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ABSTRACT

The first passage time refers to the time required for a dycersi/stem to reach a target energy level for
the first time, starting from a known initial state. This cepthas been developed as an efficient alternative
to the classical stability theories that are no longer @¢wn the stochastic context. Analytical studies
of single-degree-of-freedom systems governed by therikkzhieu equation and subjected to broadband
forced and parametric excitations have revealed the existef different regimes for the first passage time.

This Master thesis aims at the experimental validation ®ftkistence of these regimes for a real struc-
ture. The experimental set-up consists in a vertical stépgressed by a mass and subjected to forced and
parametric excitations. The complete process, from thetstre design to the experimental validation, is
conducted in this work.

A finite element model of the structure is built MATLAB to get a numerical representation of the
dynamics of the structure. The model is updated by implemgnarious state-of-the-art techniques from
the field of experimental modal analysis. Data acquisitiod signal processing are carried out using the
LMS Test.Lab software and theMS SCADAS Lab acquisition system.

A model reduction of the full multi-degree-of-freedom ®ystis introduced to match the conditions
of the analytical results. It is shown that the dynamics ef skructure can be approached by a single-
degree-of-freedom reduced model if both the forced andhpetréc excitations are narrow-band processes
triggering only one mode of the structure. The influence afave-band excitations on the first passage
time is therefore studied numerically. Behaviors simitathe broadband excitations case considered in
the analytical study can be recovered when the frequenay dithe forced excitation includes the natural
frequency of the oscillator and the frequency band of tharpatric excitation contains the corresponding
second harmonic. Depending on the other parameters of dbvéepn, small quantitative differences can be
observed but the dynamics remains qualitatively similar.

The results of this numerical preparatory study are usectioa the conditions of the experimental
tests. First passage time maps are reproduced experitgentdie framework of the linear single-degree-
of-freedom Mathieu equation. Some tests are also carriedoaget a first insight into the first passage
time maps of nonlinear or multi-degree-of-freedom systems

This work provides the first physical evidence that the fissgage time of real multi-degree-of-
freedom systems can be characterized with the physicakpiep of the structure. It also addresses for
the first time the influence of narrow-band excitations. €fane, it opens the way to broadening the scope
of the first passage time theory beyond the context of onesdegf-freedom linear systems subjected to
broadband excitations considered so far.
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INTRODUCTION

Many engineering problems involve systems subjected to footed and parametric excitations. Paramet-
ric excitations differ from forced excitations since thaation appears as a time varying modification of
a system parameter. The dynamics of many such systems caadstet by the linear Mathieu equation
that, for a damped system, takes the general form

X4 28X+ [+ u(t)] x = w(t),

wherew(t) andu(t) denote respectively the forced and parametric excitatidpplications of this equa-
tion are present in all fields of engineering. This equatian for instance model parametric vibrations of
cables subjected to axial oscillations, some aero-elasdiaility problems or electromagnetic phenomena
in inhomogeneous media [21, 26, 32].

This equation has been widely studied in the deterministgeg.e. when the forced and parametric
excitations have known deterministic analytical expm@ssj in particular in the harmonic case, with the
aim of characterizing its steady-state solution and itsiktya[9, 30]. In most realistic applications, how-
ever, the forced and parametric excitations are stochpsiimesses and the system is slightly damped, so
that the system spends most of its time in a stochastic tahségime.

In the stochastic context, the classical stability theodee no longer relevant and the theory of first
passage time has been developed as an efficient alternatieefirst passage time can be defined as the
amount of time required for a stochastic process to reachemghreshold for the first time when starting
from a given initial state. This concept is not directly tethto a stability criterion but answers the usual
engineer’s questions that can be expressed as “How mucldteit take to [reach a given state starting
from a given initial condition]?”. This question can be amized by the reader in an infinite number of
ways for a wide range of applications in engineering, bub alsscience, economics or industry: “How
much time does it take for a disease to spread over?”, “Hovwhrtime does it take for a mechanical system
to reach its limit state?”,“How much time does it take for thechange rate of euro to U.S. dollar to reach
a given value?”, “How much time does it take to observe andsoreaan increase of 5°C at a weather
station?”, etc. Numerical studies, often based on MontdéoGamulations, can provide a first and quick
answer to these questions. However, a better insight it@tbblem is obtained by solving the stochas-
tic equations analytically. Very recent developments gishis analytical approach have highlighted the
influence of some dimensionless groups and the existendfferkedt behavioral regimes for the first pas-
sage time of single-degree-of-freedom systems governddeblnear Mathieu equation and subjected to
broadband excitations [36, 37].



The analytical results have already been illustrated éxentally using a tower crane model tested in
a wind-tunnel [35]. These experimental tests validatedettistence of the different regimes but did not
relate them to the physical parameters of the problem. Titialinim of this Master thesis is to design
a new experimental set-up to observe and, hence, validatexistence of these different regimes. The
objective is also to be able to predict the first passage tiitfetive physical parameters of the structure.
The complete process, from the structure design to the iexeetal validation, is conducted in this work.
This report is divided into several parts that corresponithéadifferent steps followed in the process.

The first part of the work summarizes the relevant backgranatérial about Mathieu equation in both
deterministic and stochastic contexts and the principabrigtical results about first passage time. Some
original contributions to these analytical results are afgluded. The second part is dedicated to the
design of an experimental set-up for the validation of th&t fiassage time theory. The different compo-
nents of the measurement chain are also described. A fiiteegit model of the structure is built in the
third part. Experimental modal analysis performed on tla se&ructure allows to update the numerical
model to get a reliable model to be used in the sequel. Thehf@d fifth parts constitute the heart of
the work. They are devoted respectively to the numericatla@@xperimental studies of first passage time.

The numerical results discussed in this report are obtawittdhome madevMATLAB [42] implemen-
tations of the different algorithms, methods and techréghat constitute the state of the art in the fields
of modal analysis and stochastic dynamics. Some heavylatitms are also performed iWolfram Math-
ematica [46]. The softwareSAMCEF Field developed by Siemens [43] is used to validate some results
obtained withMATLAB. The LMS Test.Lab software, which is also developed by Siemens, is used for
signal processing in all the experimental tests.



PART 1

MATHIEU EQUATION - STATE OF THE ART AND ORIGINAL
DEVELOPMENTS

This first part of the work summarizes the theoretical baokgd required to understand the studies de-
scribed in the following parts. The first section descrilesrain results about the deterministic version
of Mathieu equation. The second section focuses on theastictversion of Mathieu equation and intro-
duces the concept of first passage time. The main theoretisalts related to first passage time are also
summarized.

This work focuses on the study of a generalization of the Matlequation. For a single-degree-of-
freedom damped system, the extended Mathieu equationdevedi here takes the general dimensionless
form

K(t) + 2EX(t) + [1+ u(t)]x(t) = w(t), (1.2)

wherex is the state variabld, is a dimensionless time aridis the damping coefficient. The right-hand
sidew(t) is an external force applied to the system that will be reféto in the following as the forced
excitation. By contrast, the functiax(t) is called the parametric excitation, as it induces vanmiiotime

of a parameter of the dynamical system (its stiffness in tireeat case). This excitation does not appear
in the governing equation as an external force applied teyséem. The deterministic, undamped and
unforced version of (1.1) was first introduced in 1868 by thenEh mathematiciaEmile Mathieu when
studying the vibrations of an elliptic membrane [24]. Evéiilil) does not exactly correspond to the
equation initially studied b¥mile Mathieu and commonly called the Mathieu equation @literature, it
will be referred to in the following as the Mathieu equatiorese the reading of the report.

