are characterized by a
limited stroke and a limited velocity. In order to limit the amplitude of displacements of the strip where
the shaker acts and therefore to avoid any impedance mismatch that arises when the shaker just follows
the movement of the structure, the strip is excited sufficiently close to the bottom fixation. The parametric
excitationu(t) can be created by a vertical forceFu applied at the bottom end of the strip, below the pre-
stress mass. Such a force induces variations in time of the strip stiffness since it modifies the pre-stress of
the strip. The initial pre-stress by the massm is obviously essential to avoid the instability of the strip.

The structure is made of carbon steel. The strip is chosen among those provided by the manufacturer
Hasberg [40], specialist in steel strip. A strip with thickness 0.4 mm and width 25 mm is selected. The
strip is clamped at its top end. At its bottom end, a lateral guide constrains the strip to move only in the
vertical direction (Fig. 2.2).

2.2 Set-up description

This section aims at characterizing in detail the experimental set-up. The geometrical properties of the
strip and its material properties are identified with accuracy. A picture of the experimental set-up in the lab
is provided in Fig. 2.3.

As a first step, the geometrical properties of the structure are carefully determined. The length of the
strip is measured. It is also checked that the width and the thickness of the steel strip correspond to the val-
ues given in the data sheet of Hasberg manufacturer [40]. Thepre-stress mass is also accurately weighed.
The properties are given in Table 2.1.

Then, the material properties of the steel that composes thestrip have to be accurately identified. Two
30 cm samples of the strip are weighted to estimate the carbonsteel density. The valueρ = 7767 kg/m3

found is in good agreement with the density of traditional carbon steels. The value of the Poisson ratio is
chosen as the Poisson ratio of usual carbon steels [2]. The material properties used in the following of the
study are summarized in Table 2.2.
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FIGURE 2.2 - Schematic view of the structure that consists in a vertical strip pre-stressed by a mass and
subjected to forced and parametric excitationsFw andFu.

FIGURE 2.3 - Picture of the non-instrumented structure.
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Parameter Symbol Value Units

Length ℓ 50.1 cm
Width w 25 mm
Thickness t 0.4 mm
Pre-stress mass m 1.816 kg

TABLE 2.1 - Geometrical properties of the structure.

Parameter Symbol Value Units

Density ρ 7767 kg/m3

Young’s modulus E 206 GPa
Poisson’s ratio ν 0.33 [-]

TABLE 2.2 - Material properties of the carbon
steel structure.

Two different methods are used to get an accurate estimate ofthe Young’s modulus. The two methods
are applied on samples at ambient temperature, which corresponds to the conditions of the experimental
tests described further. On the one hand, vibration properties of the strip are exploited. The strip sample
is suspended at a stand by means of two small rigidity elastics. An accelerometer is glued on the sample
and the sample is impacted using an impact hammer. In order toexcite and measure a maximum of modes
of the strip sample, vibration nodes have to be avoided for the impact and the response measurement: the
measurement point and the excitation point are chosen at thetwo ends of the sample. This impact test
allows to evaluate the first natural frequencies of the stripsample. A finite element model of a free-free
beam with a concentrated mass (equal to the accelerometer mass) at the location of the accelerometer is
then built. The Young’s modulus is determined as the one thatminimizes in a least square sense the error
between the experimental natural frequencies and the natural frequencies of the finite element model. It
is given byE = 201 GPa. On the other hand, a direct measure of the Young’s modulus is obtained with
tensile tests. Three tensile tests are performed on a single30 cm sample at theLaboratoire de Ḿecanique
des Mat́eriaux & Structuresof the University of Liège [44]. A mean Young’s modulusE = 206 GPa
(standard deviation of 1.45 GPa) is found. The first method based on the experimental measurement of the
modal properties of the sample is less accurate than the second one because it relies on the assumptions
and simplifications of the numerical model, for instance regarding the boundary conditions. It provides,
however, an estimate ofE close to the one determined with the tensile tests. In the following, the Young’s
modulus is taken equal to 206 GPa. This value is in agreement with usual values of Young’s modulus of
carbon steels [2].

2.3 Measurement chain

Before going further in the analysis, the main components ofthe measurement chain are described. All
the experimental tests are carried out at theLTAS - Vibrations et Identification des Structures(LTAS-VIS)
laboratory unit of the Department of Aerospace and Mechanical engineering at the University of Liège [41].

The data acquisition and signal processing are carried out using theLMS Test.Lab software and the
LMS SCADAS Mobile andLMS SCADAS Lab acquisition systems [43]. The acquisition systems are shown
in Figs. 2.4 and 2.5. The software provides a complete portfolio of testing solutions. As it will be explained
further, two different tools of the software are used: namely Test.Lab Structures Acquisition for the modal
analysis andTest.Lab Environmental for the structure testing and the first passage time study.

Because the studied structure is very light, it is importantto avoid modifying its mass by adding
accelerometers on it. The response (in terms of velocity) ofthe structure to external excitation is therefore
measured with a laser transducer whose main characteristics are given in Table 2.3. The Polytec laser
transducer is pictured in Figs. 2.6 and 2.7. Reflective stickers are glued at the measurement points to
concentrate the laser beam (Fig. 2.7).
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FIGURE 2.4 -LMS SCADAS Mobile acquisition
system.

FIGURE 2.5 -LMS SCADAS Lab acquisition
system.

Sensitivity 1000 mV/[m/s]
Transducer type MSA-400 OFV-552
Manufacturer Polytec
Serial number 0110716

TABLE 2.3 - Characteristics of the laser transducer.

FIGURE 2.6 - Polytec laser transducer. FIGURE 2.7 - Laser beam of the laser transducer.

In a first approach, an impact hammer is used to excite the structure (Fig. 2.8). This is indeed the sim-
plest way for obtaining the impulse response functions (or equivalently the frequency response functions)
required to identify the modal properties of the structure because it does not require to attach anything to
the structure, which would not be appropriate considering the small weight of the steel strip. Impact testing
with hammer also presents the advantage of requiring a limited and low cost equipment that allows a fast
measurement. However, this technique shows a poor signal-to-noise ratio and the test engineer needs to
get some experience and dexterity to avoid double impacts and ensure a good repeatability of the tests [3].
The hammer includes a force transducer. Its main characteristics are given in Table 2.4. In order to avoid
exciting the nonlinearities, the amplitude of the force applied has to remain relatively small and the heavy
head of the hammer is therefore removed. The impact hammer can be used with two tips of different stiff-
ness: a steel tip and a vinyl one. For the current application, there is no need to excite the structure at very
high frequencies since, in the following, only the first natural frequencies of the structure will be studied.
The vinyl tip, which is softer, is therefore chosen. This choice will be justified more rigorously in the part
of the work related to the experimental modal analysis of thestructure (section 3.1.2).
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Sensitivity 2.23 mV/N
Transducer type 086B03
Manufacturer PCB
Serial number 5856

TABLE 2.4 - Characteristics of the instrumented impact hammer.

FIGURE 2.8 - Impact hammer and force transducer.

In a second step, the structure is excited with electrodynamic vibration exciters (or shakers) that can
apply a wide range of force excitation signals. Two TV 50009 shakers have been selected to excite the
structure (Fig. 2.9). With a rated peak force amplitude of 9 N, they correspond to the smallest model pro-
vided by the TIRA company [45]. Their main characteristics are given in Table 2.5.

Manufacturer TIRA
Rated peak force 9 N
Frequency range 2 - 20000 Hz
Maximal displacement 3 mm

TABLE 2.5 - Characteristics of the shakers.

Sensitivity 23.41 mV/N - 99.0 mV/g
Transducer type 288D01
Manufacturer PCB
Serial numbers 2592 - 2652

TABLE 2.6 - Characteristics of the impedance
heads.

FIGURE 2.9 - Vibration Test System TV 50009 [45]. FIGURE 2.10 - Impedance head.
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In order to apply the forced excitationFw (Fig. 2.2), the first shaker is mounted horizontally close to
the bottom fixation. As explained previously, this allows toavoid any impedance mismatch. In order to
apply the parametric excitationFu, the second shaker is mounted vertically at the bottom of thestructure.
A particular attention should be paid to the mounting of the shakers. The vibration exciters are attached to
the structure under test through a drive rod (the stinger) which has the characteristics of being stiff in the
direction of the excitation and flexible in the other directions. The stinger acts as a mechanical fuse. It is
here an aluminum rod. The horizontal shaker is suspended with two cables at a fixed truss (Fig. 2.11). It
is important to ensure that this shaker and the associated stinger are perfectly horizontal so that the force
transmitted to the structure has only a horizontal component. To ensure this alignment, the shaker is the
last element mounted on the structure. It is also checked that this alignment is preserved when the shaker
acts and that the vibrations of the shaker base remain limited. The vertical shaker is fixed on its trunnion,
which is the bracket that supports the shaker and allows to define with accuracy the position, angle and
alignment of the shaker (Fig. 2.12).

Impedance heads, which combine both a force transducer and an accelerometer in a single housing
(Fig. 2.10), are also added in order to facilitate the measurement of both parameters at a single point
(where the shaker acts). Their main characteristics are given in Table 2.6. These impedance heads are
glued on the structure at the excitation locations and the stingers are directly connected to the impedance
heads. Such a mounting ensures that the transducer providesa reliable measure of the applied force and of
the acceleration of the corresponding point. Impedance heads are always preferred to separate accelerome-
ter and force transducer to measure drive point frequency responses [3]. Besides being more compact, they
are also more accurate since the measurements are done exactly at the same point. Again, alignment is
very important. In case of bad alignment, the impedance headsees loads that are not normal to the surface
and there is a distortion of the actual measured force applied to the structure.

FIGURE 2.11 - Picture of the instrumented
structure.

FIGURE 2.12 - Close-up on the mounting of the
horizontal and vertical shakers.
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PART 3

FINITE ELEMENT MODELING

This third part of the work aims at modeling the experimentalset-up in an accurate way. The field of
research referred to as “modal analysis” in the literature consists in understanding the dynamic behavior
of a structure by identifying its modal parameters (namely the natural frequencies, the damping ratios and
the mode shapes). It provides a powerful way to update a finiteelement model and get a reliable model of
a mechanical structure.

Two different complementary approaches exist in modal analysis, respectively the theoretical and ex-
perimental modal analyses. On the one hand, the theoreticalmodal analysis is related to a direct problem.
It requires a model of the structure. Model uncertainties are inherent to this kind of analysis. On the other
hand, the experimental modal analysis is an inverse problemand requires a prototype. It allows to check
if the finite element model represents the reality in an accurate way and to assess the impact of model
uncertainties. It is important to highlight that modal analysis relies on two assumptions: linearity and time
invariance of the structure. Even if these assumptions are never perfectly met in practice, they are not far
from reality for most mechanical structures.

The flowchart shown in Fig. 3.1 summarizes the basics of the “model updating scheme” followed in
this chapter. The methodology is inspired from the one described in [23]. Starting from a real structure, the
two complementary modal analysis approaches are followed.The theoretical modal analysis of the struc-
ture consists in building a finite element model of the structure that allows to evaluate the modal properties
of the strip. The results of this first study are then used to prepare the experimental measurements. The
experimental modal analysis allows to get a second evaluation of the modal characteristics of the structure.
Then, the results from both the theoretical and experimental modal analyses are compared with each other
and the finite element model is updated in order to obtain a reliable model that reproduces the experimental
results in an accurate way.

This chapter is divided into three main sections. In the firstsection, a model of the non-instrumented
structure is built. In the second section, this model is adapted to take into account the interaction of the
shakers with the structure. The methodology summarized in Fig. 3.1 is followed in these two sections. The
last section shortly highlights the nonlinear behavior that the structure may experimentally exhibit when
subjected to high amplitude excitations.
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FIGURE 3.1 - Model updating scheme.

3.1 Modal analysis of the non-instrumented structure

The objective of this section is to obtain a reliable model describing the dynamics of the non-instrumented
structure (without the shakers). Following the methodology summarized in Fig. 3.1, this section is divided
in three parts. The first and second parts are respectively devoted to the theoretical and experimental modal
analyses of the structure. In the third part, the results of the theoretical and the experimental modal analyses
are compared and used to update the finite element model. Results of this section are also reported in [12].

3.1.1 Theoretical modal analysis

In this first section, finite element models of the structure are built in MATLAB andSAMCEF Field. These
models are used to get a first estimate of the natural frequencies and mode shapes of the structure.

The structure is modeled inMATLAB using Bernoulli beam elements. The strip is divided into constant
size elements. The mass and stiffness matricesM andK are obtained by assembling the corresponding
elementary matrices. It should be noted that the stiffness matrix is composed of two parts: a geometrical
stiffness matrixKprestress,initis added to the usual linear stiffness matrixK0 to take into account the in-
creased stiffness induced by the pre-stress mass. The elementary matrices used in the implementation of
the finite element model can be found in [16]. The strip is assumed to be perfectly clamped at its top end.
At the bottom, a lateral guide allows the strip to move only inthe verticalx direction (Fig. 2.2).
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A similar model is built inSAMCEF Field without the assumptions behind Bernoulli elements.

These two finite element models are used to compute the first seven natural frequencies of the strip.
These frequencies are listed in Table 3.1. Both models use 50elements of 1 cm length. It is checked fur-
ther that this discretization is sufficient to capture the dynamics of the problem. The results obtained with
the two models are in good agreement, which gives confidence in theMATLAB model and in the way in
which pre-stress is taken into account. The results also confirm that Bernoulli elements are appropriate for
representing the dynamics of the strip. The relative errorsbetween the frequencies computed with the two
models can be partially ascribed to the different treatments of shear deflection in the two approaches. The
maximal relative error is indeed obtained with the fifth modewhich is, as shown below, the first torsion
mode of the structure.

Frequency [Hz] Frequency [Hz] Relative error
MATLAB SAMCEF Field [%]

Mode 1 18.36 18.34 0.08
Mode 2 39.71 39.75 0.10
Mode 3 65.93 65.94 0.03
Mode 4 98.16 98.17 0.02
Mode 5 101.94 102.61 0.65
Mode 6 137.01 137.02 0.01
Mode 7 182.81 182.82 0.01

TABLE 3.1 - Eigenfrequencies obtained with the initial finite element model (50 elements).

The corresponding mode shapes (obtained with theMATLAB model) are represented in Fig. 3.2. The
modes obtained with theSAMCEF Field model (not shown) are similar. The higher the natural frequency,
the more complex the form of the mode shape. The fifth mode is a torsion mode around thex-axis while the
six other modes are the successive bending modes around they-axis. Those are the usual low-frequency
modes for a beam. From now, the bending mode shapes are normalized with a unit infinity norm (i.e. with
a unit maximal displacement). This choice will allow an easyphysical interpretation of the results.

In the absence of accurate information about damping, the damping ratios corresponding to the identi-
fied modes are not estimated with the finite element model. Only the experimental measurements described
in the next section can provide reliable information on thisissue.

Before further analyzing the structure, it is checked that the finite element discretization is sufficient to
capture the dynamics of the strip up to its seventh mode. Fig.3.3 shows the eigenfrequencies computed
with the MATLAB model using different numbers of elements. The results are normalized by the eigen-
frequencies computed with 50 elements, as listed in Table 3.1. Although the torsion frequency (mode 5)
converges slightly more slowly, it can be checked that the different eigenfrequencies do not significantly
change when the number of elements is increased beyond 50,i.e. for elements of length smaller than 1 cm.
This finite element resolution is therefore considered as appropriate.

Some easy checks can be performed to give confidence in the theoretical modal analysis of the strip.
They are based on the comparison of some numerical results with the corresponding analytical results
available in the literature.
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(a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.

(e) Mode 5. (f) Mode 6.

(g) Mode 7.

FIGURE 3.2 - The seven first modes of vibration obtained inMATLAB with the initial finite element model.
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FIGURE 3.3 - Check of the convergence of the initial finite element model. Natural frequencies
normalized by the frequencies computed with 50 elements as afunction of the number of elements.

First, it is checked that, when the forces associated with the tension in the beam become much greater
than the beam stiffness, the natural frequencies approach those of a straight tensioned cable. The natural
frequenciesfi of a straight cable (with zero mean deflection) are given by

fi =
i

2L

(

T0

m

)1/2

, i ∈ N0, (3.1)

whereL is the cable length,m its mass per unit length andT0 the tension in the cable [11]. Table 3.2
compares the natural frequencies obtained with theMATLAB finite element analysis when the stiffness of
the structure is ignored with the analytical frequencies predicted by formula (3.1) for a tensioned cable.
The very small differences between the two sets of results give confidence in theMATLAB finite element
model.

Frequency [Hz] Frequency [Hz]
MATLAB Analytical

Cable mode 1 15.12 15.11
Cable mode 2 30.24 30.23
Cable mode 3 45.37 45.34
Cable mode 4 60.48 60.46
Cable mode 5 75.61 75.58

TABLE 3.2 - Eigenfrequencies obtained with theMATLAB finite element model when the stiffness is
ignored and analytical eigenfrequencies of a straight tensioned cable.
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Then, the numerical eigenfrequencies of the structure in the absence of pre-stress can be compared
with theoretical analytical results available in the literature. The bookFormulas for Natural Frequency
and Mode Shapeby Blevins provides a review of analytical formulas and principles on the vibration of
structures and fluid systems [6]. The natural frequencies inbending fi of a single span straight beam are
given by

fi =
λ2

i

2πL2

(

EI
m

)1/2

, (3.2)

whereL is the beam length,E is its Young’s modulus,I is the area moment of inertia of the beam about its
neutral axis andm is the mass per unit length of the beam. The coefficientsλi appearing in this formula
depend on the boundary conditions. They are listed in Table 3.3 for a clamped-clamped beam. A nearly
perfect agreement is observed between the eigenfrequencies provided by (3.2) and the bending natural fre-
quencies obtained with the finite element model for a zero mass pre-stress (Table 3.4). Note however that
torsion modes are not considered in (3.2).

i 1 2 3 4 5 > 6

λi 4.73004074 7.85320462 10.9956078 14.1371655 17.2787597(2i +1)π/2

TABLE 3.3 - Coefficientsλi of (3.2) for the eigenfrequencies of a single span straight beam for
clamped-clamped boundary conditions [6].