This equation can be used to model many physical problemifields of engineering. For instance,
it describes the oscillations of a pendulum in the gravitidfighen its support is subjected to a vertical
motion that causes its stiffness to vary in time [17]. Thigat@n also allows to study the deflection of a
cable subjected to axial oscillations at one of its ends.[Zlhg rotative equilibrium of a crane in a turbulent
wind can also be modeled by this equation [35]. The linedsilitaof Faraday waves that occur when a
container of liquid is periodically oscillating in the viedl direction can also be described by a Mathieu
equation [29].



1.1 Deterministic version of Mathieu equation

The Mathieu equation has been widely studied in the padicchse where the parametric excitation is
deterministic, and often harmonic. The equation is thenitem for the state variable(t) as

K(t) + 2EX(t) + [1+ Aucog ayt)]X(t) = w(t), (1.2)

where the stiffness of the oscillator varies at a pulsatigrwith an amplitudeA,. The natural pulsation
of this oscillator iswy = 1. The externally and parametrically excited oscillatangsally studied to deter-
mine the stability zones, the amplitude of the limit cycleithations or the steady-state solutions.

In the specific case without damping nor external excitatiiba equation takes the simple form

X(t) + [1+ Aycog wyt)|x(t) =0 (1.3)
and corresponds to the equation initially studiecBogile Mathieu [24]. This equation can be rewritten as
X1| X1
IRl (L.4)

wherex; (t) = x(t), 2(t) = x(t) and
0 1
AO= |1 osan] )

is periodic with periodT = 21/wy,. According to Floquet theory [38], the solution does notch&ebe
periodic but will, in general, be a linear combination ofrekntary solutions of the form

et [Xl(t)] , (1.6)

(1.5)

Xz(t)

wherex; (t) andxz(t) have periodl andp is a so-called Floquet exponent. The system has two such Flo-
quet exponentg; and, which may be complex. The Floquet exponents can be used taatheze the
stability of the unforced Mathieu equation.

The Floguet exponents are related to the Floquet multipfier e, which are the eigenvalues of the
fundamental matrix

2
5 [xé?m xQ(T)] @)
() 2 (M)
associated to the fundamental set of solutions
2
[X%) (t)] [XEIZ (t)] 1.8)
']

of (1.4) generated by considering the initial conditions
1) (2)
x;7 (0 1 x; (0 0
[ b, )] = H and [ L )] = M (1.9)
%3 (0) X3 (0)
The Floquet multiplierp; andp, are such that

1
Pip2=1 and pi+pz=tr(B) =20 (1.10)

so that

P2 =0+ @ -1 (1.11)



Different cases can be considered.

e If o> 1, thenpy > 1> po > 0. The solution is unstable and has the form
X(t) = c1€'py(t) + coe M py(t), (1.12)
wherep;(t) andpz(t) have a period .

» If =1, thenp; = p» = 1. The solution is unstable and has the form

X(t) = (c1+tc2)pa(t) + C2p2(t), (1.13)
wherep;(t) andpz(t) have a period .

e If —1< @< 1, thenp=exp(£joT) (|p1| =|p2| = 1). The solution is stable and pseudo-periodic
and has the form _ _
x(t) = c10[e 7 p(1)] + .0 (1)), (1.14)

wherep(t) has a period'.

« If = —1, thenp; = po = —1. The solution is unstable and has the form

X(t) = (c1+1tc2)q1(t) + c202(1), (1.15)
whereq (t) andgz(t) have a period 2.
* If @< —1, thenp; < —1 < p2 < 0. The solution is unstable and has the form
X(t) = c1€"qa(t) + coe V'qa(t), (1.16)
whereq (t) andgz(t) have a period 2.

Approximations of the boundary between stability and ibgitg zones of the Mathieu equation can
be found in the literature [38]. Here, the Floquet multigi@re computed numerically usingolfram
Mathematica. Fig. 1.1(a) shows the norm of the largest Floquet multipi® a function of the parametric
excitation amplitude?d, and pulsatiory,. The solution becomes unstable and grows unbounded when
a Floquet multiplier is larger than one. These parametstainilities appear when the pulsation of the
excitation is close to the critical pulsations
(k) _ 5%
Wy —2?,
whereuy, is the natural pulsation of the system. For small amplituditations, the most critical behavior
is observed at twice the natural frequency of the system. ofiner unstable modes appear only in very
narrow bands around the critical frequencies. In the ufstagions, the Floquet multipliers increase with
the amplitudeA, of the excitation. Periodic solutions of periddand 2ZI' occur at the boundary between
the stable and unstable regions.

Vk € N, (1.17)

The same reasoning can be followed in the presence of dampheydamped Mathieu equation can
be expressed as

X(t) 4+ 2Ex(t) 4+ [1+ Aycos uyt) [x(t) = 0. (1.18)
This equation can be transformed into the undamped Matljeation
y(t) +[1— &+ Aycosat)]y(t) = 0 (1.19)
by defining
X(t) = e Sy(t). (1.20)
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(a) Undamped casé & 0). (b) Damped casé€ (= 0.02).

FIGURE 1.1 - Largest Floquet multiplier of the unforced Mathieu &tipn (1.18) as a function of the
amplitude and the pulsation of the parametric excitation.

For small values of the damping coefficignfparametric instabilities still develop at the criticalgations
mﬂk) (1.17) but the Floquet multipliers are decreased by a factbr (Fig. 1.1(b)). Therefore, parametric
instabilities only occur for excitations with a sufficigntarge amplitude. As schematized in Fig. 1.2 and
pointed out by [21], damping has an erosive effect on the daynof the instability regions. The ampli-
tude of the parametric excitation required to trigger thexpeetric instability increases with

Excitation
amplitude

FIGURE 1.2 - Qualitative representation of the boundary betwealstand unstable zones of the
Mathieu equation as a function of the excitation frequetiay,excitation amplitude and the damping [21].



Figs. 1.3 and 1.4 represent the time responses of the undaamgedamped unforced Mathieu equa-
tions (1.3) and (1.18) to parametric excitations of amgkitéd, = 0.2. From Fig. 1.1, it is expected that
the response is unstable fay = 2wy in the undamped case and e 0.02. It is indeed observed that
the response grows exponentially in both cases. The gramthore rapid in the undamped case. For
wy = 1.500, the response is stable. The effect of damping is clearly seEig. 1.4(a).

1000 -
0.5

-0.5H
-1000 -

0 50 100 150 0 50 100 150
t t
(a) Stable solution4, = 0.2, wy, = 1.50). (b) Unstable solutionAy = 0.2, wy = 2uY).

FIGURE 1.3 - Solutions of the undamped Mathieu equation (1.3) wattametric excitation only.
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(a) Stable solution4, = 0.2, wy, = 1.50). (b) Unstable solutionAy = 0.2, wy = 2uY).

FIGURE 1.4 - Solutions of the damped Mathieu equation (1.18) wittapeetric excitation only
(& =0.02).

When the oscillator is subjected to an external harmonicefbrexcitation, the governing equation
writes

X(t) + 2EX(t) + [14 Aycogwyt) [x(t) = Ay cog wnt) (1.21)

and can no longer be studied with the Floguet theory. When thd forced excitation is considered
(Ay = 0), the dynamics of the system shows the classical chaistater For an undamped system excited
at its natural frequency, the response grows linearly (Efg(a)). In the damped case, the response even-
tually reaches an asymptotic value (Fig. 1.5(b)).

When the oscillator is subjected to both forced and parametcitations, similar conclusions can be
drawn. Both instabilities combine when the forced exaitathas a pulsatiom, = wy and the parametric
excitation a pulsationy, = 2wy (Fig. 1.6(a)). Damping has still an erosive effect on théabsity zones.

A forced excitation characterized by a pulsatiop different fromwy has also an erosive effect on the
instability zones. As shown in Fig. 1.6(b) fax, = 0.5wp andw, = 2ux, the parametric instability is less
pronounced when the forced excitation amplitéggincreases.
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(a) Undamped solutiorg (= 0). (b) Damped solutiong(= 0.02).

FIGURE 1.5 - Solutions of Mathieu equation (1.21) with forced ext@n only @, = 0.2, Wy = ).
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(@) Aw=0.2, wy = wy. (b) ww=0.50y, & =0.02.

FIGURE 1.6 - Solutions of Mathieu equation (1.21) with forced anchpaetric excitations
(Au= 0.2, W, = 20).

1.2 Stochastic version of Mathieu equation

The generalized Mathieu equation of a damped system sudohtitforced and parametric excitations takes
the general form
X+ 28X+ [L+u(t)|x = w(t), (1.22)

with X(t) the state variable function of the dimensionless timé&the damping coefficient ang(t) and
u(t) the forced and parametric excitations that are now randacegses.

As in the deterministic case, the stochastic oscillatoralaa be studied with the aim to characterize
the stability zones or steady-state solutions. Howeveenudtamping is absent or very small, these ob-
jectives have little interest since the system spends atiomgin a stochastic regime. Accordingly, the
problem has to be studied from a different point of view.

When damping is small, it is more interesting to study thestreguired for the system to reach a given
energy level starting from a known initial condition. Suclprablem is referred to in the literature as a
first passage problem [33]. In a stochastic contegt (vhen the excitation is stochastic and/or when the
parameters of the system vary in a random way), the first padfae is a random variable characterized
by its probability density function. The complete statiatidistribution of the first passage time is avail-
able for very few problems only. In order to characterizedtstribution, the first statistical moments can
be obtained numerically (through Monte Carlo simulatiamsristance) or, in some rare cases, analytically.



The next sections are devoted to the presentation of the aradlytical results available to define
the probability density function. This state of the art tethto the stochastic version of the Mathieu
eqguation is mainly based on two papers by H. Vanvinckenrdautathe first passage time theory: [36]
for the statement of the problem and the development of toalexpressions for the first moment of the
first passage time and [37] for the development of analygsaressions for the second moment of the
first passage time. Some original contributions are alseddal these analytical results in sections 1.2.4
and 1.2.5.

1.2.1 Generalized Pontryagin equation for then-th statistical moment

The energy balance of the governing equation (1.22) is obtbby time integration of the power fluxes

/ (%+ 28X+ [1+ u(t)]x) xdt = / wxdt, (1.23)
which yields
X2 X2
ST / (2622 + uxk) dt = / wxdt. (1.24)
The Hamiltonian of the system is composed of a potentialggnand a kinetic energy and is defined by
NG
H=Z+ (1.25)
If the damping coefficient and the amplitudes of the exdtatiare smalli.e. if
{Euw} < 1, (1.26)
the Hamiltonian evolves on a slow time scale since
H=wx— 28 —uxx < 1. (1.27)

It can therefore be assumed that the energy is nearly cdradtarg one period of oscillation.e. that the
system is quasi-Hamiltonian. In the following, only quékimiltonian systems will be considered. When
the system is not quasi-Hamiltonian, the steady-stateneds reached fast enough and the theory of first
passage time is of limited interest.

The conservative system evolves along closed trajectofiesnstant Hamiltoniatd. The period of
revolution of a complete orbit of the unperturbed systers (v = & = 0) is independent of the considered
energy leveH and is given by

T=2n (1.28)

In order to derive an analytical equation characterizing phobability density function of the first
passage time of an oscillator, the problem is first represkint the state-space by its Itd formulation for
Markov times. Under the assumption of a quasi-Hamiltonigstesn, the stochastic averaging of the Itd
eguation over one revolutioh = 2m provides the averaged Itd equation governing the timduéion of
the HamiltonianH [5]. The drift and diffusion coefficientsn(H) and 6(H) can then be obtained as
functions of the Hamiltoniail and the parameters of the problem. When the excitatift)sandw(t) are
Brownian o-correlated noises of small amplitudes measured by theitlepgpectral densitie§, and S,
(see appendix A for the definitions and conventions adoptdte current work), the drift and diffusion
coefficients are given by

H 1 ’ H?2
m(H) = ES,+§SN—ZEH and o°(H)= 75,+HSW. (1.29)



Let D be a closed domain in the phase plane define®by {H : 0 < H < H.} and an initial condition
Ho € D. Then-th statistical moment of the first passage tithe= E [t]] (n=1,2,3,...) to reach the bound-
ary 0D starting from the initial Hamiltoniaflg is governed by the generalized Pontryagin equation [28]

1, d? d
with Ug = 1 and the boundary conditions
Un(Ho) =0 VHo€0D and  |Up(0)| < oo. (1.31)

It is interesting to note that the governing equation is pedelent of the correlation between the para-
metric and forced excitation.e. independent of the cross-spectral den§ity Some analytical solutions
of (1.30) have been recently derived in specific cases ang stteresting behaviors of the first passage
time of quasi-Hamiltonian systems [36, 37]. Those are dised in the following sections.

1.2.2 Undamped oscillator

In the undamped case, the studied Mathieu equation can bemais
X+ [1+u(t)]x = w(t), (1.32)

whereu(t) andw(t) are Browniam-correlated noises of small intensiti§sandS,.

Mean first passage timdJ;

The mean first passage time of the system at an energyHgwtarting from an energy levelp is obtained
by solving (1.30) fon = 1 and takes the simple form

4 (HS+25)\ 4 AHS,
Ui(Ho) = 5 In <7HOSJ+ZSN> =3 In <1+ 7HOSJ+2SW> : (1.33)
where

AH = Hc — Ho. (1.34)

This solution is only valid for positive first passage times, for a target energy higher than the initial
energy AH > 0). This expression presents two limiting cases withouaipeatric or forced excitation.

When there is no parametric excitatiore. S, = 0, the average first passage time becomes
AH

=2—.
Sw

The average first passage time varies linearly with the griaggement. This is referred to as an incuba-
tion regime. Increasing the forced excitation decrease$ittst passage time.

U1(Ho) (1.35)

When there is no forced excitatioine. §, = 0, the average first passage time becomes

4 (H\ 4 AH

The average first passage time scales with the Hitlo on a logarithmic scale. This is called the multi-
plicative regime. Increasing the parametric excitatioordases the first passage time.
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These two limiting cases reflect that the parametric ancetbexcitations influence the dynamics of
the problem in two distinct ways. As illustrated in sectiafh tvhen describing the instabilities observed
for forced or parametric excitation only, this is also theefor deterministic excitations.