Frequency [Hz] Frequency [Hz]
MATLAB Analytical

Bending mode 1 8.4364 8.4365
Bending mode 2 23.2554 23.2554
Bending mode 3 45.5900 45.5899
Bending mode 4 75.3626 75.3625
Bending mode 5 112.5786 112.5785

TABLE 3.4 - Eigenfrequencies obtained with theMATLAB finite element model with zero pre-stress of the
structure and analytical eigenfrequencies of a single spanstraight beam.

Eventually, the natural frequencies of the pre-stressed strip can be compared with the analytical so-
lutions provided by [6]. Tensile loads applied to beams increase their natural frequencies. Conversely,
compressive loads decrease the natural frequencies. The natural frequenciesfi of a beam supporting a
uniform axial loadP differ from the natural frequencies in the absence of axial load fi |P=0 according to

fi = fi|P=0

(

1+
P
|Pb|

λ2
1

λ2
i

)1/2

, (3.3)

where the coefficientsλi are found in Table 3.3 for clamped-clamped boundary conditions andPb is the
critical buckling load of the structure which is given by

Pb =
n2π2EI

L2 , (3.4)

where the coefficientn2 depends on the boundary conditions and equals 4 for clamped-clamped boundary
conditions.
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The eigenfrequencies obtained numerically are compared with the analytical frequencies in Table 3.5.
The two results differ by about 4 to 9%. These differences canbe partially ascribed to the fact that the strip
is not clamped at its two ends; its lower end can move in the vertical direction.

Frequency [Hz] Frequency [Hz] Relative error
MATLAB Analytical [%]

Bending mode 1 18.36 19.10 3.9
Bending mode 2 39.71 36.74 8.1
Bending mode 3 65.93 60.54 8.9
Bending mode 4 98.16 91.11 7.7
Bending mode 5 137.01 128.80 6.4
Bending mode 6 182.81 173.76 5.2

TABLE 3.5 - Eigenfrequencies obtained with theMATLAB finite element model and analytical
eigenfrequencies of a pre-stressed single span beam clamped at its extremities.

3.1.2 Experimental modal analysis

This section describes the methodology and the main resultsof the experimental modal analysis of the
physical prototype of the structure. First, the measurement process and the signal processing parameters
are described and justified. Then, a preliminary data acquisition is performed in order to get a first estimate
of the modal parameters of the strip. Eventually, a more detailed data acquisition is carried out and the
modal parameters of the structure are identified.

Measurement process

The simplest way to perform the experimental modal analysisof the structure is to excite it with an impact
hammer and to analyze the response of the structure to impacts. This is indeed a simple way of obtaining
the impulse response functions required to identify the modal parameters of the structure because it does
not require to attach anything to the structure. More information about the impact hammer and its use are
given in section 2.3 dedicated to the description of the measurement chain.

The data acquisition and signal processing are carried out using theLMS Test.Lab software and the
LMS SCADAS Mobile acquisition system. The toolImpact Testing of the Test.Lab Structures Acquisition
module is chosen to perform the modal analysis with an impacthammer [43]. This module is particularly
well suited for the current application and shows a wide range of capabilities, from the definition of the
acquisition parameters to the detection of unusual circumstances, such as double hammer hits, to avoid
incorrect measurements.

The finite element analysis performed in the previous section can be used to prepare the measurement
process. In order to correctly represent the dynamics of thefirst six bending modes identified in Fig. 3.2,
9 equally spaced points on the central fiber of the strip are considered (Fig. 3.4). These points are denoted
by P1 to P9 in this report. Because of its lightness, the structure is very responsive to hammer impacts.
In order to avoid any overloading of the channels, the structure is only excited at the point closest to the
bottom fixation (point P9 in Fig. 3.4). The laser transducer is used to measure the response at the different
points P1 to P8. A roving accelerometer technique is used to measure a row of the frequency response
functions matrix. As shown below, some measurements of the response at points located outside the neu-
tral fiber are also performed to identify the torsion mode.

33



1.0 cm

6.0 cm

1.1 cm

P9

P8

P7

P6

P5

P4

P3

P2

P1

FIGURE 3.4 - Excitation and measurement points.

Selection of the appropriate bandwidth for the test and selection of the hammer tip are two very im-
portant factors that have to be considered at the beginning of the process [3]. All the modes of interest
identified with the theoretical modal analysis have frequencies below 200 Hz. As justified in detail further,
a bandwidth offmax = 400 Hz is selected in order to avoid errors below 200 Hz due to the anti-aliasing
filter. In order to reach an accuracy close to 0.1 Hz on the frequencies,N = 4096 spectral lines are consid-
ered. This gives an acquisition time of 10.24 s.

On the one hand, if the tip is too soft with respect to the selected bandwidth, the power spectral density
drops before the end of the frequency band so that the highestfrequencies are not excited. This leads to
bad coherence and wrong frequency response functions in that region. On the other hand, when a too hard
tip is selected, the power spectral density is very flat on thewhole frequency band, but the actual excited
frequency range may be well beyond the selected bandwidth for the measurement. Actually, some of the
data acquisition range will be used for the energy of the modes excited outside the desired bandwidth and
will have a detrimental effect on the measurement. Only a small fraction of the total energy measured is
associated with the bandwidth of interest. This results in aquantization problem in the analog-to-digital
converter. The power spectral density of a typical impact with the vinyl tip is represented in Fig. 3.5(a) on
the frequency band [0 ; 400 Hz] and in Fig. 3.5(b) on the frequency band [0 ; 1600 Hz] (4 times the band-
width). These figures confirm that the chosen tip is appropriate. The power spectral density appears to be
sufficiently smooth on [0 ; 400 Hz] and the roll off is sufficient beyond 400 Hz so that higher frequencies
are not excited.

When processing the signal, two types of errors may appear: variance and bias errors [15]. Variance
errors are due to the discrepancy between the mean of each sample and the mean of the ensemble. Such
errors can be reduced by averaging a sufficiently large number of samples. To achieve a good compromise
between the acquisition time and the accuracy of the measurements, the average between three successive
tests is made. Bias errors can be separated into aliasing andleakage errors.
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(a) On the bandwidth. (b) On 4 times the bandwidth.

FIGURE 3.5 - Power spectral density of a typical impact force performed with the vinyl tip.

TheLMS Test.Lab software sets the sampling frequencyfs at a sufficiently high value to avoid alias-
ing [43]. TheLMS SCADAS Mobile acquisition system has a built-in anti-aliasing filter. This filter is
however not ideal and the last 20% of the frequency band have to be treated with care. This justifies a
posteriori the choice of the frequency band that is sufficiently wider than the band of interest.

In order to reduce leakage errors, windowing techniques areapplied to the excitation and the response
signals. These windows force the signal to vanish at the end of the observation time and, therefore, filter out
otherwise unavoidable noise components at the end of the signal. The forms of the windows are adapted
to the forms of the signal in order to limit its distortion: a rectangular window is chosen for the impact
and an exponential one for the response (The response to impacts has the form of the damped exponential
response of all the modes excited by the input.). The observation time must be long enough to ensure that
the response decreases sufficiently and that the window doesnot distort too much the time measured data.
The optimum parameters defining the windows are set by theLMS Test.Lab software by analyzing and
averaging several successive impacts [43].

Potential quantization problems must also be addressed [3]. Quantization refers to the accuracy with
which the amplitude of an analog signal is digitized. If sufficient resolution is not available, the signal will
be distorted. The voltage ranges for each channel must be setto appropriate values so that the analog-
to-digital converter is optimized. The acquisition systemis used to autorange the response levels. The
overload reject switch is turned on so that overloaded measurements are not accepted.

In order to correctly capture the impacts, two quantities have to be defined: the trigger level and the
pretrigger. Those are automatically defined by theLMS Test.Lab software by analyzing and averaging
several impacts [43]. The acquisition is triggered when thesignal on the hammer channel exceeds the
trigger level, which is 0.1 N here. The pretrigger determines the time prior to the trigger condition that will
be included in the acquisition. It is given by 0.1 s in the considered experimental set-up and avoids losing
part of the impact in the acquisition.
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Preliminary data acquisition

Before embarking upon the complete modal analysis of the strip, the analysis of the response of the struc-
ture to a single impact is used to provide a first estimate of the natural frequencies and damping ratios.
As explained previously, the structure is triggered at point P9 (Fig. 3.4). The measurement point must be
carefully chosen in order to detect all the modes identified with the finite element method. It is therefore
important that this point does not coincide with a vibrationnode of any bending mode. The point P2 meets
this condition and is therefore selected.

The measured frequency response function and its coherencefunction are represented in Fig. 3.6. The
coherence function is a good indicator of the accuracy and the repeatability of the performed impacts [23].
The values close to 1 taken by the coherence function in the whole range of interest indicate that the noise in
the measured signals is limited and that the three successive impacts are performed with enough accuracy
at the same location. As expected, the coherence function drops at low frequency and at the anti-resonance
frequencies. This is not a problem since the output is very small at these locations.

FIGURE 3.6 - Frequency response function and coherence function corresponding to an excitation at point
P9 and the measurement of the response at point P2.

The measured frequency response function plotted in Fig. 3.6 provides a quick way of determining the
number of modes in a given frequency band [15]. It allows to highlight the resonance peaks of the struc-
ture and, therefore, to identify the resonance frequencies. Six modes can be clearly seen between 0 and
200 Hz. They correspond to the six bending modes identified with the finite element model. The natural
frequencies obtained by this analysis of the experimental data are given in Table 3.6.
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Frequency [Hz]

Bending mode 1 17.9
Bending mode 2 38.3
Bending mode 3 63.7
Bending mode 4 94.7
Bending mode 5 132.4
Bending mode 6 175.5

TABLE 3.6 - Eigenfrequencies identified with the frequency response function plotted in Fig. 3.6.

This preliminary data acquisition can also provide estimates of the damping ratios associated to the
different modes. Two single-degree-of-freedom methods are implemented inMATLAB: the peak-picking
method and the circle-fit method. These two methods work in the frequency domain. Single-degree-of-
freedom modal analysis methods may be applied when the modesare well separated in frequencies and can
therefore be analyzed separately by focusing on a given frequency band. The accuracy of the peak-picking
method and the circle-fitting method depends on the number ofpoints that describe the resonance peak.
These methods are used here to estimate the damping ratio of the fifth bending mode. Similar results can
be obtained for the other modes of the structure.

The peak-picking method is illustrated in Fig. 3.7 [23]. In this figure, the peak corresponding to the
fifth bending mode is isolated. The Bode plot of the frequencyresponse function amplitude is used to
detect the maximum response and the half-power points. The modal damping is evaluated by

ε ≃ ∆ f
2 f

, (3.5)

where∆ f is the frequency bandwidth between the half-power points and f is the natural frequency of the
mode (Fig. 3.7). A damping ratio of 0.09% is found.

FIGURE 3.7 - Peak-picking method (fifth bending
mode).

FIGURE 3.8 - Circle-fit method (fifth bending
mode).
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The circle-fit method is illustrated in Fig. 3.8. It is based on the circular nature of the Nyquist plot
of the frequency response function when viscous damping is assumed and when the frequency response
function is expressed in its mobility form [23]. The modal damping associated to modek can be expressed
by

εk =
f 2
a − f 2

b

2 fk[ fa tan(θa/2)+ fb tan(θb/2)]
, (3.6)

where fk is the natural frequency of the mode,fa/ fb are frequencies close tofk around the circle andθa/θb

are the corresponding angles measured with respect to the radius of the circle associated to the resonance
frequency. An example of these parameters is shown in Fig. 3.8. The mean value of the differentεk com-
puted with different values forfa and fb is equal to 0.096% and is therefore in good agreement with the
result of the peak-picking method.

In order to check the linearity of the behavior of the structure, a second test is performed by switching
the excitation and the measurement points. The structure istherefore excited at point P2 and the response
is measured at point P9. Notice that the point P2 is also sufficiently close to the top fixation of the strip
to avoid overloading of the channels (Fig. 3.4). The norms ofthe two frequency response functions are
plotted in Fig. 3.9. The curves are in good agreement except at low frequencies where the data are noisy,
as already shown by the coherence function in Fig. 3.6. Fig. 3.9 shows that the reciprocity principle is
verified and that the assumption of linearity is therefore justified.

FIGURE 3.9 - Frequency response functions corresponding to an excitation at point P9 (resp. P2) and the
measure of the response at point P2 (resp. P9). Illustrationof the reciprocity principle.

Before moving to the more detailed data acquisition, it should be noted that the structure has also been
excited at other points and that the response has been measured at other points to check that no mode is
missed in this preliminary study. Also, this preliminary data acquisition has been repeated several times
on several days characterized by different ambient conditions. The frequency response functions appear
to be invariant with respect to these conditions. The systemcan therefore hopefully be considered as
time-invariant.

Identification process

A more detailed data acquisition is performed on the strip. The structure is excited at point P9 (Fig. 3.4)
and the response is successively measured at each of the other points. The values given to the various pa-
rameters used for the acquisition have already been given and justified previously. Using the measurement
data, it is then possible to extract the modal parameters of the structure. The natural frequenciesfr and
damping ratiosεr are obtained using theLeast Square Complex Exponential(LSCE) method. The mode
shapeszr are computed with theLeast Square Frequency Domain(LSFD) method.
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The LSCE method, introduced in 1979 by Brown et al. [7], worksin the time domain and requires ex-
perimental measurements in the form of impulse response functions (IRF). The impulse response functions
are not directly given by theLMS Test.Lab software but are easily obtained by taking the inverse Fourier
transforms of the transfer functions.

An important issue of many identification techniques is the selection of the model order. The stabiliza-
tion diagram allows to differentiate between real and spurious modes. In Fig. 3.10, a mode is considered as
“stabilized in frequency” (green marker) if its frequency differs by less than 0.1 Hz from a mode identified
with the previous order. A mode is considered as “stabilizedin frequency and damping” (blue marker) if
it is stabilized in frequency and if its damping ratio differs by less than 0.01% from the mode identified at
this frequency at the previous order. If the mode is not stabilized in frequency, it is classified as “unstabi-
lized” and represented by a red marker. The six modes corresponding to the peaks of the mean frequency
response function (represented in gray in the figure) are clearly identified.

FIGURE 3.10 - Stabilization diagram of the LSCE method applied to the non-instrumented structure. The
gray curve represents a reference frequency response function.

The eigenfrequencies and damping ratios obtained by identification with the LSCE method are given in
Table 3.7. It should be noted that identification methods arealso directly implemented in theLMS Test.Lab
software. In particular, thePolyreference Least-Squares Complex Frequency-Domain(PolyMAX) method
is a general purpose method for strongly and weakly damped structures that provides very clear stabiliza-
tion diagrams [27]. It was introduced as an alternative to LSCE and allows to work directly on the fre-
quency response functions to identify the natural frequencies and damping ratios. The natural frequencies
and damping ratios obtained with the PolyMAX method are alsolisted in Table 3.7. A good agreement is
observed between the two sets of results and gives confidencein theMATLAB implementation of the LSCE
method. This table shows that the damping in the structure isreally light. The fourth and sixth bending
modes have a modal damping larger than the other modes. Theseresults can be compared with the results
of the preliminary data acquisition. The natural frequencies identified with the single frequency response
function measured (Fig. 3.6) are close to the frequencies ofthe table. Moreover, it can also be checked
that the valueε = 0.09−0.10% obtained for the fifth bending mode with the peak-pickingmethod and the
circle-fit method is a good estimate of the damping ratio.

39



Frequency [Hz] Frequency [Hz] Damping ratio [%] Damping ratio [%]
LSCE PolyMAX LSCE PolyMAX

Bending mode 1 17.8 17.8 0.06 0.06
Bending mode 2 38.5 38.4 0.03 0.05
Bending mode 3 63.8 63.7 0.08 0.06
Bending mode 4 94.7 94.8 0.20 0.20
Bending mode 5 132.5 132.5 0.08 0.10
Bending mode 6 175.9 176.2 0.21 0.25

TABLE 3.7 - Comparison of the eigenfrequencies and damping ratiosobtained with the LSCE method
implemented inMATLAB and the PolyMAX method implemented in theLMS Test.Lab software.

The companion method LSFD is implemented to identify the mode shapes of the structure. Unlike the
LSCE method, the LSFD method works in the frequency domain [23]. This method takes advantage of
the previous knowledge of the natural frequencies and damping ratios identified with the LSCE method
(Table 3.7). The modes extracted with this method are complex. However, because the identified damping
ratios are small, one can expect that the different degrees of freedom of the structure vibrate in phase.
The complexity of the mode shapes is assessed with the Arganddiagram. Fig. 3.11 represents the Argand
diagrams of the six bending modes identified with the LSFD method. It is checked that all the nodes of
the structure vibrate in phase in the different mode shapes.The real bending modes extracted from the
complex ones are shown in Fig. 3.12.

Different tools are commonly used in industry in order to check that the modes are physical and, there-
fore, that the order is correctly selected [43]. The first check is provided by a visual inspection of the
modes. At low frequencies, the simplest modes must be observed. This is the case here: the first modes
identified correspond to the usual first bending modes of a beam. Then, the different mode shapes must be
independent. This is checked with the auto-MAC matrix represented in Fig. 3.13. Because all the out-of-
diagonal terms are close to 0, the modes are indeed independent.

To end this experimental part, an estimate of the first torsion natural frequency is obtained by measuring
the response at several points that are not located on the neutral fiber of the strip. A value off = 101.4 Hz
is found.