When both parametric and external forced excitations ansidered, three regimes characterized by
different behaviors of the average first passage time caddrgified, depending on the relative values of
the parameterS,, Sy, Ho andH.. To ease the notation, the reduced groups

. HoS, . DHS,
HE = 55, and AH* = 55, (1.37)
are introduced. The average first passage time (1.33) thk&derm
4 AH*
U==In(1 . 1.38
Y ( * Hg;+1> (1.38)

Fig. 1.7 shows the ratit1S,/4 as a function oH; andAH*. The bottom left corner in the figure corre-
sponds to the limiting case where there is no parametri¢agian and the upper right corner to the limiting
case where there is no forced excitation.
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FIGURE 1.7 - Reduced average first passage timé&IGURE 1.8 - Linearity of the average first passage
U1S,/4 as a function oHg andAH* for an time in the incubation regime. Cross-sections of the
undamped system. ldentification of the additive reduced average first passage time map (Fig. 1.7)
(A), multiplicative (M) and incubation (I) regimes. for Uy < Ugincub @ndHg equal to 1 and 10.

The incubation regime is defined as the regime where the gedirat passage time may be linearized.
This is the case when the argument of the logarithm is clodeite. when

AH* < Hp +1. (1.39)
In the incubation regime, the average first passage time mayritten as
4 AH*
U =— 1.40
TS H 41 (1.40)

and scales therefore linearly wiffH*. This approximation ceases to be valid when condition (lis8o
longer metj.e. for

Uy~ (1.41)

ZIFN
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A characteristic incubation timés jncun can therefore be defined by

1
Ui incub := 25 (1.42)

From a practical point of view, this means that the first pgeséme is proportional té&AH*, might be
estimated by (1.40) and that the resulting estimate is yaiavided it is shorter thablyjncup. The in-
cubation zone is located on the bottom of Fig. 1.7 and coewlyi limited by the curvéJ;S,/4 =1/8.
Fig. 1.8 highlights the behavior of the average first passiagein the incubation regime. It corresponds to
cross-sections of the map for constant valued pfThe linear dependency &H* can be clearly observed.

Expression (1.38) reveals the existence of two other regjimespectively whehlg is large or small
compared to 1. These two regimes overlap with the incubatigime as shown in Fig. 1.7.

If H3 > 1, the mean first passage is given by

4 AH*
=—In(1 . 1.4
U; SJ n( + Hf)k ) ( 3)

This regime is called the multiplicative regime becausefitst passage time depends on the factor by
which the initial energy is multiplied to obtain the targetegy level. The mean first passage time is inde-
pendent of the forcing excitation intensiy. This regime corresponds to the right part of Fig. 1.7 which
shows oblique asymptotes of unit slopes.

If Hy < 1, the mean first passage time is independeiftjodnd is given by

4
Ui=—=In(1+AH"). (1.44)

S
This regime is called the additive regime. The expected fiestsage time only depends on the energy
incrementAH*. This regime corresponds to the left part of Fig. 1.7 whiobvehhorizontal asymptotes.

Mean square first passage timéJ,

The general form of the generalized Pontryagin equatiod0jlis the same for all ordersso that strong
similarities are expected between the first and higher mtsnainthe statistical distribution of the first
passage time. For the undamped system governed by (1.82nehn square first passage tibhe=
E[tf], solution of the Pontryagin equation (1.30) fo& 2, can be expressed in terms of the same reduced
parameter$l; andAH™* by

32
U= o

S

£P(1+H5‘)—£P(1+H5‘+AH*)+In(1+HE§+AH*)In( (1.45)

1+H;+AH* AH*
—In(A+H)NIn | —8 _— In(1
(1+Ho) ( Hs )* <+1+H6>]’

where? stands for the real part of the polylogarithm of order 2 (tlegdrithm) and is defined for any
realx by

1+ Hg +AH*
Hg -+ AH*

P(x) = Re[Polylog(2,x)] = —Re[ /0 " '”(1t _t)dt} . (1.46)

Fig. 1.9 shows the ratit;S/32 as a function oH; andAH*. The asymptotic behaviors of the mean
square first passage time in the three previously identiégihres can be developed.

12
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FIGURE 1.9 - Reduced mean square first passageFIGURE 1.10 - Coefficient of variatio€V as a
timeU,S/32 as a function oHg andAH* for an  function ofH; andAH* for an undamped system.
undamped system. ldentification of the additive (A),
multiplicative (M) and incubation () regimes.

In the incubation regimeANH* < Hj + 1), the mean square scales linearly wiMH* and is given by

32 AH* In(1+Hg)
U= = — . 1.47
2 sﬁHg+1[ Hg (1.47)
ForHg > 1, the second order moment becomes
32 AH*\ 1 AH*\ 2
U=—= |[In|1+— =In{1 . 1.48
=g <+H6‘>+2<+HS>] (1:49)

This corresponds to the multiplicative regime previouslgntified. This expression only depends on the
ratio AH* /Hg, which explains the unit slope in the right part of Fig. 1.9.

The additive regime is now restricted to the upper left co(rl§ < 1 andAH* > 1). The mean square
writes

Uo 6 + SAH-

and does not depend dt;, which confirms the horizontal asymptote in Fig. 1.9. Ther@o overlap
between the incubation and the additive regime.

_ 3_2{ ™  In(AH¥)

g | 5 {4+AH*In(AH*)}+In(1+AH*)] (1.49)

Knowing the first and second moments of the statistical idigion of the first passage time, the
variance is easily computed by
0?=U,—UZ (1.50)
The spread in the distribution of the first passage time cabdtter evaluated with the coefficient of
variationCV defined as
Va2
CV=——. (1.51)
Up
The coefficient of variation is represented in Fig. 1.10 asmetion ofHj andAH*. The lower the coeffi-
cient of variation, the smaller the sample size needs to peadide estimates of the average first passage

13



time with small confidence intervals. The lowest coefficsapftvariation are found in the upper left corner,
i.e. for the transition of a system from a low energy level to a mhigiher energy level. By contrast, the
largest coefficients of variation are obtained in the bottayht corner,i.e. for small energy increments of
a system starting from a high energy level. BM > \/2/2, the coefficient of variation depends in good
approximation only on the ratiAH*/Hg. The behavior of the coefficient of variation is differenttire
upper left corner (additive regime).

1.2.3 Damped oscillator

In the damped case, the Mathieu equation takes the general fo

X+ 28X+ [L+u(t)|x = w(t). (1.52)

Mean first passage timdJ;

Solving the Pontryagin equation (1.30), the average firss@ge time can be expressed as

4 1+HS+AH*)2— (1+HE)2 Ho+AH™ (14+t)2 -1
Uy = (A Ho AR~ (1+Ho) - [ A7 =1y, (1.53)
Si(1-a) a Hg t
with the damping factoa defined by
8
a=_—. 1.54
5, (1.54)

This solution is only valid for positive first passage timé@wxe the 1td formulation on which it is based
is only valid in this case. The two limiting cases correspogdo the absence of parametric or forced
excitation can be discussed.

When there is no parametric excitatiore. S, = 0, the average first passage time becomes

1 AH* Ei(aH; +aAH*) — Ei(aHg)
Ul(Ho) = _Z_E In <1+ Hg > + 2€ , (155)
with Ei the exponential integral defined by
x ¢

Ei(x) = / Zdt (1.56)

The linear behavior identified in the undamped case disappaaen damping is introduced.

When there is no forced excitatioie. §, = 0, the average first passage time becomes

4 AH*

U=———In 1+—>. 1.57
s (g o0

It is interesting to note that, in this case, damping doesmadify the form of the first passage time for
a< 1. It still increases with the logarithm of the rati/Ho. This solution is positive as long @s< 1,
which means that the energy of the system can increase, camavéf the damping ratio is below a certain
threshold¢ = S,/8.

Fig. 1.11 shows the reduced average first passagdtig'4 as a function oH; andAH* for different
values ofa. The three regimes identified in the undamped case are nexbirethe figure. In the additive
regime, damping tends to increase the average first passagielh the multiplicative regime, damping
changes the slope of the iso-time curves. In the whole mapeasing damping increases the first passage
time as expected. Details about the asymptotic behaviotheohverage first passage time in the three
regimes can be found in section 1.2.4.
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FIGURE 1.11 - Reduced average first passage tin®,/4 as a function oH; andAH* for damped
systems witha equal to 0.5, 0.8, 1.5, 2, 3 and comparison with the undamysdrs.

Mean square first passage timéJ,

No general analytical results related to the mean squateéissage time of a damped system have been
developed up to now. Section 1.2.5 presents some persomaibcions to the analytical developments
for specific damping conditions.

1.2.4 New developments about the asymptotic behavior of theverage first passage time
of a damped oscillator in the three regimes

In this section, the asymptotic behaviors of the mean firstgge time of a damped system are derived in
the three regimes. The limits of the different regimes ase aktimated. The analytical developments are
carried out usingVvolfram Mathematica.

The general expression of the mean first passage time is lgwéh53). The integral appearing in the
definition ofU; can be written in terms of the hypergeometric functén [22] as

HA+AH* 141)2 1+Hs+AH* 1+a 1
/° A+t AfHot *) 2F1<1,1,1—a,—*7*>
Hg t a(Hg +AH*) Hg +AH
(1+Hg)™e

1
- K ({111-a—— ). (1.58
aHg 2 l( ) 5 HS) ( )

Fig. 1.12 shows the reduced average first passageliiig’'4 as a function oHg andAH* for different
values ofa.
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FIGURE 1.12 - Reduced average first passage tin®,/4 as a function oH; andAH* for damped

systems characterized by= 0.5, 1.5 and 2.5. Identification of the additive (A), muligaitive (M) and
incubation (1) regimes. Dotted gray lines indicate the gsitic behavior in the multiplicative regime.
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Additive regime

The additive regime is characterized by the fact that themfiest passage time does not depend on the
initial level of energyH;. The following developments show that this is the case wWHgnr< 1. The
corresponding asymptotic value is also derived.

Since, fora # 0,

1
2F (1,1,1—&,—§> ~ axinx, (x—0), (1.59)
it comes
Hy+AH* (1_|_t)a (1+AH*)1+a 1
dt ~ Fi{1,11-a———— ) —InHg Hg — 0 1.60
/Hg t alAH “(” ’ AH*> o (Ho—=0), (1.60)
and eventually
(L+AH"2 -1  (14AH*)*2 1
U~ —— |InAH* — Fl111l1-a—— HS — 0).
1 SJ(l—a) |: + a aAH* 21 5 4y " AH* ) ( 0 )

(1.61)
This result shows that the mean first passage time tends todepéndent oHj when the initial energy
level is small. This behavior can be observed in Fig. 1.12revherizontal asymptotes appear iy < 1.
Note that this result is not valid & = 0 ora = 1 since (1.53) and/or (1.59) must be adapted in these cases.

Multiplicative regime

In the multiplicative regime, the first passage time depanmdthe ratio of the target energy and the initial
energy. Itis shown here that this is the caseHgrs> 1.

The hypergeometric function behaves asymptotically as

Fi(1,1,1—ax) ~ 1+1—Xa+0(x2), (X 0). (1.62)

Therefore, whetdg > 1, the integral in (1.53) can be approximated by

Hg-+AH* (1 1)@ 1+ Hx+AH*)Lra 1
/0 (%G (21 Ho +AHT) [1— a ] (1.63)
(1+Hg)*2 1 .
- 1— H .
aH; 1-aHg ]’ (Ho — )
This leads to 4 AR AR
Up ~ - H§ . 1.64
e | B R -9
The dominant behavior therefore depends on the valae Ibfa < 1, one has
4 AH*
~— Hg . 1.
Ul SJ(l_a) HS ) ( 0_>°°) ( 65)

In the first passage time map (with axes in logarithmic sc#he behavior appears as oblique asymptotes
with unit slope (Fig. 1.12(a)). &> 1, then

4  AH
Si(a—1) (Hg)= ™

and oblique asymptotes with slope-2 are observed in the first passage time map. These asympévies h
therefore positive slopes far< 2 (Fig. 1.12(b)) and negative slopes #or- 2 (Fig. 1.12(c)).

U ~

(Ho — ), (1.66)

17



Incubation regime

In the incubation regime, the first passage time evolveatipavith AH*. This is the case whekH* <« 1.
The two terms of the general expression (1.53) become
(14+Hg+AH*)2— (1+Hg)?
a

~ (1+Hg)* *AH"
- HH HAH P HO({AH ), (AH' - 0), (167)

and

(1+H2—1

/HSMH* QAL e
H t Hg

*
0

*\2
+(2?:|*))2 [1— (1+H)?+aHs(1+Hg)* 1] + O({AH*}3),  (AH* —0), (1.68)
0
so that
BH it 1R 1] = — B et
Ule[Ho(l—i—Ho) —(1+HQ) +1]_Su(l—a)H5[1 (1+Hg)* Y. (1.69)

This expression is positive whatever the value.of

In (1.67), the second order term can be neglected with resp#te term inAH* if

(1-a)(1+ Hg)a—Z(AH*)Z( < ((1+ HE)* 1aH? (1.70)
i.e.if -

In (1.68), the second order term can be neglected with respdioce term inAH* in the evaluation of the
integral if
AH* |aHg (14 Hg)* !
Hy | (1+Hg)2-1
The first condition (1.71) is always more restrictive thae second one (1.72) so that the incubation
regime can be observed for valuesi* andHg; such that

-1

<1 (1.72)

AH*
l-a——<«< 1L 1.73
For values ofa less than 1, this domain can be approached by
Ui < 1 (1.74)
' 2s8(1-a) '

and the boundary of the incubation region can therefore beritieed by a curve of constant reduced average
first passage time as for undamped systems. For valuegrefter than 1, the limit does not follow a curve
of equal mean first passage time. The domain can be approbghed

1 (14+H3) — (1+Hg)?2

U
1S 25(1-a)l-a H;

(1.75)

The limits of the incubation regime are represented in Fig2 for different values od. Fora= 0.5,
the limit can indeed be approached by a curve of constaneaflu;S,/4. Fora= 1.5 anda= 2.5, the
limit does not follow a curve of the map.
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1.2.5 New developments about the mean square first passagad of damped systems

The mean square first passage tidyeof a damped system is obtained by solving the Pontryagin-equa
tion (1.30) forn = 2. Compact solutions can be found wittolfram Mathematica whena = k+ 1/2 with

k integer. Indeed, for such, the hypergeometric functions appearing in the solutiothef Pontryagin
equation can be easily expressed with logarithm functions.