3.1.3 Model updating

At this stage of the study, two sets of modal parameters are available. On the one hand, estimates of the
natural frequencies and mode shapes of the strip have been obtained in section 3.1.1 based on finite ele-
ment models. On the other hand, a second set of modal parameters (natural frequencies, damping ratios
and mode shapes) comes from the experimental modal analysisperformed in section 3.1.2. In the first
part of this section, the two sets of modal parameters are compared. Then, the finite element is updated in
order to reduce the discrepancies between the results of thetheoretical and experimental modal analyses,
in agreement with the methodology set in Fig. 3.1.

The results obtained with theMATLAB finite element model and with the experimental modal analysis
are summarized in Table 3.8. The natural frequencies obtained with the initial finite element models sys-
tematically overestimate the corresponding natural frequencies identified with the experimental analysis
by 3-4% for the bending modes, which leaves room for improvement.
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(a) Bending mode 1. (b) Bending mode 2. (c) Bending mode 3.

(d) Bending mode 4. (e) Bending mode 5. (f) Bending mode 6.

FIGURE 3.11 - Argand diagrams of the six first bending modes identified experimentally on the
non-instrumented structure.

Frequency [Hz] Frequency [Hz] Relative error
TMA EMA [%]

Bending mode 1 18.4 17.8 3.1
Bending mode 2 39.7 38.5 3.1
Bending mode 3 65.9 63.8 3.3
Bending mode 4 98.2 94.7 3.7
Torsion mode 1 101.9 101.4 0.4
Bending mode 5 137.0 132.5 3.4
Bending mode 6 182.8 175.9 3.9

TABLE 3.8 - Comparison of the eigenfrequencies obtained from theoretical (TMA, initial model) and
experimental (EMA, non-instrumented structure) modal analyses.
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(a) Bending mode 1. (b) Bending mode 2.

(c) Bending mode 3. (d) Bending mode 4.

(e) Bending mode 5. (f) Bending mode 6.

FIGURE 3.12 - The six first bending modes of the non-instrumented structure identified with the LSFD
method (in red) compared to the modes obtained with the initial finite element model (in blue).

Visually, the two sets of mode shapes are in good agreement (Fig. 3.12). They correspond to the
successive bending modes of the strip. The Modal Assurance Criterion (MAC) can be used to quantify the
correlation between the two sets of modes [1]. The MAC computed between modei of the first familyψ1

(i)

and modej of the secondψ2
( j) is given by

MAC(ψ1
(i),ψ

2
( j)) =





ψ1
(i)

Tψ2
( j)

||ψ2
( j)|| ·||ψ2

( j)||





2

. (3.7)

The MAC matrix based on the two sets of modes available is represented in Fig. 3.16. The close-to-one
values of its diagonal elements and the negligible values ofits out-of-diagonal elements confirm the very
good correlation reported above.
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FIGURE 3.13 - Auto-MAC matrix of the
experimental bending modes identified with the

LSFD method (non-instrumented structure).

FIGURE 3.14 - MAC matrix between the
numerical modes (initial model) and the

experimental modes (non-instrumented structure).

Despite the high correlation between the mode shapes, a model updating can be carried out to reduce
the relative errors between the natural frequencies.

The imperfect agreement can result from a bad experimental analysis or from modeling errors and
uncertainties. It has been shown in the previous section that the measurement process is performed in a
rigorous way and that the choice of the measurement coordinates is justified. Moreover, the modal iden-
tification gives the same results as the PolyMAX identification method implemented directly in theLMS
Test.Lab software. It is therefore argued that it is the finite elementmodeling of the structure that must be
improved.

While errors can be introduced by the discretization process, it was shown in section 3.1.1 that the
number of finite elements used in the numerical models is sufficient to capture the dynamics of the prob-
lem. Refining the mesh does not lead to any significant change in the natural frequencies.

The errors can be related to the assumptions about the physics of the model. Here, the natural fre-
quencies obtained with the model are slightly higher than the experimental ones. The model is therefore
more rigid than the real structure. This can result from the choice of the boundary conditions in the initial
model. Perfect clamping is a mathematical idealization that never exists in practice. It is impossible to
completely prevent any rotation about they-axis at the fixations of the strip (Fig. 2.2). The finite element
model is therefore corrected by introducing a stiffness in rotation about they-axis at both ends of the strip.
To simplify the analysis, the stiffness coefficient is supposed to be the same on both sides. The rigidity
of the clamping is determined in such a way that it minimizes the error (in a least-square sense) between
the natural frequencies obtained with the numerical and experimental modal analyses. Fig. 3.15 shows the
global error as a function of the stiffness in rotationk. An optimum value ofk= 3.83 Nm/rad is found.

Table 3.9 shows the natural frequencies computed after updating of the finite element model,i.e. after
modification of the boundary conditions. These frequenciescan be compared with the experimental fre-
quencies and show now relative errors less than 0.2%.
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FIGURE 3.15 - Global error on the natural
frequencies as a function of the stiffness in rotation

and determination of the optimum value.

FIGURE 3.16 - MAC matrix between the numerical
modes (updated model) and the experimental

modes (non-instrumented structure).

Frequency [Hz] Frequency [Hz] Relative error
TMA EMA [%]

Bending mode 1 17.8 17.8 0.1
Bending mode 2 38.5 38.5 0.1
Bending mode 3 63.7 63.8 0.1
Bending mode 4 94.8 94.7 0.1
Torsion mode 1 101.9 101.4 0.4
Bending mode 5 132.2 132.5 0.2
Bending mode 6 176.3 175.9 0.2

TABLE 3.9 - Comparison of the eigenfrequencies obtained from theoretical (TMA, updated model) and
experimental (EMA) modal analyses of the non-instrumented structure.

One can also check in Fig. 3.16 that the adjustment of the model does not have any detrimental effect
on the correlation between the numerical and experimental mode shapes. The out-of-diagonal terms are
really close to 0 while the diagonal terms vary between 0.96 and 0.99.

3.2 Modal analysis of the instrumented structure

While the model derived above provides an accurate description of the dynamics of the strip itself, the
shakers mounted on it have a non-negligible influence on the dynamics and require therefore to modify
the model. The objective of this section is to obtain a reliable model describing the dynamics of the
structure when both the horizontal and vertical shakers aremounted on it. The first part is devoted to
the experimental modal analysis of the structure. In the second part, in agreement with the methodology
summarized in Fig. 3.1, the finite element model of the non-instrumented structure is updated to take into
account the influence of the shakers on the dynamics of the structure. The last part describes how damping
is added into the finite element model.
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3.2.1 Experimental modal analysis

The experimental modal analysis is carried out by exciting the structure with the horizontal shaker. As
explained previously, the horizontal shaker is located near the bottom fixation. The point of excitation is
chosen in such a way that all the modes previously identified are excited. The vertical shaker is not exciting
the structure but is mounted on it in such a way that its interaction with the structure is taken into account.
The toolSpectral Testing of the moduleTest.Lab Structures Acquisition allows to control the excitation of
the shaker. A white noise defined on the complete acquisitionbandwidth is selected. The same acquisition
parameters as before are chosen and a free run trigger is selected. As it is usually done for random signals,
Hanning windows are used on both the excitation and the response to limit leakage problems [3].

The excitation levels for modal testing are usually very low. There is no need to provide large force
levels for conducting a modal test, especially if appropriate response transducers with good sensitivity are
selected. Large forces can excite nonlinear characteristics, which has to be avoided in the context of linear
modal analysis.

Fig. 3.17 shows the frequency response function measured with the impedance head at point P9 where
the horizontal shaker acts. As expected at drive points, theresonances are separated by anti-resonances.

FIGURE 3.17 - Frequency response function measured at the drive point P9.

The identification of the natural frequencies, damping ratios and mode shapes is performed with the
Stochastic Subspace Identification(SSI) method. This method directly works on the recorded time sig-
nals [34]. The stabilization diagram represented in Fig. 3.18 allows to distinguish real modes from spurious
ones. A mode is considered as stabilized in frequency if its frequency differs by less than 0.1 Hz from a
mode identified at the previous order. A mode is considered asstabilized in damping if its damping ratio
differs by less than 0.01% from the damping ratio of the mode identified at this frequency at the previous
order. A mode is considered as stabilized in mode shape if themodal assurance criterion (MAC) between
the mode and a mode identified at the previous order is larger than 0.95.

The eigenfrequencies and damping ratios obtained by identification with the SSI method are given in
Table 3.10. The results are compared with those obtained with the PolyMAX method implemented inLMS
Test.Lab.

3.2.2 Model updating

Table 3.11 summarizes the natural frequencies obtained with theMATLAB finite element model and those
identified experimentally. The relative errors greater than 10% observed for the last bending modes are
clearly not acceptable. The interaction of the shaker with the structure has to be taken into account.
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FIGURE 3.18 - Stabilization diagram of the SSI method applied to theinstrumented structure. The gray
curve represents a reference frequency response function.

Frequency [Hz] Frequency [Hz] Damping ratio [%] Damping ratio [%]
SSI PolyMAX SSI PolyMAX

Bending mode 1 18.4 18.6 0.61 0.63
Bending mode 2 38.9 38.9 0.17 0.18
Bending mode 3 64.7 64.6 0.62 0.60
Bending mode 4 94.1 94.4 1.09 1.10
Bending mode 5 118.1 118.8 2.81 2.99
Bending mode 6 145.8 144.8 0.35 0.39

TABLE 3.10 - Comparison of the eigenfrequencies and damping ratios of the instrumented structure
obtained with the SSI method implemented inMATLAB and the PolyMAX method implemented in the

LMS Test.Lab software.

Frequency [Hz] Frequency [Hz] Relative error
TMA EMA [%]

Bending mode 1 17.8 18.4 4.3
Bending mode 2 38.5 38.9 1.0
Bending mode 3 63.7 64.7 1.5
Bending mode 4 94.8 94.1 0.4
Torsion mode 1 101.9 101.2 0.7
Bending mode 5 132.2 118.1 12.2
Bending mode 6 176.3 145.8 21.7

TABLE 3.11 - Comparison of the eigenfrequencies obtained from theoretical (TMA, non-instrumented
structure) and experimental (EMA, instrumented structure) modal analyses.
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The horizontal shaker, the stinger and the impedance head glued to the strip (Fig. 3.19) are modeled
by a spring-mass system. This equivalent system is represented in Fig. 3.20. The values of the masses and
stiffness coefficients used in the model are given in Table 3.12.

FIGURE 3.19 - Horizontal shaker picture.

mshaker

mmoving mhead

kstinger

ksuspension

FIGURE 3.20 - Horizontal shaker modeling.

Parameter Symbol Value Units

Shaker mass mshaker 1.7 kg
Moving mass mmoving 15 g
Impedance head massmhead 30 g
Suspension stiffness ksuspension 4.0·103 N/m
Stinger stiffness kstinger 4.5·106 N/m

TABLE 3.12 - Equivalent parameters of the spring-mass system modeling the horizontal shaker.

The influence of the impedance head is modeled by adding a concentrated massmhead(equal to the mass
of the impedance head) at the point where the horizontal shaker acts. The aluminum stinger connecting the
shaker to the strip is replaced by a spring of stiffness coefficient

kstinger=

(

EA
L

)

stinger
, (3.8)

whereEstinger is the Young’s modulus of the rod,Astinger its cross section area andLstinger its length. The
values of these three parameters are given in Table 3.13.

Parameter Symbol Value Units

Young’s modulus Estinger 70 GPa
Cross section areaAstinger 3.1 mm2

Length Lstinger 4.9 cm

TABLE 3.13 - Mechanical and geometrical properties of the aluminum stinger.
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The shaker itself is modeled by two masses connected by a spring. The massmshakerrepresents the
main body of the shaker and the massmmoving corresponds to the small moving mass. The springksuspension

represents the moving mass suspension. The values of these three parameters are given in the technical
sheet of the TIRA shaker [45].

This modification of the finite element model allows to betterrepresent the first modes of the structure.
The relative error on the higher natural frequencies is however of the order of 5% and the model still needs
to be updated. The impedance head glued to the structure where the horizontal shaker acts prevents the strip
from deforming and exhibiting significant curvature in thisbottom region near the clamping (Fig. 3.21).
Because the modes shapes characterized by a high curvature in this region are precisely the high frequency
bending modes (Fig. 3.2), it is not surprising that the numerical model does not predict these natural
frequencies with high accuracy. To reduce the errors, the stiffness of the two elements of the finite element
model in contact with the impedance head is increased artificially. The increase in stiffness is determined
to minimize the errors on the first height natural frequencies of the structure in a least square sense. The
elementary stiffness matrices of the two elements are increased by 2%. It has also been checked that the
number of elements near the clamping of the strip is sufficient to represent the boundary layer.

FIGURE 3.21 - Close-up on the impedance head/structure interaction.

This numerical model update allows to considerably reduce the errors on the natural frequencies. Ta-
ble 3.14 summarizes the natural frequencies provided with the finite element model and with the experi-
mental modal analysis. The relative errors are now acceptable.

Frequency [Hz] Frequency [Hz] Relative error
TMA EMA [%]

Bending mode 1 18.3 18.4 0.7
Bending mode 2 39.3 38.9 1.2
Bending mode 3 64.6 64.7 0.1
Bending mode 4 92.8 94.1 1.3
Torsion mode 1 102.0 101.2 0.7
Bending mode 5 116.8 118.1 1.1
Bending mode 6 147.2 145.8 0.9

TABLE 3.14 - Comparison of the eigenfrequencies obtained from theoretical (TMA, updated model) and
experimental (EMA) modal analyses of the instrumented structure.
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With respect to the theoretical modal analysis conducted onthe non-instrumented structure, a new
mode appears at low frequency. This mode is a deformation mode of the mass-spring system added to
model the horizontal shaker. This is not a bending mode of thestructure but a deformation mode of the
shaker itself that will not be studied in the following and isnot represented. The finite element bending
modes are shown in Fig. 3.22 where the position of the horizontal shaker is indicated with a red marker.

Regarding the mode shapes, the MAC matrix is represented in Fig. 3.23. A good correlation is observed
between the bending modes obtained numerically and experimentally for all the modes, except around the
fifth bending mode. It was already observed in Fig. 3.18 that the frequency response function at this fre-
quency is noisy. The coherence also drops on this frequency band. Moreover, a very high damping ratio of
nearly 3% has been identified (Table 3.10). When exciting thestructure around 118 Hz, it is observed (and
heard) that the mechanical slider of the pre-stress mass shown in Fig. 2.12 seems to enter in resonance at
these frequencies, which could explain the bad identification of the fifth bending mode. This is not a big
issue: this mode will be avoided when performing the model reduction.

(a) Bending mode 1. (b) Bending mode 2.

(c) Bending mode 3. (d) Bending mode 4.

(e) Bending mode 5. (f) Bending mode 6.

FIGURE 3.22 - The six first bending modes of vibration obtained inMATLAB with the updated model of
the instrumented structure. The red marker allows to identify the position of the horizontal shaker.
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FIGURE 3.23 - MAC matrix between the numerical modes (updated model) and the experimental modes
of the instrumented structure.

3.2.3 Damping

Damping is introduced in the conservative finite element model through a damping matrixC based on the
experimentally identified damping ratios. The methodologyintroduced by Géradin and Rixen in [16] is
followed. According to Rayleigh assumption, linearized viscous like dissipation with damping matrixC is
assumed (i.e. no dissipation force present when the velocity is 0). The equation of motion takes therefore
the general form

Mẍ(t)+Cẋ(t)+Kx(t) = f(t), (3.9)

where matricesM andK have been determined previously. In general, the modes are complex so that the
equations are coupled and interactions occur between the modes. DefiningΦ as the modal matrix, the
matrixΦTCΦ is not diagonal and there is therefore no orthogonality relationship.

As shown previously, the modes identified experimentally can be considered in good approximation as
real modes. The matrixΦTCΦ is therefore supposed to be diagonal, with elementsβs on its diagonal. In
the modal damping assumption, modal damping coefficients are defined by

εs =
βs

2ωsµs
, (3.10)

whereωs stands for the pulsation of modex(s) by analogy with one-degree-of-freedom systems and where

µs = xT
(s)Mx (s). (3.11)

A way to construct a damping matrix that guarantees diagonalmodal damping is provided by the
proportional damping approach

C =
n

∑
s=1

Kx (s)
2εs

ω3
sµs

xT
(s)K . (3.12)

In practice, only a small numberm of modes are identified experimentally andC is computed as

C =
m<n

∑
s=1

Kx (s)
2εs

ω3
sµs

xT
(s)K , (3.13)
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where the diagonal elements of the modal damping matrixΦ
TCΦ are given by

{

βs = 2εsωsµs, s6 m

βs = 0, s> m
(3.14)

This automatically generates zero damping for the missing modes, which is not physical. The truncated
expression is corrected by assuming for the higher modes a linearly increasing damping coefficient with
frequency. It is assumed that the damping of the higher modesis governed by

C = aK , (3.15)

so that
εs =

aωs

2
, s> m, (3.16)

and the diagonal elements ofΦTCΦ can be expressed as

βs = aω2
sµs, s> m. (3.17)

The damping matrix is therefore built as

C = aK +
m<n

∑
s=1

Kx (s)

(

2εs

ω3
sµs

− a
ω2

sµs

)

xT
(s)K , (3.18)

where the damping coefficientsεs are identified experimentally (Table 3.10).

It has been shown that the finite element model reproduces in an accurate way the natural frequencies
and mode shapes of the structure. To go one step further, the experimental and numerical frequency
response functions can be compared. Fig. 3.24 compares the frequency response functions corresponding
to excitation at point P9 and measurement at point P3. The blue curve is derived from the numerical finite
element model where damping is taken into account through the damping matrixC. A good agreement is
observed between the curves. At the resonances, the peaks are, as expected, slightly shifted in frequency
and the amplitudes are slightly different. This comparisongives confidence in the way damping is taken
into account in the numerical model.