For instance, introducing the variablés= ,/1+H; andY = |/1+ Hg + AH* to simplify the expres-
sion, the mean square of a damped oscillator characterizads0.5 writes

stz

S

U, 5

P <ﬂ> _(P(%) CIn(@+X)+In(A=X)(IN{1+X}=n2)  (1.76)

+In2-In(1-Y)+In(1+Y)(1+2atanKY} —In{1+X}) |,
where? is defined by (1.46).

This analytical result can be compared with the mean squat@éissage timd, obtained numerically
with Monte Carlo simulations of the oscillator. The diffatecurves of Fig. 1.13 correspond to different
initial energy leveldH;. A good match is observed between the analytical and nuategsults.

The mean square first passage time map is represented in.Hgfota = 0.5 and compared to the
undamped case. Even if a large shift between the curves &aus the general behavior of the mean
square first passage time is recovered for damped systenesdifférent regimes are also present. For
small initial energy leveld),S/32 does not depend dt;. This corresponds to the additive regime. For
large initial energy levels, the curves show the same slfpe.incubation regime can also be highlighted
by looking at Fig. 1.13. For smallH*, the mean square first passage time evolves linearly witbrieegy
increment.
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FIGURE 1.13 - Reduced mean square first passag&IGURE 1.14 - Reduced mean square first passage
time U,S/32 as a function oAH* for different timeU,S/32 as a function oHg andAH* for an
values ofHg. Monte Carlo simulations (cross undamped systena& 0) and a damped system
markers) and analytical solution (full lines). (a=0.5).
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PART 2

EXPERIMENTAL SET-UP

This second part of the work is dedicated to the design of Xper@mental set-up used to illustrate the
first passage time theory. In the first section, the desighetet-up is described and justified. Then, the
real set-up is described in detail and the geometrical agdigdl properties of the structure are carefully
identified. The measurement chain used in all the experihégts is described in the last section.

2.1 Preliminary design

The final objective of the experimental set-up is to validae existence of the different regimes for the
first passage time. As explained in section 1.2, the theodiest is based on the one-degree-of-freedom
Mathieu equation. This first section therefore aims at aésgga structure governed by the Mathieu equa-
tion, i.e. subjected to an external forced excitation and a parametditation that modifies the stiffness
of the dynamical structure. It will be shown further (senti.1) how the assumption of a single-degree-
of-freedom system can be verified in good approximation @ital intrinsically multi-degree-of-freedom
structure.

It was initially suggested to study the oscillations of aglienpendulum of mass and lengttY in the
gravity field when the pendulum is excited by a random motibitsssupport (Fig. 2.1, left). A horizontal
excitation (perpendicular to the pendulum at rest) of ifgpguit Xy can be seen as the forced excitatia(h)
in Mathieu equation (1.22). A vertical excitation (aligneih the pendulum at rest), makes the stiffness
of the pendulum vary in time and therefore constitutes thiarpatric excitatioru(t).

FIGURE 2.1 - Schematic views of a simple pendulum in the gravity fieiith random excitation of its
support (left: non-stiffened pendulum, middle: stiffermehdulum, right: inverted pendulum).
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The small oscillation® of the pendulum around its stable equilibrium positba: 0 are governed by
MC20 + cl6 + [mgl + Myjl] © = —mKo!. (2.1)

Introducing the characteristic tinle= /¢/g, the equation of motion writes in dimensionless form

1/ C / Yo —Xo
e+m\/€_ge+[1+g] g (2.2)
Numerical simulations show, however, that such a set-upidaasible from a practical point of view
because it does not allow to reach a Hamiltortha- 62/2 4 6'2/2 larger than 102 (which is required to
observe the different regimes of the first passage time) eaaanable amount of time. In order to have
sufficiently small first passage times, prohibitively lafgeces have to be applied or the natural frequency
of the pendulum has to be increased by decreasing its lehdtiwn to a few millimeters. This second
solution would require very sensitive transducers, whighret available at the lab, to measure the mass
position with accuracy. The same conclusions hold for aeried pendulum or a stiffened pendulum
(Fig. 2.1, middle and right). Moreover, such a set-up do¢satow to extend the theory for multi-degree-
of-freedom systems since a pendulum is fundamentally deditp be a single-degree-of-freedom system.

After careful consideration of the problem, an experimesét-up consisting in a vertical strip pre-
stressed by a mass has been developed. A schematic reptieseof the set-up is given in Fig. 2.2. A
horizontal force (perpendicular to the strigy applied to the structure can play the role of the forced ex-
citationw(t) of Mathieu equation (1.22). The shakers used to excite tioetste are characterized by a
limited stroke and a limited velocity. In order to limit thenglitude of displacements of the strip where
the shaker acts and therefore to avoid any impedance mikrttet arises when the shaker just follows
the movement of the structure, the strip is excited sufftbjeriose to the bottom fixation. The parametric
excitationu(t) can be created by a vertical forEg applied at the bottom end of the strip, below the pre-
stress mass. Such a force induces variations in time of tipessiffness since it modifies the pre-stress of
the strip. The initial pre-stress by the mass$s obviously essential to avoid the instability of the strip

The structure is made of carbon steel. The strip is chosemamnhmse provided by the manufacturer
Hasberg [40], specialist in steel strip. A strip with thiglss 04 mm and width 25 mm is selected. The
strip is clamped at its top end. At its bottom end, a lateradlgconstrains the strip to move only in the
vertical direction (Fig. 2.2).

2.2 Set-up description

This section aims at characterizing in detail the expertaleset-up. The geometrical properties of the
strip and its material properties are identified with accurd picture of the experimental set-up in the lab
is provided in Fig. 2.3.

As a first step, the geometrical properties of the structueecarefully determined. The length of the
strip is measured. It is also checked that the width and flckribss of the steel strip correspond to the val-
ues given in the data sheet of Hasberg manufacturer [40] piéistress mass is also accurately weighed.
The properties are given in Table 2.1.

Then, the material properties of the steel that composesttipchave to be accurately identified. Two
30 cm samples of the strip are weighted to estimate the cateahdensity. The value= 7767 kg/m?
found is in good agreement with the density of traditionaboa steels. The value of the Poisson ratio is
chosen as the Poisson ratio of usual carbon steels [2]. Therialgroperties used in the following of the
study are summarized in Table 2.2.
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FIGURE 2.2 - Schematic view of the structure that consists in acertrip pre-stressed by a mass and
subjected to forced and parametric excitatibandF,.

FIGURE 2.3 - Picture of the non-instrumented structure.
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Parameter Symbol Value Units

Parameter Symbol Value Units
Length ¢ 0.1 cm Density p 7767 kg/n?
Width w 25 mm ;
. Young’s modulus E 206 GPa
Thickness t 0.4 mm . , )
Poisson’s ratio Y 0.33 [-]

Pre-stress mass m 1.816 kg

. . TABLE 2.2 - Material properti f th rbon
TABLE 2.1 - Geometrical properties of the structure. aterial properties of the carbo
steel structure.

Two different methods are used to get an accurate estimaite &foung’s modulus. The two methods
are applied on samples at ambient temperature, which pomds to the conditions of the experimental
tests described further. On the one hand, vibration prigggedf the strip are exploited. The strip sample
is suspended at a stand by means of two small rigidity ekasfa accelerometer is glued on the sample
and the sample is impacted using an impact hammer. In oreexcite and measure a maximum of modes
of the strip sample, vibration nodes have to be avoided ®inipact and the response measurement: the
measurement point and the excitation point are chosen awvihve@nds of the sample. This impact test
allows to evaluate the first natural frequencies of the staimple. A finite element model of a free-free
beam with a concentrated mass (equal to the acceleromets) miathe location of the accelerometer is
then built. The Young’'s modulus is determined as the onerttiaimizes in a least square sense the error
between the experimental natural frequencies and theatdteguencies of the finite element model. It
is given byE = 201 GPa. On the other hand, a direct measure of the Young'silomd obtained with
tensile tests. Three tensile tests are performed on a s30gben sample at thieaboratoire de Mecanique
des Makriaux & Structuresof the University of Liege [44]. A mean Young's modulis= 206 GPa
(standard deviation of.45 GPa) is found. The first method based on the experimentasunement of the
modal properties of the sample is less accurate than thexdenee because it relies on the assumptions
and simplifications of the numerical model, for instancearding the boundary conditions. It provides,
however, an estimate & close to the one determined with the tensile tests. In thevigig, the Young's
modulus is taken equal to 206 GPa. This value is in agreemigmtusual values of Young's modulus of
carbon steels [2].

2.3 Measurement chain

Before going further in the analysis, the main componentthefmeasurement chain are described. All
the experimental tests are carried out atltidS - Vibrations et Identification des Structu(@¥AS-VIS)
laboratory unit of the Department of Aerospace and Mecladmricgineering at the University of Liege [41].

The data acquisition and signal processing are carried sing uheLMS Test.Lab software and the
LMS SCADAS Mobile andLMS SCADAS Lab acquisition systems [43]. The acquisition systems are show
in Figs. 2.4 and 2.5. The software provides a complete dartfd testing solutions. As it will be explained
further, two different tools of the software are used: ngnTekt.Lab Structures Acquisition for the modal
analysis andest.Lab Environmental for the structure testing and the first passage time study.

Because the studied structure is very light, it is importanavoid modifying its mass by adding
accelerometers on it. The response (in terms of velocitih@structure to external excitation is therefore
measured with a laser transducer whose main charactseraticgiven in Table 2.3. The Polytec laser
transducer is pictured in Figs. 2.6 and 2.7. Reflective stklare glued at the measurement points to
concentrate the laser beam (Fig. 2.7).
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FIGURE 2.4 -LMS SCADAS Mobile acquisition FIGURE 2.5 -LMS SCADAS Lab acquisition

system. system.
Sensitivity 1000 mV/[m/s]
Transducer type MSA-400 OFV-552
Manufacturer Polytec
Serial number 0110716

TABLE 2.3 - Characteristics of the laser transducer.

FIGURE 2.6 - Polytec laser transducer. FIGURE 2.7 - Laser beam of the laser transducer.

In a first approach, an impact hammer is used to excite thetsteu(Fig. 2.8). This is indeed the sim-
plest way for obtaining the impulse response functions goivalently the frequency response functions)
required to identify the modal properties of the structueeduse it does not require to attach anything to
the structure, which would not be appropriate considetigstnall weight of the steel strip. Impact testing
with hammer also presents the advantage of requiring addrand low cost equipment that allows a fast
measurement. However, this technique shows a poor signadise ratio and the test engineer needs to
get some experience and dexterity to avoid double impad&asure a good repeatability of the tests [3].
The hammer includes a force transducer. Its main charatitsriare given in Table 2.4. In order to avoid
exciting the nonlinearities, the amplitude of the forcelagaphas to remain relatively small and the heavy
head of the hammer is therefore removed. The impact hammdyecased with two tips of different stiff-
ness: a steel tip and a vinyl one. For the current applicati@re is no need to excite the structure at very
high frequencies since, in the following, only the first matdrequencies of the structure will be studied.
The vinyl tip, which is softer, is therefore chosen. Thisickowill be justified more rigorously in the part
of the work related to the experimental modal analysis ofthacture (section 3.1.2).
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Sensitivity 2.23 mVIN
Transducer type  086B03
Manufacturer PCB
Serial number 5856

TABLE 2.4 - Characteristics of the instrumented impact hammer.

FIGURE 2.8 - Impact hammer and force transducer.

In a second step, the structure is excited with electrodymaibration exciters (or shakers) that can
apply a wide range of force excitation signals. Two TV 50088kers have been selected to excite the
structure (Fig. 2.9). With a rated peak force amplitude of, &y correspond to the smallest model pro-
vided by the TIRA company [45]. Their main characteristios given in Table 2.5.

Manufacturer TIRA Sensitivity 23.41 mV/N - 99.0 mV/g
Rated peak force 9N Transducer type 288D01
Frequency range 2-20000 Hz Manufacturer PCB
Maximal displacement 3 mm Serial numbers 2592 - 2652

TABLE 2.5 - Characteristics of the shakers. TABLE 2.6 - Characteristics of the impedance
heads.

FIGURE 2.9 - Vibration Test System TV 50009 [45]. FIGURE 2.10 - Impedance head.
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In order to apply the forced excitatid, (Fig. 2.2), the first shaker is mounted horizontally close to
the bottom fixation. As explained previously, this allowsatmid any impedance mismatch. In order to
apply the parametric excitatidh,, the second shaker is mounted vertically at the bottom o$thesture.

A particular attention should be paid to the mounting of thekers. The vibration exciters are attached to
the structure under test through a drive rod (the stingeighvhas the characteristics of being stiff in the
direction of the excitation and flexible in the other direa8. The stinger acts as a mechanical fuse. Itis
here an aluminum rod. The horizontal shaker is suspenddudtwit cables at a fixed truss (Fig. 2.11). It
is important to ensure that this shaker and the associategestare perfectly horizontal so that the force
transmitted to the structure has only a horizontal compbnm ensure this alignment, the shaker is the
last element mounted on the structure. It is also checkadhlsaalignment is preserved when the shaker
acts and that the vibrations of the shaker base remain timitbe vertical shaker is fixed on its trunnion,
which is the bracket that supports the shaker and allows fioed&ith accuracy the position, angle and
alignment of the shaker (Fig. 2.12).

Impedance heads, which combine both a force transducerraadcelerometer in a single housing
(Fig. 2.10), are also added in order to facilitate the mesament of both parameters at a single point
(where the shaker acts). Their main characteristics amengiv Table 2.6. These impedance heads are
glued on the structure at the excitation locations and fingests are directly connected to the impedance
heads. Such a mounting ensures that the transducer praidéable measure of the applied force and of
the acceleration of the corresponding point. Impedancdshae always preferred to separate accelerome-
ter and force transducer to measure drive point frequersporeses [3]. Besides being more compact, they
are also more accurate since the measurements are donly exdbe same point. Again, alignment is
very important. In case of bad alignment, the impedance beas loads that are not normal to the surface
and there is a distortion of the actual measured force apfdi¢he structure.

FIGURE 2.11 - Picture of the instrumented FIGURE 2.12 - Close-up on the mounting of the
structure. horizontal and vertical shakers.
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PART 3

FINITE ELEMENT MODELING

This third part of the work aims at modeling the experimesttiup in an accurate way. The field of

research referred to as “modal analysis” in the literatunesists in understanding the dynamic behavior
of a structure by identifying its modal parameters (namiséyriatural frequencies, the damping ratios and
the mode shapes). It provides a powerful way to update a Bteérment model and get a reliable model of
a mechanical structure.