FIGURE 3.24 - Comparison of the frequency response functions (excitation at point P9, measurement at
point P3) of the numerical finite element model and the experimental set-up.
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3.3 Nonlinearities detection

Because of the lightness of the structure, it is expected that it can show nonlinear behaviors when it is
subjected to high amplitude excitations. Such nonlinear behaviors must be avoided in the scope of the
current study of the linear Mathieu equation. It is therefore important to identify when they occur. The
modal analysis described in the previous section has been performed with very low excitation levels so
that the structure behaves linearly. In order to highlight the nonlinear behavior of the strip, the structure
is excited with the horizontal shaker with both sine-sweep excitations and simple sine excitations. These
fully deterministic signals allow for an easy visual interpretation of the data.

The moduleMIMO Sweep & Stepped Sine Testing of the toolTest.Lab Structures Acquisition is used in
this section for the acquisition of the response of the structure to sine-sweep excitations. Sine-sweep exci-
tations allow to strongly activate nonlinearities as energy is concentrated in frequency. Linear sine-sweep
excitations are selected to give the same importance to eachfrequency of the frequency band.

Sine-sweep excitations of increasing amplitudes are applied to the structure with the horizontal shaker
to get a global view of the structure dynamics. The frequencyvaries linearly between 20 and 70 Hz
at a sufficiently low rate of 0.05 Hz/s. This frequency interval covers two modes of the linear structure.
Fig. 3.25 shows the envelope of the amplitude of the responseof the structure measured at point P3 in terms
of velocity for excitation amplitudes between 0.125 and 4 N.Each point (f , ẋ) of a curve corresponding
to an excitation amplitudeA relates the amplitude of the steady-state response of the structureẋ to a sine
excitation of amplitudeA and frequencyf . When the amplitude of the excitation increases, the peaks in the
response appear to be shifted towards the left. This is a compelling evidence of the existence of softening
nonlinearities in the system when the amplitude excitationis sufficient. It can also be noted that the
superposition principle does not apply here: multiplying the excitation amplitude by 2, does not multiply
by the same factor the response of the structure. At low amplitudes (for excitations below 0.25 N), the
linear behavior of the structure is recovered. Natural frequencies are independent of the level of excitation
and the superposition principle is verified.

FIGURE 3.25 - Envelope of the velocity of the structure as a functionof the frequency for sine-sweep
excitations of amplitudes 0.125, 0.25, 0.5, 1, 2 and 4 N. Dashed lines indicate the respective positions of

the two linear natural frequencies.

52



The comparison of the responses to sine-sweep excitation forces of equal amplitudes but reverse direc-
tions also provides interesting information about the nonlinear behavior of the system. The responses of
the structure in terms of the velocity of point P3 to two sine-sweep excitation forces of amplitude 4 N and
frequency varying linearly between 20 and 70 Hz are shown in Fig. 3.26. According to linear theory, both
responses should superimpose, which is not the case for thisamplitude of excitation. Nonlinear amplitude
jumps are also observed in the response of the structure. At these jumps, the response of the structure
appears to suddenly increase or decrease [18]. Fig. 3.27 shows the very different responses of the structure
to sine excitations of amplitude 4 N and very close frequencies located just before and just after the jump.
These jumps do not appear at the same frequencies for sine-sweep excitations of increasing or decreasing
frequencies.

The shapes of the envelopes of the responses of the structureto sine-sweep excitations of increasing
and decreasing frequencies suggest the shape of the nonlinear frequency response (NLFR). NLFRs de-
scribe the evolution of the steady-state response amplitude of the structure with the excitation amplitude
and frequency [25]. For instance, it is expected that the nonlinear frequency response takes the form shown
in Fig. 3.28 between 50 and 70 Hz. Contrary to linear FRF, several amplitudes of steady-state solutions
can exist for a single frequency excitation. The solution isnot unique but depends on the initial conditions.
Initial conditions do not only influence the transient part of the response of a nonlinear system, but also its
steady-state response [18]. However, all the solutions cannot be observed in practice and some regions of
the NLFR are characterized as unstable. It is expected that,as in most nonlinear systems, the branch of
the NLFR between points A and B is unstable. Therefore, only two different solutions can be observed for
excitation frequencies betweenfB and fA .

Fig. 3.26 shows a non-smooth region around 65 Hz. This behavior cannot be explained by the linear
theory. This suggests the existence of another nonlinear phenomenon. According to linear theory, the
response of a system to a periodic solution is itself periodic. In this region, the periodic solution is periodi-
cally modulated. This illustrates the concept of quasiperiodicity well known in nonlinear theory [25]. The
quasiperiodic response of the structure is represented in Fig. 3.29. The Fourier transform of this response
confirms that two distinct frequencies are present in the response. Out of this region, the frequency content
of the response of the structure is dominated by the excitation frequency.

The objective of this work is not to characterize the nonlinearities in the system neither to build a
nonlinear numerical model of the structure but to study the linear Mathieu equation. In the following, the
strip will be excited with sufficiently small force amplitudes to limit the excitation of the nonlinearities. It
should also be noted that sine-sweep excitations are the worst case for nonlinearity since all the energy is
concentrated on a single frequency. In the following, random excitations with energy content distributed on
a finite frequency band will be applied. Moreover, random excitations have the characteristics of averaging
slight nonlinearities [3]. At the end of this report (section 5.2.3), some experimental results obtained in the
nonlinear domain will nevertheless be shown.
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FIGURE 3.26 - Velocity at point P3 as a function
of the frequency for sine-sweep excitations of

amplitude 4 N in up and down senses.

FIGURE 3.27 - Time evolution of the velocity at
point P3 for sine excitations of amplitude 4 N and

frequencies 57 and 57.5 Hz.

FIGURE 3.28 - Velocity at point P3 as a function
of the frequency for sine-sweep excitations of

amplitude 4 N in up and down senses and
expected NLFR.

FIGURE 3.29 - Time evolution of the velocity at
point P3 for sine excitation of amplitude 4 N and

frequency 65 Hz. Illustration of the
quasiperiodiciy nonlinear phenomenon.
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PART 4

NUMERICAL STUDY OF FIRST PASSAGE TIME

This chapter is dedicated to the numerical study of first passage time using the finite element model of the
structure introduced and validated in the previous part. This study is carried out in order to prepare the
experimental validation described in the next chapter.

The analytical theory of first passage time summarized in section 1.2 applies to one-degree-of-freedom
structures governed by the linear Mathieu equation and subjected to broadband forced and parametric ex-
citations. The studied multi-degree-of-freedom structure is subjected to forced and parametric excitations
and its dynamics is governed by a multi-dimensional Mathieuequation. In order to fit into the particular
framework defined by the theory, several steps have therefore to be taken.

In the first section, the multi-degree-of-freedom equations of motion are reduced to a set of uncoupled
single-degree-of-freedom equations. It is then shown that, for specific forced and parametric excitations,
some aspects of the dynamics of the structure can indeed be approximated with a single-degree-of-freedom
Mathieu equation. This study of the validity of the reduced model will naturally lead to introduce the
concept of narrow-band excitations and the necessity to study numerically their influence. The second
section therefore reports the results of a numerical study designed to analyze the influence of the frequency
bands of the random excitations on the first passage time map.Some general conclusions are drawn and
used to define the parametric and forced excitations to be applied in the experimental study of the structure.

4.1 From multiple-degree-of-freedom to single-degree-of-freedom equations
of motion

This section describes the first step towards relating the complex reality of the physical set-up to the frame-
work under which the analytical results of section 1.2 have been derived. It focuses on the assumption
of single-degree-of-freedom system of the theory. In this section, the multi-degree-of-freedom equations
of motion are reduced to a set of uncoupled single-degree-of-freedom Mathieu equations. The conditions
under which a profitable use of this model reduction can be done are then identified.

4.1.1 Model reduction

The finite element modeling of theN-degree-of-freedom structure provides the mass matrixM , the damp-
ing matrixC and the time-varying stiffness matrixK(t). The governing equation of the structure subjected
to an external excitationf(t) therefore writes

Mẍ(t)+Cẋ(t)+K(t)x(t) = f(t), (4.1)
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wherex is the vector of generalized coordinates. The stiffness matrix K(t) can be decomposed into a sum
of three terms

K(t) = K0+Kprestress,init+Kprestress(t), (4.2)

whereK0 is the usual linear stiffness matrix (constant in time),Kprestress,initis the geometrical stiffness
matrix due to the initial pre-stress mass (constant in time)andKprestress(t) varies in time and characterizes
the modulation of the stiffness induced by the zero mean parametric excitationFu(t). If Kprestress,1denotes
the stiffness matrix due to the application of a unit parametric force to the structure, the third term of
equation (4.2) can be expressed as

Kprestress(t) = Fu(t)Kprestress,1. (4.3)

The stiffness matricesK0 andKprestress,inithave been introduced in section 3.1.1. The stiffness matrices
Kprestress,1andKprestress,initare obviously related by

Kprestress,1=
Kprestress,init

mprestressg
. (4.4)

The response of the structurex(t) can be written in the modal basis as

x(t) =Φq(t), (4.5)

whereΦ is the modal matrix (each column ofΦ corresponds to a mode of the structure) andq(t) is the
vector of modal coordinates. Pre-multiplying the dynamical equation (4.1) byΦT and introducing (4.5)
gives

Φ
TMΦq̈(t)+ΦTCΦq̇(t)+ΦTK(t)Φq(t) =ΦTf(t). (4.6)

Defining modal matrices and vectors as the projections of thephysical structural matrices and vectors in
the modal basis by

M ∗ =ΦTMΦ, C∗ =ΦTCΦ, (4.7)

K ∗ =ΦTK0Φ+ΦTKprestress,initΦ, K ∗
prestress,1=Φ

TKprestress,1Φ (4.8)

and
f∗(t) =ΦTf(t), (4.9)

the equation governing the dynamics of the modal coordinates is written as

M ∗q̈(t)+C∗q̇(t)+ [K ∗+Fu(t)K ∗
prestress,1]q(t) = f∗(t). (4.10)

In the ideal case where the modal matricesM ∗, C∗, K ∗ andK ∗
prestress,1are diagonal, theN equations

of system (4.10) can be decoupled and the dynamics of the structure in the different deformation modes
can be studied separately. In such a case, theN-degree-of-freedom system behaves likeN single-degree-
of-freedom systems. The modal matricesM ∗ andK ∗ are diagonal by definition. The matrixC∗ is also
diagonal under the modal damping assumption (section 3.2.3). There is no reason for the matrixK ∗

prestress,1
to be perfectly diagonal. In the current study, its diagonalelements are only one order of magnitude
larger than its out-of-diagonal elements. As long as the products ofFu(t) by the out-of-diagonal terms of
K ∗

prestress,1are well below the diagonal terms ofK ∗, the coupling between the modes is small. In the follow-
ing, only small amplitude parametric excitations will be considered to limit the excitation of nonlinearities
and to keep a quasi-Hamiltonian system. It is therefore expected that this condition will be verified in good
approximation.

When the modal matrices are diagonal, the equations of motion can be decoupled for each modal co-
ordinate. According to the conventions introduced by Ewinsin [15], the diagonal elements of the modal
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matrices are referred to as the modal masses, modal damping ratios and modal stiffnesses. There is how-
ever no unique value for these modal parameters as they are directly related to the scaling method used to
define the mode shape eigenvectors. Ewins therefore introduces effective parameters defined for a given
modei at a given degree-of-freedomr by normalizing the modal parameters by the square of the value of
modei at degree-of-freedomr. The effective parameters are unique and form a useful description of the
underlying behavior of the structure point by point and modeby mode. Eventually, Ewins introduces gen-
eralized properties that are referred to as unique properties of each mode. They are defined as the effective
properties at the degree-of-freedom with the largest amplitude of response in the mode.

The single-degree-of-freedom equation governing thei-th modal coordinatez(t) = qi(t) takes therefore
the form

meqz̈(t)+ceqż(t)+ [keq+Fu(t)kp,eq]z(t) = p(t). (4.11)

Using Ewins’ approach, the generalized mass, damping ratioand stiffness coefficients in this equation are
defined by

meq=
M ∗(i, i)

[Φ(ni , i)]
2 , ceq=

C∗(i, i)

[Φ(ni , i)]
2 , keq=

K ∗(i, i)

[Φ(ni , i)]
2 and kp,eq=

K ∗
prestress,1(i, i)

[Φ(ni , i)]
2 , (4.12)

whereni is the degree-of-freedom with the largest amplitude of response in modei. The participation
factor of the forced excitation to modei is given by

p(t) =
Φ(nFw, i)

[Φ(ni , i)]
2 Fw(t) = αFw(t), (4.13)

wherenFw is the degree of freedom where the forced excitationFw is applied.

If the multi-degree-of-freedom system is vibrating in modej only, qi(t) = 0 ∀ i 6= j and the response
of the structure is given by

x(t) =Φq(t) =Φ j q j(t), (4.14)

so that the solutionz(t) of the single-degree-of-freedom system characterized by (4.11) is directly related
to the real displacement of the structure.

In conclusion, for parametric excitations of sufficiently small amplitude, the responses of the structure
in each of its mode can be decoupled. If the structure is excited in such a way that it responds only (or
mainly) in a unique mode, then the response of the structure at a given point is the solution of an equivalent
one-degree-of-freedom equation of the form (4.11), which is a linear Mathieu equation.

4.1.2 Validity of the single-degree-of-freedom governingequation

The objective of this section and the next two is to identify numerically under which excitations the solu-
tion of the one-dimensional equation (4.11) provides a sufficiently accurate approximation of the solution
of the multi-dimensional equation (4.1) at a given point of the strip. In other words, these sections aim
at answering the question: “What excitations should be applied to the structure so that the equations of
motion are decoupled and the strip only responds in a single mode?”. In a first step, deterministic excita-
tions are applied to the structure (section 4.1.3). This helps drawing some general conclusions used in the
second step where the same numerical experiment is carried out with stochastic excitations (section 4.1.4).

In order to identify the conditions under which an efficient use of the reduction of the multi-degree-
of-freedom system can be done, both one-degree-of-freedomand multi-degree-of-freedom equations of
motion are integrated using a Newmark integration scheme (see appendix B for more details). On the one
hand, the governing equations of the multi-degree-of-freedom system (4.1) subjected to given forced and
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parametric excitations are solved and the response at an antinode of vibration of the studied mode is ex-
tracted. On the other hand, the reduced one-degree-of-freedom equation of motion (4.11) is solved for the
same excitations. The objective is to determine the characteristics of the excitations that ensure that both
responses agree in good approximation. The responses are compared at an antinode of vibration in order
to minimize the influence of the other modes.

The next question to answer is the choice of the mode used for the reduction. Several aspects of the
problem have to be taken into account, keeping in mind the final objective of the work: the experimental
validation of the theory of first passage time described in section 1.2. First, the equivalent parameters of the
selected mode must allow to cover the largest possible part of the first passage time in a reasonable amount
of time. This will be detailed further (section 5.1.2). Then, in order to have equations of motion highly
decoupled, the selected mode must be such that the out-of-diagonal terms ofKprestress,1are sufficiently
small with respect to the diagonal elements. The structure must also respond in a single mode. The
selected mode therefore has to be sufficiently far from the others in frequency to avoid exciting them. The
first numerical mode is avoided since it does not correspond to a deformation mode of the structure but to
a mode of the shaker. The first bending mode is also rejected toavoid the risk of exciting the shaker mode.
Based on these remarks, the second bending mode is studied inthe following. It is characterized by the
equivalent parameters

kp,eq= 39 m−1, keq= 3273 Nm−1, ceq= 0.08 N[m/s]−1 and meq= 0.05 kg. (4.15)

The frequency of this second bending mode isf0 = 39.3 Hz.

4.1.3 Validity of the reduction for deterministic excitations

As a first step, the system is studied under deterministic (and more precisely harmonic) excitations. First,
the instabilities of the structure are illustrated. Then, the influence of the forced and parametric excitations
are studied separately. For each excitation condition, both the single-degree-of-freedom and the multi-
degree-of-freedom equations of motion are solved and the responses are compared.

Instabilities

As pointed out in section 1.1, the system under study can exhibit two different kinds of instabilities, namely
simple instabilities when the forced excitation frequencyis equal to a natural frequencyfnat of the structure
and parametric instabilities when the parametric excitation has a frequency equal to 2fnat/k wherek is an
integer. These issues are shortly addressed here to gain useful insight for understanding the results below.

Fig. 4.1 shows the responses of the single-degree-of-freedom and multi-degree-of-freedom undamped
systems to a forced excitation at the frequency of the selected modef0. No parametric excitation is con-
sidered. As expected, the response envelope grows linearlywith time. The structure responds quasi exclu-
sively in a single mode and the instability is well captured by the model reduction.

Fig. 4.2 illustrates the concept of parametric instability. The strip is excited with a parametric excitation
at twice the frequency of the second bending mode of the structure. No damping, nor forced excitation
is considered. As expected, the response grows exponentially. Here again, the single-degree-of-freedom
equation does a good job and provides an accurate description of the dynamics of the instability. Numerical
simulations also show that higher parametric excitation amplitudes are required to observe an instability
when damping or forced excitation are considered. This has already been mentioned in section 1.1. The
other parametric resonances of the second bending mode (atf0, 2/3 f0, ...) are also much more sensitive
to forced excitation or damping. In conclusion, parametricinstabilities are well captured by the model
reduction. They occur for slightly damped modes when the forced excitation is sufficiently small. As
expected, the second harmonic is the most critical.
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FIGURE 4.1 - Comparison of the temporal
responses of the single- and multi-DOF undamped

motion equations to a forced excitation of
amplitude 1 N and frequencyf0.

FIGURE 4.2 - Comparison of the temporal
responses of the single- and multi-DOF undamped

motion equations to a parametric excitation of
amplitude 2 N and frequency 2f0.

Forced excitation

Obviously, the model reduction requires that the second bending mode of the structure is the only one
to be excited. To avoid exciting the other structural modes,the frequency of the forced excitation must
therefore be close to the selected natural frequencyf0. For the particular system considered here, nu-
merical experiments show that the dynamics can be describedby the single-degree-of-freedom equation
if the frequency of the forced excitation lies between 0.95f0 and 1.05f0. As shown in Fig. 4.3, the time
responses of the single-degree-of-freedom and multi-degree-of-freedom systems superimpose nicely when
the structure is excited at the frequency 1.05f0. The solution is damped and a phenomenon of beating is
observed. When the forced excitation has a frequency outside the interval [0.95f0 ; 1.05f0], other modes
of the multi-degree-of-freedom structure are excited and the responses do not match.

FIGURE 4.3 - Comparison of the temporal
responses of the single- and multi-DOF damped

motion equations to a forced excitation of
amplitude 1 N and frequency 1.05f0.

FIGURE 4.4 - Comparison of the temporal
responses of the single- and multi-DOF damped
motion equations to a parametric excitation of

amplitude 0.1 N and frequency 1.95f0.
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Parametric excitation

Regarding the amplitude of the parametric excitation, it should be noted thatFu cannot exceed the pre-
stress of the strip. When this is the case, the multi-degree-of-freedom system becomes unstable and the
single-degree-of-freedom system cannot reproduce this instability. In fact, in the single-degree-of-freedom
model,Fu only modifies the stiffness of the strip but does not act as an external force applied to the system.
In the multi-degree-of-freedom system, the low compression stiffness of the strip is modeled and leads to
strip instabilities. It is therefore important to keepFu lower thanmprestressg= 17.8 N to ensure the integrity
of the structure and the correspondence between the single-and multi-degree-of-freedom equations of mo-
tion. Since the shakers used in the experimental set-up cannot apply a force larger than 9 N, this will not
be an issue (section 2.3). Moreover, as detailed in section 4.1.1, the equations decoupling remains valid as
long as the diagonalization of the equations is valid.Fu should therefore remain sufficiently small so that
the out-of-diagonal elements ofFu(t)K ∗

prestress,1 remain small with respect to the diagonal elements ofK ∗.
Finally, the parametric excitation should remain sufficiently low so that the modes of the structure are not
significantly affected.

Regarding the frequency of the parametric excitation, a good match between the responses of the
single-degree-of-freedom and multi-degree-of-freedom equations of motion is observed provided that the
second bending mode dominates the response of the structure. Numerical simulations show that this is the
case when the frequency of the parametric excitation is sufficiently close to the natural frequency of the
mode f0 or its second harmonic 2f0 (Fig. 4.4). When this is not the case, other modes of the multi-degree-
of-freedom structure are excited.

4.1.4 Validity of the reduction for stochastic excitations

Now that the dynamics of the deterministic system is well understood, the same reasoning is followed in
the case of stochastic excitations. The general conclusions drawn for deterministic excitations are used as a
starting point to draw conclusions valid when the structureis subjected to stochastic excitations. To fit in the
framework of the analytical results of section 1.2, the forced and parametric excitations are characterized
by constant power spectral densitiesS̃w andS̃u (more details in appendix A). It is however rapidly observed
that these excitations cannot be defined as broadband processes since this causes the excitation of different
modes of the structure so that the responses of the single- and multi-degree-of-freedom systems do not
match. Forced and parametric excitations are therefore defined as narrow-band processes.

Forced excitation

The forced excitation is defined in a limited frequency band centered onf0. When the band covers more
than the second bending mode, several modes are excited and the single- and multi-degree-of-freedom
equations of motion do not provide the same response at all.

When the system is subjected to forced excitation only, a good match is observed as long as the fre-
quency band is contained in[0.8 f0 ; 1.2 f0] (Fig. 4.5(a)). This interval is wider than the one identifiedin the
deterministic case. In fact, some compensation happens between the response components at frequencies
f0+∆ f and f0−∆ f .

When the frequency interval is expanded beyond [0.8f0 ; 1.2f0], the closest modes are excited in such a
way that the two responses do not superimpose perfectly. Fig. 4.5(b), for instance, shows the two temporal
responses to a forced excitation defined on the frequency band [0.6f0 ; 1.4f0]. Although this band does not
include any other mode of the structure, other bending modesare nevertheless excited.
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(a) Fw defined on[0.8 f0 ; 1.2 f0]. (b) Fw defined on[0.6 f0 ; 1.4 f0].

FIGURE 4.5 - Comparison of the temporal responses of the single- andmulti-DOF damped motion
equations to a forced excitation of power spectral densityS̃w = 10−4 N2/Hz.

Parametric excitation

When the system is only subjected to parametric excitation,the responses coincide as long as the frequency
band ofFu includes the second harmonic of the second bending mode but does not include the second har-
monics of other modes. It should however be noted that the second harmonic of highly damped modes
can be included in the interval without degrading the accuracy of the solution. When damping differs from
zero, the other harmonics of the other modes do not need to be avoided.

When forced excitation is added, the responses of both models remain close as long as the intensity of
the parametric excitatioñSu is not too high with respect tõSw. In practice,S̃u should not exceed̃Sw by more
than a factor 100 (see Fig. 4.6 forFw defined on[0.8 f0 ; 1.2 f0], Fu defined on[0.8 f0 ; 2.4 f0] and different
ratiosS̃u/S̃w). It should be noted that the interval ofFu contains the second harmonic of the first bending
mode and the first harmonic of the third bending mode. Becausethese modes are sufficiently damped, this
does not deteriorate the validity of the model reduction.

(a) S̃u = 10−4 N2/Hz. (b) S̃u = 10−1 N2/Hz.

FIGURE 4.6 - Comparison of the temporal responses of the single- andmulti-DOF damped motion
equations toFw of intensityS̃w = 10−4 N2/Hz on [0.8 f0 ; 1.2 f0] andFu on [0.8 f0 ; 2.4 f0].
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4.2 Influence of narrow-band excitations on the first passagetime

The analytical results of the first passage time derived in [36, 37] are based on three conditions. The sys-
tem has to be governed by a single-degree-of-freedom equation of motion, it must be linear and subjected
to broadband excitations. The previous section has allowedto show that some aspects of the dynamics
of the structure studied are governed by a linear single-degree-of-freedom motion equation. Indeed, as a
result of the reduction of theN-degree-of-freedom system intoN single-degree-of-freedom systems, the
dynamic behavior of the system is governed byN equations that take the general form (4.11). Each of
these equations has the form of the linear single-degree-of-freedom Mathieu equation presented in part 1.
The conditions under which the reduced model can be used havealso been determined and show that the
bandwidths of the forced and parametric excitations have tobe limited. With the designed structure, it is
therefore not possible to meet at the same time the conditionof single-degree-of-freedom system and the
condition of broadband excitations.

Because no analytical results are currently available for the first passage time of systems subjected
to colored excitations, a numerical study of the influence ofthe frequency bands of the excitations is
required and is carried out in this section. The oscillator is numerically studied in its dimensionless form
characterized by the governing equation

ẍ(t)+2ξẋ(t)+ [1+u(t)]x(t) = w(t). (4.16)

4.2.1 Introduction of the tools used in the study of narrow-band processes

First passage time maps are obtained numerically using Monte Carlo simulations. The response of the
one-degree-of-freedom system in terms of displacement andvelocity is computed at each time step using
a Newmark integration scheme (see appendix B for more details) and the HamiltonianH of the system
is computed. WhenH reaches a given maximal value, the simulation is stopped anda new simulation is
initiated. The average first passage time is eventually obtained by averaging the results of a large set of
simulations. This approach allows to have a uniform qualityof the map in the whole space(H∗

0 , ∆H∗) as
the averaging is based on the same number of samples at each point of the map.

Before studying the influence of narrow-band excitations, the methodology followed to compute first
passage time maps and its implementation are validated by applying it to a system subjected to broad-
band excitations. The different parameters used in the simulation area= 0, Su = 10−3 andSw = 5·10−4.
Fig. 4.7 compares the first passage time maps obtained analytically with results provided in section 1.2.2
and numerically with Monte Carlo simulations using 20 000 samples. A perfect match is observed.

The mean square first passage time map obtained with these 20 000 samples is represented in Fig. 4.8(a).
More samples are required to smooth the curves in the bottom right corner. As shown in section 1.2.2, this
corner is characterized by a high coefficient of variation and the solution converges more slowly in this
region. The global trend is however recovered. Fig. 4.8(b) shows that 200 000 samples are required to
obtain a smooth behavior in the bottom right corner. Becausethis computation is relatively heavy, the
systematic study performed in the following sections to analyze the influence of the frequency bands of the
excitations will be limited to the study of the average first passage time map.

The Monte Carlo approach can be used to build numerically thefirst passage time map of a system
subjected to forced and parametric excitations defined as narrow-band random processes (see appendix A
for more details on the numerical generation of stochastic processes). The procedure is first applied to an
undamped system subjected to a parametric excitation withSu = 10−3 uniform on the frequency interval
[0.1 f0 ; 3 f0] and a forced excitation withSw = 5·10−4 uniform on the frequency interval[0.8 f0 ; 1.2 f0].
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FIGURE 4.7 - Comparison of the reduced average first passage timeU1Su/4 maps obtained numerically
and analytically for broadband excitations (a= 0, Su = 10−3, Sw = 5·10−4).

(a) n= 20000 samples. (b) n= 200000 samples.

FIGURE 4.8 - Comparison of the reduced mean square first passage timeU2S2
u/32 maps obtained

numerically and analytically for broadband excitations (a= 0, Su = 10−3, Sw = 5·10−4).

Before analyzing the results, it is important to check the convergence of the Monte Carlo simulations,
i.e. that enough samples are used to compute the mean first passagetime. Fig. 4.9 shows the influence
of the number of samples on the calculated reduced mean first passage time for five points distributed on
the (H∗

0 , ∆H∗) map. As suggested in [4], a logarithmic scale is preferred onthe horizontal axis. Indeed,
the RMS value of the mean estimator scales with 1/

√
n. In other words, ifn= 100, 300 supplementary

samples are expected to decrease the uncertainties by a factor 2. If n= 1000, 3000 additional realizations
are needed for the same reduction. This behavior is naturally apparent with the logarithmic scale. Fig. 4.9
suggests thatn = 20000 samples are sufficient to estimate the mean first passage time. This gives con-
fidence in the map obtained and shown in Fig. 4.10. This is alsoconfirmed by the validation shown in
Fig. 4.7 in the case of broadband excitations.
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FIGURE 4.9 - Convergence of the reduced
average first passage timeU1Su/4 at five distinct
points of the map with the number of samples

(a= 0, Su = 10−3, Sw = 5·10−4, u on [0.1 f0 ; 3 f0]
andw on [0.8 f0 ; 1.2 f0]).

FIGURE 4.10 - Comparison of the reduced
average first passage timeU1Su/4 maps obtained
numerically for narrow-band excitations (u on

[0.1 f0 ; 3 f0] andw on [0.8 f0 ; 1.2 f0]) and
analytically for broadband excitations (a= 0,

Su = 10−3, Sw = 5·10−4).

Visual inspection of the maps (Fig. 4.10) reveals that the analytical results are not recovered when the
system is subjected to narrow-band random processes. Although the additive, multiplicative and incuba-
tion regimes can still be clearly identified, the curves do not superimpose. This shows that the analytical
results obtained for broadband excitations do not simply transfer to narrow-band random processes. Here,
the frequency bands are limited and the corresponding first passage times are larger than those computed
with broadband excitations. This is easily explained by thefact that, when the frequency band is wider,
more rapid oscillations are added to the solution and decrease the first passage time.

To further analyze the difference between the broadband analytical results and the narrow-band numer-
ical ones, indicators are defined to get a quantitative vision of the problem. The objective is to quantify the
distance between the two results and to decide whether this difference is significant or not.

As a first step, a distance between the two sets of results is defined. If ZBB denotes the mean first
passage time matrix expected under broadband excitations at each point of the map, andZNB the one
obtained with the Monte Carlo simulations of the system subjected to narrow-band excitations, a RMS
distance∆ between the two first passage time maps is defined as

∆ =

√

√

√

√

1
N ∑

i
∑

j

[

(ZBB)i, j − (ZNB)i, j

(ZBB)i, j

]2

, (4.17)

whereN is the number of data points in the comparison. It was observed in Fig. 4.8(a) that convergence
is slower in the bottom right corner of the map. The corresponding distribution of the first passage time
computed numerically is therefore rather noisy. For this reason, this corner is neglected in the computation
of the distance∆.
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The introduction of narrow-band excitations has a significant influence on the dynamics so that the an-
alytical results reported in section 1.2 are no longer validin this case, at least quantitatively. Based on the
inspection of several average first passage time maps, a threshold of 4% on∆ is introduced to differentiate
between maps showing a good concordance and maps exhibitingvisible differences. The RMS distance∆
reaches 9% for the numerical results shown in Fig. 4.10.

As a second step, a statistic approach can also be used to assess if the narrow-band results differ
significantly from the analytical results derived for broadband excitations. Based on the Monte Carlo
simulations, a confidence interval is defined in which the actual value of the mean first passage time be-
longs with a probability of at least 95%. If the analytical value is outside this confidence interval, the
difference between the broadband and narrow-band results is considered as significant given the number
of samples. However, very little is known about the probabilistic distribution of the first passage time.
Without damping nor forced excitation, and when the parametric excitation is aδ-correlated noise, the first
passage time distribution follows an inverse Gaussian law of mean 4/Su ln(Hc/H0) and shape-parameter
2/Su ln(Hc/H0)

2 [31]. In more general cases, the first passage time shows a more complicated distribu-
tion. As an example, Fig. 4.11 shows the histogram of the 20 000 first passage times computed at the
point of the map characterized byH∗

0 = −1.6 and∆H∗ = 0.7 for the excitation and damping conditions
of Fig. 4.10. The red curve represents the inverse Gaussian distribution fitted to the numerical data. Al-
though the visual inspection of the experimental distribution suggests that the distribution remains similar
to an inverse Gaussian distribution, such a hypothesis is rejected by this Chi-square test (MATLAB function
chi2gof). Other goodness-of-fit tests also lead to reject the hypotheses that the first passage time follows a
Gamma law or a Weibull law. For the large samples considered here (n= 20000), these tests are indeed
very sensitive and lead to reject the hypothesis even if the experimental distribution only slightly departs
from the theoretical one against which the data are tested.

FIGURE 4.11 - Histogram of the reduced first
passage time at the point characterized by

H∗
0 =−1.6 and∆H∗ = 0.7 (n= 20000 samples)

and inverse Gaussian distribution fitted to the data
(u on [0.1 f0 ; 3 f0], w on [0.8 f0 ; 1.2 f0], a= 0,

Su = 10−3, Sw = 5·10−4).

FIGURE 4.12 - Second indicator. Regions are
colored in red when the mean first passage time

obtained numerically for narrow-band excitations
(u on [0.1 f0 ; 3 f0] andw on [0.8 f0 ; 1.2 f0]) differs
significantly from the value obtained analytically

for broadband excitations (a= 0, Su = 10−3,
Sw = 5·10−4).
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In the absence of more information about the probabilistic distribution of the first passage time, the Bi-
enaymé-Chebyshev inequality, which is valid whatever thedistribution of the parent variable characterized
by a finite meanµ and a finite non-zero varianceσ2, can be used to define confidence intervals [4]. This
inequality writes

P

[

T̄n−c
σ√
n
6 µ6 T̄n+c

σ√
n

]

> 1− 1
c2 (4.18)

and states that 1−1/c2 is an underestimation of the probability that the value of the process meanµ lies
within the confidence interval centered around the sample mean T̄n and of semi-widthcσ/

√
n, wheren is

the number of samples. Sinceσ is unknown, it is estimated with the unbiased estimator

S2
n−1 =

1
n−1

n

∑
i=1

(

Ti − T̄n
)2
. (4.19)

It is called an unbiased estimator because the expected value of this estimator equals the variance of the
process. Since the number of samples studied is very large, the biased version of the estimator

S2
n =

n−1
n

S2
n−1 (4.20)

would provide similar results.

In Fig. 4.12, the Bienaymé-Chebyshev inequation (4.18) isused to check if the analytical broadband
mean first passage times fall within the confidence intervalsderived from the numerical results for narrow-
band excitations corresponding to the conditions of Fig. 4.10. Regions colored in red indicate a statistically
significant difference between the two sets of results. Thisfigure leads to conclude that the mean first
passage time of systems subjected to these narrow-band excitations significantly differs from the values
derived analytically for broadband excitations in the whole map except in the bottom right corner where
the coefficient of variation of the first passage time is too large to conclude that there exists a significant
difference. Note that the same approach applied to the comparison of the analytical and numerical broad-
band results leads to the conclusion that there is no significant difference between the two sets of results.

The above discussion shows that a more detailed analysis hasto be carried out to determine under
which conditions (frequency bands of the excitations, damping, force intensities) narrow-band excitations
lead to significant differences with respect to the analytical results derived for broadband excitations. In
the next section, the influence of the forced excitation frequency band is analyzed. Then, the influence of
the parametric excitation frequency band is studied. Afterthat, the influence of the damping factor and the
power spectral densities of the parametric and forced excitations is characterized.

4.2.2 Influence of the frequency band of the forced excitation

As a first step, the system is studied for parametric excitations in broadband and several different narrow
bands for the forced excitation (includingf0 or not). A first passage time map is drawn for each case. The
tools described in the previous section are used to analyze the results.

The three incubation, additive and multiplicative regimescan only be recovered if the frequency band
of the forced excitation includes the natural frequencyf0. For instance, when the forced excitation is de-
fined on the frequency interval[1.2 f0 ; 1.6 f0], the distance∆ (4.17) between the maps is larger than 200%
and the qualitative behavior of the system is totally different. For limited frequency intervals around the
natural frequencyf0, a nearly perfect match between the broadband and narrow-band results is observed in
the whole map. For instance, Fig. 4.13 shows the map obtainedwhenw is defined on[0.9 f0 ; 1.1 f0]. The
corresponding distance∆ is equal to 3%.

66



FIGURE 4.13 - Comparison of the reduced average
first passage timeU1Su/4 maps obtained

numerically for broadbandu and narrow-bandw
([0.9 f0 ; 1.1 f0]) and analytically for broadband
excitations (a= 0, Su = 10−3, Sw = 5·10−4).

FIGURE 4.14 - Second indicator. Regions are
colored in red when the mean first passage time

obtained numerically for broadbandu and
narrow-bandw ([0.9 f0 ; 1.1 f0]) differs significantly
from the value obtained analytically for broadband

excitations (a= 0, Su = 10−3, Sw = 5·10−4).

FIGURE 4.15 - Comparison of the reduced average
first passage timeU1Su/4 maps obtained

numerically for broadbandu and narrow-bandw
([0.8 f0 ; 1.2 f0]) and analytically for broadband
excitations (a= 0, Su = 10−3, Sw = 5·10−4).

FIGURE 4.16 - Second indicator. Regions are
colored in red when the mean first passage time

obtained numerically for broadbandu and
narrow-bandw ([0.8 f0 ; 1.2 f0]) differs significantly
from the value obtained analytically for broadband

excitations (a= 0, Su = 10−3, Sw = 5·10−4).
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The second indicator is shown in Fig. 4.14. It reveals that the results are significantly different only
in the bottom left corner corresponding to small values ofH∗

0 and∆H∗. This is not surprising, the bottom
left corner corresponds to the limiting case where there is no parametric excitation; the forced excitation
has therefore a dominant influence in this zone. The distanceindicator∆ decreases when the width of the
frequency band around the natural frequency increases. Thediscrepancies in the bottom left corner of the
map also tend to disappear. This is expected since this corresponds to conditions closer to the assumptions
used to develop the analytical results. For instance, Figs.4.15 and 4.16 show the average first passage time
map and the second indicator for a forced excitation defined on [0.8 f0 ; 1.2 f0].

In conclusion, in order to recover the general trend of the average first passage time map for broadband
excitations, the natural frequency of the oscillator must be included in the frequency band of the forced
excitation. When this is the case, results are very close to the analytical results. The narrow band influences
only the bottom left corner of the map.

4.2.3 Influence of the frequency band of the parametric excitation

The influence of the frequency band of the parametric excitation appears more complex than for the forced
excitation. Increasing the bandwidth does not always have the effect of getting closer to the analytical
broadband results. A systematic study is required to characterize the influence of the parametric excitation.

As a first step, the parametric excitation is defined as a narrow-band process of constant power spectral
densitySu = 10−3 on the frequency interval[ f1 ; f2] and the boundsf1 and f2 are varied. For these tests, the
forced excitation is defined as a narrow-band process of constant power spectral densitySw = 5·10−4 on
the frequency interval[0.8 f0 ; 1.2 f0], in agreement with the conclusions of the previous section.Because
of its large computation cost (the full map of first passage time must be computed, which requires about
20 000 samples), the distance∆ is inappropriate to carry out a systematic sensitivity study with two or more
parameters. A simplified indicatorI is therefore introduced and defined as

I =

∣

∣

∣

∣

UNB
1 −UBB

1

UBB
1

∣

∣

∣

∣

, (4.21)

whereUNB
1 andUBB

1 are respectively the mean first passage time obtained from Monte Carlo simulations
with narrow-band processes at one single point of the map andthe corresponding analytical value for
broadband processes. Based on the conclusions of the previous section, the observation point is chosen far
from the bottom left corner where the influence of the limitedbandwidth of the forced excitation is large
and for moderate values ofH∗

0 and∆H∗ to limit the computation time.

Fig. 4.17(a) shows the value ofI (4.21) as a function of the lower and upper frequenciesf1 and f2
(normalized by the natural frequencyf0) that define the parametric excitation at the point of the mapchar-
acterized byH∗

0 = 10−1.5 and∆H∗ = 100. The results are similar when other observation points are used.

This figure shows that it is necessary to include the second harmonic of the natural frequency, 2f0,
in the frequency interval to be close enough to the analytical results for broadband excitations. In fact,
when the second harmonic of the natural frequency does not belong to the frequency interval of the para-
metric excitation, the first passage time map looks completely different; even the three regimes identified
in section 1.2 do not appear. By contrast, it is not necessaryto include the natural frequency itself in the
frequency interval[ f1 ; f2]. This can be supported by the deterministic theory of Mathieu equation. As
shown in section 1.1, instabilities occur at frequencies 2f0/k (k integer). While the instability fork = 1,
i.e. at f = 2 f0, is the most critical, the other instabilities do not develop when forced excitation or damping
is introduced in the system unless the amplitude of the parametric excitation is large.
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(a) Sw = 5·10−4 andSu = 10−3. (b) Sw = 5·10−2 andSu = 10−1.

FIGURE 4.17 - IndicatorI (4.21) at pointH∗
0 = 10−1.5 and∆H∗ = 100 as a function of the lower and upper

bounds of the frequency band of the parametric excitation.

If the same Fig. 4.17(a) is plotted for different amplitudesof the parametric excitation,i.e. different
values of its constant power spectral density (see for instance Fig. 4.17(b) forSu = 10−1 andSw = 5·10−2),
it is observed that the value of the indicator varies. Even ifthe general shape of the figure is not strongly
modified when the magnitude of the parametric excitation increases, the value of the indicator increases. In
other words, a larger frequency interval foru is required to get the same value of the indicator. A detailed
study of the influence of the other parameters of the problem,the power spectral densitiesSu andSw of the
excitations and the damping factora is therefore required. This study is performed in the next section.

4.2.4 Damping and power spectral densities influence

In this section, the influence of the damping factora and the constant values of the power spectral densities
Sw andSu of the forced and parametric excitations is studied. Based on the results of the previous sections,
it seems acceptable to define the forced excitation on the frequency interval[0.8 f0 ; 1.2 f0] and the para-
metric excitation on the frequency interval[ f0 ; 4 f0]. The same indicator is computed at the same point of
the map (H∗

0 = 10−1.5 and∆H∗ = 100) by systematically varyinga between 0 and 4,Su between 10−3 and
10−1 andSw between 10−6 and 10−1. The results are plotted in Fig. 4.18.

Fig. 4.18(a) shows the indicatorI (4.21) as a function of the power spectral densities of the forced
and parametric excitations for a damping factora = 1.6. At fixed a, the value ofI seems independent
of the power spectral density of the forced excitation,Sw. By contrast, the power spectral density of the
parametric excitation,Su, influences the value of indicatorI . The higher the power spectral density of the
parametric excitationSu, the larger the difference between the narrow-band and broadband results.
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(a) a= 1.6. (b) Sw = 10−2.

FIGURE 4.18 - IndicatorI (4.21) at pointH∗
0 = 10−1.5 and∆H∗ = 100 as a function of the parameters of

the problema, Su andSw.

Fig. 4.19 shows a cross-section of Fig. 4.18(a) at a constantvalue ofSw and allows to describe the
evolution of indicatorI with Su. The indicatorI grows linearly for large values ofSu (larger than 0.02) but
scales as a logarithm for smaller values ofSu. It is not really surprising thatSu directly influences the first
passage time, as it is also the case for broadband excitations. As detailed in section 1.2 (Equation 1.53),
the first passage depends on the reduced parametersH∗

0 and∆H∗, in which only the ratioSu/Sw appears,
but also explicitly on the power spectral densitySu.

(a) Su in logarithmic scale. (b) Su in linear scale.

FIGURE 4.19 - IndicatorI (4.21) as a function ofSu for Sw = 10−2 anda= 1.6.
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Fig. 4.18(b) shows the influence ofa and Su on I for Sw fixed to 10−2. It is observed that results
from narrow-band Monte Carlo simulations depart from the broadband ones whena and/orSu is increased.
Curves of iso-I appear as parallel lines (with thea-axis in linear scale and theSu-axis in logarithmic scale).

Before concluding, it should be noted that, even if this study is based on a single point of the map
(H∗

0 = 10−1.5 and ∆H∗ = 100) located in the additive regime, the same exercise has been performed at
other points located in other regimes. The study of the evolution of the indicatorI with parametersSw, Su

anda at different points located in the three regimes shows that the general behavior ofI is recovered and
that the conclusions drawn in the additive regime are valid in the whole map.

4.3 Numerical study of first passage time conclusions

This chapter constitutes the last step before the experimental validation of the first passage time theory
described in the next part of the work. This part aims particularly at preparing the experimental tests and
has allowed to highlight some new results related to first passage time of systems subjected to narrow-band
excitations.

As a first step, the multi-degree-of-freedom equations of motion have been reduced to a set of decou-
pled single-degree-of-freedom equations of motion. An efficient use of the reduced model can be done
when the forced and parametric excitations are defined on a limited narrow band in the frequency domain,
and when the parametric excitation amplitude is not too high.

Because the available analytical results are only valid forbroadband excitations, a numerical study has
been conducted to characterize the influence of narrow-bandexcitations on the first passage time map. The
global behavior is recovered when the frequency bands of theforced and parametric excitations include
respectively the natural frequency of the oscillator and its second harmonic. A small shift can however be
observed between the broadband and narrow-band results when the bandwidths of the excitations decrease
and when the intensity of the parametric excitation or the damping factor increase.

All these important conclusions will be taken into account and will help to define the right forces to
apply on the experimental set-up in the next part.
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PART 5

EXPERIMENTAL STUDY OF FIRST PASSAGE TIME

This part of the work is dedicated to the experimental study of first passage time. The numerical study
performed in the previous part will help to prepare the experimental part. The first section is devoted to
the physical limitations that constrain the experimental validation of the theory. Then, the second section
focuses on the experimental study of the one-degree-of-freedom Mathieu equation. Eventually, the third
section draws some experimental conclusions in the case of the multi-degree-of-freedom Mathieu equation.

5.1 Experimental limitations

In the previous part, it was supposed that the parametersSu, Sw andacould take any value. The first passage
time maps corresponding to narrow-band excitations were built for ranges of variation of these parameters
that allow to highlight the three additive, multiplicativeand incubation regimes. In practice,Su, Sw anda are
linked to physical parameters and their values are therefore constrained. In this section, the dimensionless
parameters of the single-degree-of-freedom system are first related to the physical dimensional parameters
of the problem. Then, the practical experimental limitations on these parameters are listed. The mode used
for the model reduction is also selected and this choice is justified.

5.1.1 Nondimensionalization

As a result of the reduction of theN-degree-of-freedom system intoN single-degree-of-freedom systems,
the dynamic behavior of the system is governed byN equations that take the general form

meqz̈(t)+ceqż(t)+ [keq+Fu(t)kp,eq]z(t) = p(t), (5.1)

wheremeq, ceq, keq and kp,eq are equivalent parameters defined in section 4.1,Fu(t) is the parametric
excitation applied to the multi-degree-of-freedom system, p(t) is the projection of the forced excitation
on the mode under consideration andz(t) is the modal coordinate corresponding to the mode studied. In
order to compare the results with the analytical expressions introduced in part 1, this equation needs to be
rewritten in a dimensionless form. A characteristic time isdefined as

Tcharact=

√

meq

keq
(5.2)

and the dimensionless time
τ =

t
Tcharact

(5.3)
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is introduced so that the derivative ofz with respect to the dimensional timet, ż, can be rewritten in terms
of the derivative ofzwith respect to the dimensionless timeτ, z′, as

ż=
z′

Tcharact
. (5.4)

Mathieu equation (5.1) can then be rewritten as

z′′(τ)+
ceq

keqTcharact
z′(τ)+

[

1+Fu(τ)
kp,eq

keq

]

z(τ) =
p(τ)
keq

. (5.5)

This equation is equivalent to the single-degree-of-freedom dimensionless Mathieu equation for the modal
coordinatez(τ)

z′′(τ)+2ξz′(τ)+ [1+u(τ)]z(τ) = w(τ) (5.6)

if the damping coefficientξ is related to the physical parameters of the problem by

ξ =
ceq

2keqTcharact
(5.7)

and the forced and parametric excitationsw(τ) andu(τ) are respectively defined by

w(τ) =
p(τ)
keq

= α
Fw(τ)
keq

and u(τ) =
Fu(τ)kp,eq

keq
, (5.8)

whereα is given by (4.13). From the definition of the power spectral density (A.3), the power spectral
density of a signalβy as a function of the dimensionless frequencyf/ f ∗ is related to the power spectral
density of the signaly function of the frequencyf by

Sβy( f/ f ∗) = β2 f ∗Sy( f ). (5.9)

The constant power spectral densities ofFw(t) andFu(t) (denotedS̃w( f ) and S̃u( f ) and functions of the
dimensional frequencyf ) are therefore related to the power spectral densitiesSw( f Tcharact) andSu( f Tcharact)
(functions of the dimensionless frequencyf Tcharact) of w(τ) andu(τ) by

Sw =
S̃w

Tcharact

(

α
keq

)2

and Su =
S̃u

Tcharact

(

kp,eq

keq

)2

. (5.10)

Accordingly, (5.1) and (5.6) provide the same solutionz if the dimensional and dimensionless times are
related by (5.3), the damping coefficients by (5.7) and the power spectral densities of the excitations
by (5.10).

5.1.2 Constraints on the parameters

This section aims at listing the practical limitations on the parameters for the experimental validation of
the first passage time theory described in section 1.2. As illustrated in section 4.1.1, a set of equivalent
parameters is associated to each mode. Those are linked to the geometrical and physical parameters of the
structure and cannot be changed without redesigning a new experimental set-up. The equivalent parame-
ters of several bending modes have however been identified and the choice of the mode remains free. The
limitations detailed in this section restrain, on the one hand, the choice of the bending mode studied and,
on the other hand, the definition of the excitation applied tothe structure.

As shown in section 4.2, at least 20 000 samples are required to obtain a smooth average first passage
time map using numerical simulations. The same constraint applies to the experimental tests. In order to
observe experimentally reduced first passage times

1
4
USu =

1
4

Ũ
Tcharact

S̃u

Tcharact

(

kp,eq

keq

)2

=
ŨS̃u

4

(

kp,eq

keqTcharact

)2

(5.11)
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in a reasonable dimensional timẽU , the coefficientS̃u
(

kp,eq/
[

keqTcharact
])2

has to be as large as possible.
This has an influence on the choice of the mode, since bending modes characterized by a large value of the
ratio kp,eq/

[

keqTcharact
]

are therefore to be preferred. To achieve this objective, the parametric excitation
power spectral densitỹSu should also be as high as possible.

As shown in section 1.2.4, whena is larger than 2, the iso-time curves in the multiplicative regime
are characterized by a negative slope equal to 2−a (in the case of broadband excitations). The higher the
damping factora, the higher the slope (in absolute value) and the more difficult the identification of the
multiplicative regime since the part of the multiplicativeregime reachable in a reasonable amount of time
reduces to the bottom right corner that is characterized by the highest coefficient of variation (section 1.2.2).
According to (5.7) and (5.10), the dimensionless coefficient a is related to the dimensional parameters of
the problem by

a=
8ξ
Su

= 4
ceqkeq

k2
p,eqS̃u

. (5.12)

In order to minimizea, the ratioceqkeq/k2
p,eq should be minimized and high values ofS̃u must be applied.

The above considerations form a set of guidelines for the model reduction. Given the equivalent pa-
rameters of the first six bending modes of the structure identified in section 4.1, they provide the ultimate
justification supporting the selection of the second bending mode, as already implemented in section 4.1.
The equivalent parameters of the second bending mode are given by

Tcharact= 4·10−3 s, kp,eq= 39 m−1, keq= 3273 Nm−1, (5.13)

ceq= 0.08 N[m/s]−1, and meq= 0.05 kg.

The dimensionless parameterξ = 4·10−3 is therefore much smaller than one, as required by the theoryto
have a quasi-Hamiltonian system.

Regarding the definition of the excitations applied to the structure, other conditions have to be met by
Fu andFw. From a practical point of view, combinations of the power spectral densities and frequency
bands have to give rise to maximal amplitudes less than 9 N forthe parametric and forced excitations. This
corresponds to the limitation of the shakers mounted on the structure (section 2.3). In any case, given
the lightness of the structure, it is not safe to apply largerforces. One must also keep in mind that the
dimensionless parametersSu andSw have to remain significantly less than 1 (in practice, less than 0.1) so
that the system remains quasi-Hamiltonian.

All these constraints on the parameters hold for the remaining of the chapter. In the following sections,
other conditions will be added to address different specificcases and will be detailed when required. Sec-
tion 5.2 is devoted to the study of the experimental one-degree-of-freedom Mathieu equation. It focuses
on both the linear case and the nonlinear one. In section 5.3,a brief study of the multi-degree-of-freedom
Mathieu equation is performed.

5.2 Single-degree-of-freedom system first passage time

This section focuses on the one-degree-of-freedom Mathieuequation and the experimental study of its
first passage time. The first paragraph briefly lists the conditions on the excitations that are valid in the
whole section,i.e. those that ensure that the assumption of a single-degree-of-freedom system is verified.
Then, the linear equation is studied. Eventually, the amplitudes of the forces are increased to excite the
nonlinearities of the structure.
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5.2.1 Constraints on the excitations

Some constraints on the excitations have to be added with respect to those described in section 5.1.2. First,
because this section is devoted to the study of the single-degree-of-freedom Mathieu equation, the condi-
tions under which the model reduction is valid must be met. These conditions are detailed in section 4.1.
In practice,Fw has to be defined on a frequency band centered on the natural frequencyf0 selected for the
model reduction and sufficiently narrow.Fu must not be too high in amplitude and the second harmonic
of the other bending modes should not be included in its frequency band. Then, it was shown numerically
in section 4.2 that first passage time maps similar to the analytical broadband ones can be obtained with
narrow-band excitations provided that the frequency intervals of definition ofFw andFu include respec-
tively the natural frequencyf0 (condition similar to the condition for the validity of the model reduction)
and its second harmonic 2f0.

5.2.2 Linear Mathieu equation

In order to avoid exciting the nonlinearities of the structure, the forced and parametric excitations should
be kept as small as possible. Based on all the conditions pertaining to the forced and parametric excita-
tions, they are defined as follows. The forced excitation is defined as a narrow-band process of constant
power spectral densitỹSw = 5·10−3 N2/Hz on the frequency interval[0.87f0 ; 1.13f0] = [34 ; 44] Hz. This
frequency interval covers the natural frequency of the second bending mode but does not cover any of the
other natural frequencies of the strip. The parametric excitation is defined as a narrow-band process of con-
stant power spectral densitỹSu = 5·10−3 N2/Hz on the frequency interval[0.77f0 ; 2.57f0] = [30 ; 100] Hz.
This frequency interval covers the natural frequencyf0 and its second harmonic. It can be objected that
the second harmonic of the first bending mode and the natural frequency of the third bending mode are
also included. This is not an issue thanks to the high dampingratios of these two modes (Table 3.10).
Dimensionless parametersa, Sw andSu are obtained with (5.10) and (5.12) and given by

a= 132, Sw = 2.5·10−10 and Su = 1.8·10−4. (5.14)

As required by the theory to have a quasi-Hamiltonian system, Su andSw are much smaller than one. The
assumption of a quasi-Hamiltonian system is also checked further by analyzing the measured Hamiltonian.
The high value ofa does not mean that damping is high in absolute figures (ξ = 4·10−3 ≪ 1) but, merely,
that damping is high with respect to the parametric excitation intensity.

The approach followed numerically cannot be chosen to buildthe experimental first passage time map
because it is not possible to compute the Hamiltonian at eachtime of acquisition and to stop the acquisition
when a given Hamiltonian is reached. Another approach, thatis based on a single time-recording of the
structure response, is therefore followed. This approach is described in the next paragraphs.

First, data acquisition is performed in the lab on the real structure. The reader is referred to section 2.3
for more details about the measurement chain. The structureis excited by the horizontal and vertical shak-
ers for 30 minutes and the response of the structure is measured at point P3 with the laser transducer. The
point P3 (Fig. 3.4) corresponds to an antinode of vibration of the second bending mode (Fig. 3.22(b)). It
has been selected according to section 4.1.1 to limit the influence of the other bending modes.

Data acquisition and signal processing are carried out using theLMS Test.Lab software and theLMS
SCADAS Lab acquisition system. For the study of first passage time and the recording of time signals, the
tool Multi-axis Random Control of the moduleTest.Lab Environmental is chosen. This tool is presented in
LMS documentation as a solution for advanced vibration testingand closed-loop multi-shaker control [43].
The system implements a reliable, fast and accurate controlalgorithm. In the current case, this module
is particularly well suited since the objective is to apply forced and parametric excitations that are char-
acterized by a power spectral density as close as possible toa constant in a given frequency band. The
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tool Multi-axis Random Control allows to define and control a random excitation that matchesa predefined
power spectral density profile. Power spectral densities ofthe parametric and forced excitations measured
experimentally on the structure are plotted in Fig. 5.1 withthe target power spectral densities defined as
references (dotted lines).

FIGURE 5.1 - Power spectral densities of the forced and parametric excitations measured experimentally
(solid lines) and reference power spectral densities (dotted lines).

Fig. 5.2 shows a part of the time series of the velocity ˙x measured at point P3. Its power spectral density
is represented in Fig. 5.3 and shows that the peak at the natural frequency dominates the other peaks. This
confirms that the structure responds quasi exclusively in the second bending mode at point P3. The forced
and parametric excitations applied to the structure therefore allow to meet this necessary condition required
for the model reduction to be valid.

FIGURE 5.2 - Fragment of the time evolution of
the velocity measured at point P3.

FIGURE 5.3 - Power spectral density of the
velocity measured at point P3.

The response of the structure measured at point P3 in terms ofvelocity ẋ(t) is then numerically inte-
grated to compute the evolution with time of the position of point P3. Since the structure responds only in
the second bending mode, the positionx(t) is directly related to the modal coordinatez(τ) of (5.6) and the
dimensionless Hamiltonian corresponding to this equationis computed as

H =
z2

2
+

[z′]2

2
=

z2

2
+

[żTcharact]
2

2
. (5.15)
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A fragment of the time evolution of the Hamiltonian is plotted in Fig. 5.4. The condition of a quasi-
Hamiltonian system can be verified graphically by representing the response of the structure in the phase
plane(x, ẋ). Fig. 5.5 shows three segments of the trajectory of the system. They appear to be nearly tangent
to the ellipses of constant energy so that the Hamiltonian varies only by a small quantity over one period
of revolution of the unperturbed dynamical system.

FIGURE 5.4 - Fragment of the time evolution of
the HamiltonianH.

FIGURE 5.5 - Three fragments of the measured
experimental trajectory of the system in the phase

plane and contours of the HamiltonianH.

The average first passage time map corresponding to the evolution of the Hamiltonian of the system
with time can then be built. If the time signal is sufficientlylong, the same level of energy is reached several
times and the system passes many times from initial energiesH0 to higher energiesHc = H0+∆H. Both
energy axes are discretized in a finite number of values. The intervals between these values are chosen with
uniform sizes on a logarithmic scale as this is the physical scaling suggested by the stochastic model. The
mean first passage time corresponding to each point of the map(i.e. each combination of initial energy
H0 and energy increment∆H) is obtained by averaging all the first passage times corresponding to the
transitions between these levels of energy. The map obtained is represented in solid lines in Fig. 5.6. The
main drawback of this method is that it provides an average map that does not show the same quality every-
where because the number of samples used in the averaging is not the same in the whole space(H∗

0 , ∆H∗).
Indeed, for a givenH∗

0 , points of the map characterized by small∆H∗ are described by a larger number of
experimental data than the points with large∆H∗ as the system needs to go through lower energy levels
before reaching any higher energy level.

Fig. 5.6(a) compares the experimental results with the analytical average first passage time map ob-
tained under the assumption of broadband excitations. The results are qualitatively similar and the general
trend of the average first passage time is recovered experimentally. In spite of the very small value ofSu,
the damping factora is large and a shift between the curves is observed, in agreement with the conclusions
drawn in section 4.2.

Fig. 5.6(b) compares the experimental results with the map obtained using Monte Carlo simulations of
the numerical system subjected to narrow-band excitations. Globally, a good quantitative match between
the two maps is observed and the global behavior of the mean first passage time is recovered. The different
regimes can be analyzed separately.
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(a) (b)

FIGURE 5.6 - Reduced average first passage timeU1Su/4 as a function ofH∗
0 and∆H∗. Comparison of the

maps obtained experimentally and numerically for narrow-band excitations (Fu on [0.77f0 ; 2.57f0], Fw on
[0.87f0 ; 1.13f0]) and analytically for broadband excitations (a= 132,Sw = 2.5·10−10, Su = 1.8·10−4).

The additive regime is well represented. In the left part of Fig. 5.6(b), the experimental curves tend
towards horizontal asymptotes, at least for sufficiently large values of the increment∆H∗. The incubation
regime can be highlighted by considering cross-sections ofthe map at constant values ofH∗

0 . Fig. 5.7(a)
shows the evolution of the average first passage time as a function of ∆H∗ for H∗

0 = 2·10−2 and 2·10−3.
Crosses represent the average first passage time extracted from the experimental data. Dotted lines are
obtained by linear regression of the experimental data. Thecoefficients of determination are higher than
0.99 and the linear trend characteristic of the incubation regime is well recovered. Fig. 5.7(b) demonstrates
that the incubation regime is however limited to small values of ∆H∗. The linear behavior is lost outside
the incubation regime for larger values of∆H∗.

(a) (b)

FIGURE 5.7 - Cross-sections of the average first passage time map (Fig. 5.6(b)) forH∗
0 = 2·10−2 (in blue)

andH∗
0 = 2·10−3 (in green).
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The multiplicative regime cannot be rigorously observed inFig. 5.6(b). In the right part of the figure,
the curves show the same negative slope but the multiplicative regime is not yet reached since the highest
value ofH∗

0 is of the order of 10−1.5 while the multiplicative regime appears forH∗
0 ≫ 1. On the one hand,

larger values ofH∗
0 must be avoided here since this can trigger the nonlinearities in the system. On the

other hand, it was shown in section 1.2.4 that, for damped systems subjected to broadband excitations, the
asymptotic slope in the multiplicative regime equals 2−a. This result is certainly not directly valid in the
narrow-band excitations case but suggests that, given the high value ofa= 132, the part of the multiplica-
tive region reachable in a limited amount of time reduces to the bottom right corner. Because this corner is
characterized by high coefficients of variation, very long time signals are required to get a smooth map in
this region.

The differences between the numerical and experimental results can be ascribed to different factors.
First, the experimental conditions never match exactly thenumerical ones. For instance, the power spectral
densities of the excitations are not perfectly constant on the frequency band of definition, and do not drop
to zero outside this interval (Fig. 5.1). Then, the structure is inherently a multi-degree-of-freedom system
and it is not possible to excite a single mode of the structure. Even if Fig. 5.3 shows that the structure
responds mainly in its second bending mode at point P3, the other modes also slightly contribute to the
response of the structure, which limits the validity of the reduced model. Modeling errors are also inher-
ent to the process. Therefore, the response at point P3 is notexactly described with the linear Mathieu
equation (4.11) with the equivalent parameters identified in section 4.1. Structure nonlinearities can also
be a source of differences between the numerical and experimental results. Even if the intensities of the
excitations have been chosen extremely small to limit the excitation of the nonlinearities, those are inherent
to the structure. When the system is excited, the Hamiltonian increases and can reach high values (corre-
sponding to high displacements and/or high velocities) so that the strip enters the nonlinear regime, even
for small excitations. Finally, it can be noted that the experimental curves could be smoothed by increasing
the length of observation. Here, the different points of themap are obtained by averaging between 4000
and 17 000 experimental samples. Increasing the number of samples would increase the quality of the map.

The requirement to include the second harmonic of the natural frequency in the frequency band of the
parametric excitation has been introduced in section 4.2.3based on numerical simulations but can also be
illustrated experimentally. The forced excitation is defined as a narrow-band process of constant power
spectral densitỹSw = 4·10−3 N2/Hz on the frequency interval[0.87f0 ; 1.13f0] = [34 ; 44] Hz. This fre-
quency interval does not cover any of the other natural frequencies of the strip. The parametric excitation is
defined as a narrow-band process of constant power spectral densityS̃u = 6·10−3 N2/Hz on the frequency
interval [0.76f0 ; 1.27f0] = [30 ; 50] Hz. This frequency interval covers the natural frequency f0 but not
its second harmonic. Fig. 5.8 compares the average first passage time map obtained experimentally with
the analytical results obtained under the assumption of broadband processes. As already mentioned in
section 4.2, the results are totally different when the second harmonic is not included. In Fig. 5.8, none of
the three theoretical regimes can be identified.

In conclusion, the excitation of the designed experimentalset-up with the right forced and parametric
excitations allows to observe the incubation and the additive regimes. In order to observe rigorously the
multiplicative regime, the coefficienta should be decreased. The damping factora is related to the other
dimensional parameters of the problem by (5.12). In order toensure the validity of the multi-degree-
of-freedom system reduction and that the nonlinearities are not excited,S̃u should not be increased. The
structure has therefore to be redesigned. The equivalent parameterskeq, and thereforea, could be decreased
by decreasing the initial pre-stress (see the definition of the equivalent parameters in section 4.1.1). Another
way of decreasinga is to decrease the length of the strip. It is indeed checked numerically that this
modification has the effect of decreasing the ratiokeq/k2

p,eq.
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FIGURE 5.8 - Reduced average first passage timeU1Su/4 as a function ofH∗
0 and∆H∗. Comparison of the

maps obtained experimentally for narrow-band excitations(Fu on [0.77f0 ; 1.27f0], Fw on
[0.87f0 ; 1.13f0]) and analytically for broadband excitations (a= 108,Sw = 2.5·10−10, Su = 2.2·10−4).

5.2.3 Nonlinear Mathieu equation

The same exercise can be carried out with a larger excitationtriggering some nonlinearities of the struc-
ture. In this section, the structure is subjected to forced and parametric excitations defined on the same
frequency bands as in Fig. 5.6 but the power spectral densities are increased by one order of magnitude.
The Hamiltonian is still computed by (5.15) whereTcharact is linked to the natural frequency identified at
low level when the system behaves linearly. Note that this isan approximation of the actual energy since
the functional dependency of the energy is modified by nonlinearities. This approach to compute the en-
ergy is suggested in [20].

The experimental average first passage time map obtained is represented in Fig. 5.9 and compared
with the numerical map corresponding to the equivalent dimensionless parameters that characterize the
experimental test,i.e.

a= 29, Sw = 3·10−9 and Su = 8·10−4. (5.16)

This figure shows that the main characteristics of the average first passage time map can still be observed,
but the experimental curves are shifted with respect to the curves obtained with the linear numerical model.
The additive regime is observed for smallH∗

0 . WhenH∗
0 increases, the curves go down with similar neg-

ative slopes. The slope has decreased in absolute value withrespect to the previous linear case (Fig. 5.6)
as the coefficienta is smaller. Fig. 5.10 shows cross-sections of the map for constant values of the initial
energy level. For small energy increments, a more or less linear behavior is observed. This linear behavior
in the incubation regime is however not as strong as in the reference case (coefficient of determination
close to 0.9).
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FIGURE 5.9 - Reduced average first passage time
U1Su/4 as a function ofH∗

0 and∆H∗. Comparison
of the maps obtained experimentally and

numerically for narrow-band excitations (Fu on
[0.77f0 ; 1.27f0], Fw on [0.87f0 ; 1.13f0]). a= 29,

Sw = 3·10−9, Su = 8·10−4. Nonlinear case.

FIGURE 5.10 - Cross-sections of the average first
passage time map (Fig. 5.9) in the incubation

regime forH∗
0 = 5·10−2 (in blue) and

H∗
0 = 6·10−3 (in green).

Experimental data and linear regression.
Nonlinear case.

5.3 Multi-degree-of-freedom system first passage time

Numerical study of the first passage time of the multi-degree-of-freedom system would be prohibitively
expensive in terms of computation time since it requires a large number of numerical integrations of a
system with many degrees of freedom. Only experimental tests performed on the physical set-up of the
structure are therefore reported in this section. The intensities of the excitations are chosen sufficiently
small to limit the excitation of the system nonlinearities.

The forced excitation is defined as a narrow-band process of constant power spectral densitỹSw =
10−4 N2/Hz on the frequency interval [30 ; 70] Hz. As a first attempt toexplore the dynamics of the
multi-degree-of-freedom system, this frequency intervalcovers the second and the third bending modes of
the strip. The parametric excitation is defined as a broadband process of constant power spectral density
S̃u = 8·10−6 N2/Hz on the frequency interval[10 ; 400] Hz.

As far as the multi-degree-of-freedom equations of motion can be decoupled in a set of single-degree-
of-freedom motion equations of the form (5.1), the Hamiltonian of the multi-degree-of freedom system
can be expressed as

H(t) =
1
2∑

i

meq,i q̇2
i (t)+

1
2∑

i

keq,i q2
i (t), (5.17)

wheremeq,i andkeq,i are the equivalent mass and stiffness coefficients of modei andqi(t) is thei-th modal
coordinate. The physical response of the structure at the degree of freedomnP writes

x(t) =∑
i

Φ(nP, i)qi(t). (5.18)
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In the current case, even if the forced excitation covers only two modes of the structure, the other
modes are also excited. Indeed, the broadband parametric excitation covers the second harmonics of the
other bending modes so that they are also triggered. The firstsix bending modes are therefore taken into
account in the computation of the Hamiltonian. The equivalent parameters of the different bending modes
have been identified in section 4.1 about the model reduction. The modal coordinatesqi(t) are extracted
from the measured velocity signal. The productsΦ(nP, i)qi(t) are obtained by filtering the signal around
the natural frequencies of the corresponding mode. Theqi(t) are obtained by dividing these products by
Φ(nP, i), the value of the mode at the point where the velocity is measured. This method assumes that an
accurate numerical model of the structure is available.

The experimental map is obtained using the same algorithm asbefore. The results are shown in
Fig. 5.11. A global behavior similar to the one expected for single-degree-of-freedom systems is observed.
The first passage time is approximately independent of the initial energy levelH0 whenH0 is small and
∆H sufficiently high. This corresponds to the additive regime.The beginning of a multiplicative regime
is also observed for the largest values of the initial energylevel. An incubation regime is identified for
small values of the energy increment∆H. Fig. 5.12 illustrates the linearity of the first passage time in the
incubation regime.

FIGURE 5.11 - Average first passage timeŨ1 [s]
as a function ofH0 and∆H. Map obtained

experimentally for broadband excitations (Fw on
[30 ; 70] Hz,Fu on [10 ; 400] Hz).

S̃w = 10−4 N2/Hz, S̃u = 8·10−6 N2/Hz.

FIGURE 5.12 - Cross-sections of the average first
passage time map (Fig. 5.11) forH0 = 10−5 J (in

blue) andH0 = 10−5.5 J (in green).
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CONCLUSIONS AND PERSPECTIVES

This work aimed at designing and using an experimental set-up to illustrate and provide empirical evidence
of the main results of the theory of first passage time developed in [36, 37]. As reported in the first part
of the work, the current theory applies to quasi-Hamiltonian systems meeting three strong and restrictive
conditions. Firstly, the system is characterized by a single degree of freedom. Secondly, the dynamics of
the system is governed by a linear Mathieu equation. Thirdly, the system is subjected to broadband forced
and parametric excitations (δ-correlated Brownian processes).

In order to provide a sound empirical validation of the theory, the challenge was therefore to design
an experimental set-up using a real mechanical structure that nevertheless complies with the three above
conditions to a reasonable level of approximation. The selected structure consists in a vertical steel strip
pre-stressed by a mass. It is excited by horizontal and vertical shakers to apply, respectively, the forced and
parametric excitations.

First, a finite element model of the mechanical structure hasbeen built to get a deep insight into its
dynamics and help guiding the choice of the experimental parameters. The Least Square Complex Ex-
ponential, Least Square Frequency Domain and Stochastic Subspace Identification methods have been
applied to conduct the experimental modal analysis of the strip. After updating, the numerical model re-
produces the modal properties of the real strip with a very good accuracy.

The inherently multi-degree-of-freedom system must be reduced to match the assumption of a single-
degree-of-freedom system behind the analytical theory of first passage time. This is done by defining the
forced and parametric excitations as narrow-band random processes triggering only one bending mode of
the structure. The amplitudes of the forced and parametric excitations have also to be kept small to avoid
entering the nonlinear regime.

Since analytical results are not available for the first passage time of systems subjected to narrow-band
excitations, a numerical study has been performed and some general conclusions have been drawn about
the influence of the frequency bands of the forced and parametric excitations on the first passage time.
The general behavior of the average first passage time for broadband excitations is recovered in the whole
map as long as the natural frequency of the oscillator is included in the frequency band of the forced ex-
citation and the frequency band of the parametric excitation contains the second harmonic of the natural
frequency. When these conditions are met, small quantitative differences can be observed when broadband
or narrow-band excitations are used but the dynamics remains qualitatively similar. The shift between the
corresponding maps increases when the frequency bandwidths decrease. It also increases with the ampli-
tude of the parametric excitation and with the damping factor.
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The previous steps provide a rationale for selecting the appropriate parameters of the experimental
testing. The experimental first passage time map has been built and compared with the theoretical and
model results. A good quantitative match is observed between the experimental map and the numerical
results obtained with Monte Carlo simulations of the systemsubjected to narrow-band excitations. The
experimental results are also qualitatively similar to thetheoretical ones for broadband excitations. Both
the additive and incubation regimes are clearly identified.Only the beginning of the multiplicative regime
can however be observed. Some results related to the multi-degree-of-freedom system and the excitation of
its nonlinear characteristics have also been presented andsimilar regimes have been observed. The current
work provides therefore a sound experimental validation ofthe theory of first passage time.

The concepts presented and illustrated in this report can appear very theoretical and the considered
experimental set-up, while realistic, is still rather simple with respect to actual mechanical systems en-
countered in the industry. Nevertheless, this work furtheropens the way to promising applications of the
concept of first passage time to revisit many problems in all fields of engineering. Some typical examples
of application in various areas of engineering are briefly described below.

Sheet metal coating process The simple geometry of the experimental academic set-up studied in this
work is very close to the geometry presented in [19] which details the process of galvanization of metal
sheets. Galvanization is the process of applying a protective zinc coating to steel or iron to prevent rusting.
Fig. I represents the geometry of the industrial galvanization tool studied in [19] that looks similar to the
pre-stressed strip studied in this work. First, the very thin metal sheet is drawn through a bath of melted
zinc. Then, it is dried in air and transported between two rollers so that the zinc solidifies.

FIGURE I - Sheet metal coating process: metal sheet moving between two rollers at the translation speedv
and subjected to tension [19].

Vibrations come from different mechanisms. An external excitation is produced by the eccentric ro-
tation of the rollers. This triggers out of plane vibrationsof the sheet. This source of excitation can be
reduced by detuning the rollers rotation frequency from anynatural frequency of the sheet or by reducing
roller eccentricity by frequent servicing of the rollers’ bearings. This source of excitation is however never
completely suppressed as the bearings experience rapid wear in the zinc bath. Another external forcing is
experienced by the metal sheet during the drying phase when air is blown on the surface to speed up the
drying. Then, the metal sheet also experiences a time-varying tension. Fig. II shows the temporal evolution
of the tension (measured experimentally on a real set-up), which varies randomly by up to 10% of the mean
tension. This causes a random parametric excitation of the structure.
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FIGURE II - Tension measured experimentally on a plate during the coating process [19].

The vibration of metal sheets during zinc coating processescan lead to uneven coating thickness and
overall poor product quality. It must therefore be controlled. It is suggested here that the theory of first
passage time could provide an efficient framework for the design of such mechanical systems. The metal
sheet is indeed subjected to both forced and parametric stochastic excitations, which corresponds to the
conditions of the Mathieu equation. The first passage time theory could help to answer the question of the
design of the velocityv of the sheet, the design of the rollers and the conditions of air blowing to apply
so that the plate does not reach a too high energy level in the time required for the complete coating and
drying process.

This real industrial application departs however from the restrictive conditions of the theory devel-
oped analytically. Firstly, this structure can a priori notbe simply modeled by a single-degree-of-freedom
system. Secondly, the forced and parametric excitations are not broadband processes of constant power
spectral densities. Fig. III shows an example of the power spectral density of the experimentally measured
time-varying tension (the parametric excitation) that does not appear to be constant on the complete fre-
quency band. Thirdly, it should also be noted that the crowned shape of the roller creates spatially varying
tension in the lateral direction ( ˆy in Fig. I). This influences the linear vibration characteristics of wide sheets
and a nonlinear theory of first passage time needs therefore to be developed.

FIGURE III - Power spectral density of the tension
measured experimentally on a plate during the

coating process [19].

FIGURE IV - Power spectral densities of the forced
and parametric excitations acting on a crane

measured during wind tunnel tests [35].
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Wind engineering As already introduced in [35], the first passage time theory provides a nice new
analysis tool in experimental wind engineering. In this field, transient regimes are indeed induced by
the aerodynamic loading providing forced and parametric random excitations. The increasing number
of accidents due to high wind and to autorotation of tower cranes motivates the search for new efficient
scientific methods. Since the dynamics of a tower crane that is left free to rotate in turbulent (and therefore
random) wind field can be modeled by a governing equation of the form of the linear Mathieu equation,
the first passage time theory appears as a good candidate for the study of such systems. The first passage
theory could help to predict the time required for the crane to exhibit large amplitude oscillations or even
complete autorotations under given wind conditions. This could also help to predict the duration of the
tests in wind tunnels required to reach some energy levels. In the case of rotation of tower crane, the
assumption of single-degree-of-freedom structure is not far from reality since the focus is mainly put on
the rotation angle. Tests in wind tunnels have revealed thatthe power spectral densities of the excitations
are not broadband processes (Fig. IV), but are closer to narrow-band processes similar to those studied in
this work.

Microelectromechanical systems Some applications can also be found on smaller length scales, in mi-
croelectromechanical systems (MEMS). As one example amongothers, MEMS used for the detection of
particles are of great societal value. These systems are widely used in airports and public places to detect
explosives on people and luggage. Such systems are often based on Ion Mobility Spectrometry that con-
sists in ionizing the sample, applying an electrical field and detecting the concentration of ions that gain a
specific velocity [10]. It is suggested here that the theory of first passage time could help to design such
systems and understand which parameters of the problem could be tuned to minimize the detection time,
i.e. the first passage time at a given energy level. This would allow to reduce waiting time in airports.

Predictive maintenance The theory of first passage time could also be applied to predictive maintenance
tools. Predictive maintenance techniques are designed to determine the condition of in-service equipment
and predict when maintenance should be performed. The theory would also help to design a structure so
that the first failure occurs late enough with a given probability.

The above examples in various fields of engineering show thatthe theory of first passage time seems
very promising but needs some further developments to characterize real life systems, which are often
(always) multi-degree-of-freedom, nonlinear and subjected to colored excitations.

The current work contributes to broadening the scope of the first passage time theory introduced
in [36, 37] beyond the context of one-degree-of-freedom linear Mathieu systems subjected to broadband
excitations considered so far. It is also a first physical evidence that the first passage time of real multi-
degree-of-freedom mechanical systems can be characterized with the physical properties of the structure.
Moreover, by studying numerically and experimentally oscillators subjected to narrow-band excitations,
some general conclusions have been drawn. The first experimental results related to the first passage time
maps of nonlinear and multi-degree-of-freedom systems have also been reported.

This study suggests that work is still needed to go further with analytical, numerical and experimental
studies of the first passage time of systems subjected to colored excitations, showing nonlinear behavior or
inherently multi-degree-of-freedom. In this regard, the specific experimental set-up considered here could
be used to carry out an experimental study of the higher ordermoments of the first passage time of systems
subjected to narrow-band processes. Besides, a nonlinear model could also be built to support a detailed
numerical and experimental study of the influence of nonlinearities on the first passage time map. More
generally, analytical studies of the first passage time of systems subjected to colored excitations, and in
particular to narrow-band excitations, could be conductedto get a better insight into the phenomena.
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APPENDIX A

NUMERICAL GENERATION OF STOCHASTIC PROCESSES

The first passage time theory introduced in section 1.2 applies to oscillators subjected to broadband random
excitations characterized by a constant power spectral density (PSD). Narrow-band excitations are however
also considered in this work. The objective of this appendixis to define the main conventions used through
the work and to describe how such stochastic processes can begenerated numerically.

A.1 Power spectral density

Different conventions are used in the literature to define the power spectral density. This section defines
the specific conventions used in this report and explains howthe PSD are computed numerically.

A.1.1 Definition

The stochastic processx(t) can be seen as a succession of random variables [14]. The value taken byx at a
given instantt = t1 is a random variableX1 := x(t1). The first moment of the random processx is therefore
a function of time and can be evaluated at any timet1 by

µx(t1) = E [X1] . (A.1)

The autocovariance function of the stochastic processx is defined by

Rx(t1, t2) = E [X1X2]−µx(t1)µx(t2), (A.2)

whereX2 := x(t2). This function allows to quantify the degree of correlationbetween the values taken by
the process at two different instants. For stationary processes, the autocovariance function depends only on
the time increment∆t = |t2− t1| and is simply writtenRx(∆t). The Fourier transform of the autocovariance
function is the power spectral densitySx( f ), which is defined in the frequency domain by

Sx( f ) =
∫ +∞

−∞
Rx(τ)e− j2π f τdτ. (A.3)

The power spectral density describes the distribution of power into frequency components making up the
signal. The integral of the power spectral density over the whole domain of frequency gives the variance
of the signal ∫ +∞

−∞
Sx( f )d f = σ2

x (A.4)

and is therefore linked to the total energy of the signal.
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Under the assumption of ergodicity, the power spectral density of a stationary process can be estimated
from a single realizationxi(t) by

Sx( f ) = lim
T→∞

1
T
|Xi( f ,T)|2, (A.5)

whereXi( f ,T) is the truncated Fourier transform of the process

Xi( f ,T) =
∫ +T/2

−T/2
xi(t)e

− j2π f tdt. (A.6)

A.1.2 Numerical computation

Numerically, power spectral densities are usually not computed by (A.5). In order to limit the importance
of the two underlying assumptions (i.e. ergodicity and stationarity of the process), the power spectral
density is computed by the Welch method [39]. This method consists in subdividing the time sample of
the process in several blocks, which may overlap (Fig. A.1).For each block, a formula similar to (A.5) is
used to get a spectrogram,i.e the power spectral density characterizing the block. An estimate of the power
spectral density of the process is obtained by averaging allthe spectrograms.MATLAB function pwelch
provides the power spectral density estimated via Welch’s method.

FIGURE A.1 - Illustration of the Welch method for the computation ofthe power spectral density.

A.2 Random process generation

This section briefly explains how broadband and narrow-bandrandom processes are generated numerically.

A.2.1 Broadband noise generation

The analytical theory of first passage time relies on the assumption that the forced and parametric ex-
citations areδ-correlated Brownian white noises,i.e. stationary processes whose frequency content is
uniformly distributed onf ∈ ]−∞ ; +∞[. By (A.4), the energy associated with such a process would be
infinite, which is not physically acceptable. The autocovariance of such a process can be expressed as

Rx(∆t) = R0δ(∆t), (A.7)

which means that there is no correlation between the values taken by the process at two distinct instants,
even if the two instants are very close to each other. In practice, a finite discretization is used with a small
but non-zero time stepdt and no information is available about what happens between two generated val-
ues. Shannon theorem states that for a sampling frequencyfs = 1/dt, the frequency content outside the
interval [− fs/2 ; fs/2] cannot be represented.
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Numerically, a white noise of limited band with a constant power spectral densityS0 on the frequency
interval [− fs/2 ; fs/2] is therefore generated. The frequency content outside thisinterval is equal to zero.
The variance of this process is found using (A.4) and given byσ2 = S0 fs with the conventions adopted in
this report. One way of generating a Gaussian white noise therefore consists in generating a set of samples
coming from a Gaussian distribution of mean and variance specified.

A.2.2 Narrow-band noise generation

Two different approaches can be followed to define numerically narrow-band noises of constant power
spectral densities.

On the one hand, narrow-band processes can be generated by filtering a generated broadband white
noise and keeping only the frequency content of interest. The Filter Designer tool of theSignal Processing
MATLAB toolbox is used to design the filter [42]. A Butterworth filteris selected because it is considered
as the maximally flat magnitude filter and is designed to have afrequency response as flat as possible in the
passband [8]. Fig. A.2 shows an example of the results obtained with this generation method1. The blue
signal corresponds to the white noise defined on the whole frequency band. The signals shown in green
and red are obtained by filtering the blue signal with Butterworth filters of orders 60 and 90 respectively.
This generation method has a low computation time but the power spectral densities are not perfectly rect-
angular so that some leakage phenomena can be observed. The order increase is limited by stability issues.

On the other hand, a narrow-band signal can be defined in the frequency domain using (A.5) and
transposed in the time domain using Fourier transform theory [14]. The limit expression (A.5) is required
because a finite temporal signal cannot contain all the information required to describe the power spectral
density at low frequencies. In practice, however, the frequency content of the studied stochastic processes
is often included in a frequency interval[ fmin ; fmax]. The smallest frequencies can therefore be represented
with time signals of duration of the order of 1/ fmin, and the limit symbol can be omitted provided the time
signal is sufficiently long. The truncated Fourier transform of the signal must be such that

|Xi( f ,T)|=
√

TSx( f ). (A.8)

One way to satisfy this relation consists in choosing

Xi( f ,T) =
√

TSx( f )ejφ( f ), (A.9)

whereφ( f ) is an arbitrary phase (e.g. a random variable of uniform distribution in [0 ; 2π]). The inverse
Fourier transform eventually allows to generate the narrow-band process. This generation method is very
accurate (see the Fourier transform of the signal generatedin Fig. A.3) but the passage from the frequency
domain to the time domain using an inverse Fourier transformrequires a large computation time. As il-
lustrated in Fig. A.4, the computation time of the first method is smaller than the computation time of the
second one2.

For the current study,i.e. the numerical construction of first passage time maps, it is checked that both
methods of narrow-band processes generation provide the same final map, with similar convergence rates.
Narrow-band processes are therefore obtained by filtering broadband processes since this method is much
less demanding in computation time.

1Only the half parts of the PSD corresponding to positive frequencies are represented as PSD are symmetric with respect to
the origin.

2Simulations done on a PC (Windows 10) with an Intel Core I7 processor.
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(a) Force signal. (b) Power spectral density.

FIGURE A.2 - Stochastic processes and corresponding power spectral densities. The blue signal is a
broadband process defined on the whole frequency band (SF = 10−2 N2/Hz, fs = 500 Hz). The green and
red signals are obtained by filtering the blue signal with Butterworth filters of orders 60 and 90 between

30 and 50 Hz and between 120 and 200 Hz.

FIGURE A.3 - Fast Fourier transform of the
narrow-band noise between 30 and 50 Hz

generated by the second method
(SF = 10−2 N2/Hz, fs = 500 Hz).

FIGURE A.4 - Computation times of the two
narrow-band process generation methods

presented as a function of the lengthN of the
generated signal (fs = 500 Hz).
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APPENDIX B

NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

This appendix describes the numerical method used to integrate the governing equations and compute the
time response. It also defines the numerical parameters associated to this integration.

The structural response to external forced and parametric excitations is computed by direct integration
of the equations of motion using a Newmark integration scheme. Starting from given initial conditions for
the position and the velocity, the prediction/correction Newmark scheme is used to advance the solution
forward in time. The procedure is summarized in Fig. B.1.

This integration scheme is characterized by three distinctintegration parameters: the time step of
integrationh and the two parametersγ andβ. The parameterγ is set equal to 0.5 because this leads to the
minimum integration errors [16]. Moreover, since this value corresponds to the stability limit, it does not
induce artificial amplification nor damping of the response.To ensure an unconditionally stable integration
method,β must be equal to or greater than 0.25. The maximum accuracy isreached whenβ is exactly equal
to 0.25. For these reasons,β is set to 0.25 even if this choice does not minimize the integration errors. The
algorithm corresponding to these values ofγ and β is called “average constant acceleration” and is the
standard algorithm used in commercial codes. For a single-degree-of-freedom oscillator without damping,
the numerical damping associated to this algorithm is equalto zero while the relative error on the periodT
increases with the pulsationω as

∆T
T

∼ ω2h2

12
. (B.1)

A particular attention should be paid to the choice of the time step of integrationh. First, the time step
must be smaller than the characteristic time of the excitation. When the excitation is defined as a random
white process, this is not a constraint since there is no characteristic time associated with such a process.
For a harmonic excitation,h is defined in such a way that each period of the excitation is discretized with
at least 100 points. Then,h must be sufficiently small to represent the response of the system accurately.
At least 100 points are used to describe the smallest period (corresponding to the highest frequency) in
the response. Because damping is very low, it does not add additional constraints on the time step of
integration. Beside these conditions, the time step shouldalso be chosen in such a way that the periodicity
error (B.1) induced by the use of Newmark integration schemeis negligible for all frequencies of interest.
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Initial conditions
M ,C,K
x0, ẋ0

Computation of initial accelerations
ẍ0 = M−1(f0−Cẋ0−Kx0)

Time incrementation
tn+1 = tn+h

Prediction
ẋ∗n+1 = ẋn+(1− γ)hẍn

x∗n+1 = xn+hẋn+(0.5−β)h2ẍn

Evaluation of accelerations
S= M +hγC+h2βK

Sẍn+1 = fn+1−Cẋ∗n+1−Kx∗
n+1

Correction
ẋn+1 = ẋ∗n+1+ γhẍn+1

xn+1 = x∗n+1+βh2ẍn+1

FIGURE B.1 - Newmark integration scheme for linear systems [16].
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