Two different complementary approaches exist in modalyasisl respectively the theoretical and ex-
perimental modal analyses. On the one hand, the theoretimdl analysis is related to a direct problem.
It requires a model of the structure. Model uncertaintiesianerent to this kind of analysis. On the other
hand, the experimental modal analysis is an inverse problahrequires a prototype. It allows to check
if the finite element model represents the reality in an ateuway and to assess the impact of model
uncertainties. It is important to highlight that modal assid relies on two assumptions: linearity and time
invariance of the structure. Even if these assumptions ewerrperfectly met in practice, they are not far
from reality for most mechanical structures.

The flowchart shown in Fig. 3.1 summarizes the basics of thedehupdating scheme” followed in
this chapter. The methodology is inspired from the one dasdiin [23]. Starting from a real structure, the
two complementary modal analysis approaches are followkd.theoretical modal analysis of the struc-
ture consists in building a finite element model of the sticethat allows to evaluate the modal properties
of the strip. The results of this first study are then used épare the experimental measurements. The
experimental modal analysis allows to get a second evaluafithe modal characteristics of the structure.
Then, the results from both the theoretical and experinhembalal analyses are compared with each other
and the finite element model is updated in order to obtainia@iel model that reproduces the experimental
results in an accurate way.

This chapter is divided into three main sections. In the fiesttion, a model of the non-instrumented
structure is built. In the second section, this model is tathpo take into account the interaction of the
shakers with the structure. The methodology summarizeir3-L is followed in these two sections. The
last section shortly highlights the nonlinear behaviott tha structure may experimentally exhibit when
subjected to high amplitude excitations.
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REAL STRUCTURE

Theoretical Experimental
modal analysis modal analysis

Finite element modeling
M, K

Modal testing
H(w)

Natural frequencies, mode[ Natural fr., damping ratios,
shapes, analytical FRF mode shapes, synthesized HRF

Correlation? RELIABLE MODEL ]

[ Model updating ]

FIGURE 3.1 - Model updating scheme.

3.1 Modal analysis of the non-instrumented structure

The objective of this section is to obtain a reliable modaladibing the dynamics of the non-instrumented
structure (without the shakers). Following the methodglegmmarized in Fig. 3.1, this section is divided
in three parts. The first and second parts are respectivebtetibto the theoretical and experimental modal
analyses of the structure. In the third part, the resulteethieoretical and the experimental modal analyses
are compared and used to update the finite element modelltfRekthis section are also reported in [12].

3.1.1 Theoretical modal analysis

In this first section, finite element models of the structueelailt in MATLAB andSAMCEF Field. These
models are used to get a first estimate of the natural freéqeeeaod mode shapes of the structure.

The structure is modeled MATLAB using Bernoulli beam elements. The strip is divided intostant
size elements. The mass and stiffness matidezndK are obtained by assembling the corresponding
elementary matrices. It should be noted that the stiffnesisixnis composed of two parts: a geometrical
stiffness matrixK prestress,initiS @added to the usual linear stiffness matkiy to take into account the in-
creased stiffness induced by the pre-stress mass. Therdgklamenatrices used in the implementation of
the finite element model can be found in [16]. The strip is as=lito be perfectly clamped at its top end.
At the bottom, a lateral guide allows the strip to move onlyhia verticalx direction (Fig. 2.2).
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A similar model is built iInSAMCEF Field without the assumptions behind Bernoulli elements.

These two finite element models are used to compute the firshs®tural frequencies of the strip.
These frequencies are listed in Table 3.1. Both models usteb@ents of 1 cm length. It is checked fur-
ther that this discretization is sufficient to capture thaatyics of the problem. The results obtained with
the two models are in good agreement, which gives confidentieeiMATLAB model and in the way in
which pre-stress is taken into account. The results alsfiroothat Bernoulli elements are appropriate for
representing the dynamics of the strip. The relative etvetareen the frequencies computed with the two
models can be partially ascribed to the different treatsiehtshear deflection in the two approaches. The
maximal relative error is indeed obtained with the fifth modgch is, as shown below, the first torsion
mode of the structure.

Frequency [Hz] Frequency [Hz] Relative error
MATLAB SAMCEF Field [%]
Mode 1 18.36 18.34 0.08
Mode 2 39.71 39.75 0.10
Mode 3 65.93 65.94 0.03
Mode 4 98.16 98.17 0.02
Mode 5 101.94 102.61 0.65
Mode 6 137.01 137.02 0.01
Mode 7 182.81 182.82 0.01

TABLE 3.1 - Eigenfrequencies obtained with the initial finite eterhmodel (50 elements).

The corresponding mode shapes (obtained withMAELAB model) are represented in Fig. 3.2. The
modes obtained with theAMCEF Field model (not shown) are similar. The higher the natural fregyge
the more complex the form of the mode shape. The fifth modedssaon mode around theaxis while the
six other modes are the successive bending modes arouryebttie. Those are the usual low-frequency
modes for a beam. From now, the bending mode shapes are mmdmaith a unit infinity normige. with
a unit maximal displacement). This choice will allow an ephysical interpretation of the results.

In the absence of accurate information about damping, thpitey ratios corresponding to the identi-
fied modes are not estimated with the finite element modely elexperimental measurements described
in the next section can provide reliable information on thésie.

Before further analyzing the structure, it is checked thatfinite element discretization is sufficient to
capture the dynamics of the strip up to its seventh mode. F&shows the eigenfrequencies computed
with the MATLAB model using different numbers of elements. The results armalized by the eigen-
frequencies computed with 50 elements, as listed in Talile Although the torsion frequency (mode 5)
converges slightly more slowly, it can be checked that tifferdint eigenfrequencies do not significantly
change when the number of elements is increased beyomn@ 50y elements of length smaller than 1 cm.
This finite element resolution is therefore considered asapiate.

Some easy checks can be performed to give confidence in tbeetival modal analysis of the strip.

They are based on the comparison of some numerical resulistieé corresponding analytical results
available in the literature.
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FIGURE 3.2 - The seven first modes of vibration obtainetTLAB with the initial finite element model.
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normalized by the frequencies computed with 50 elementdascéion of the number of elements.

First, it is checked that, when the forces associated wihehsion in the beam become much greater
than the beam stiffness, the natural frequencies approade of a straight tensioned cable. The natural
frequenciesf; of a straight cable (with zero mean deflection) are given by

i (To\Y? .

wherel is the cable lengthin its mass per unit length anty the tension in the cable [11]. Table 3.2
compares the natural frequencies obtained withMAELAB finite element analysis when the stiffness of
the structure is ignored with the analytical frequenciesdfmted by formula (3.1) for a tensioned cable.
The very small differences between the two sets of reswis ganfidence in th&ATLAB finite element
model.

Frequency [Hz] Frequency [Hz]

MATLAB Analytical
Cable mode 15.12 15.11
Cable mode 30.24 30.23
Cable mode 45.37 45.34
Cable mode 60.48 60.46
Cable mode 75.61 75.58

TABLE 3.2 - Eigenfrequencies obtained with tM&TLAB finite element model when the stiffness is
ignored and analytical eigenfrequencies of a straightders cable.
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Then, the numerical eigenfrequencies of the structure énatbsence of pre-stress can be compared
with theoretical analytical results available in the iemre. The boolormulas for Natural Frequency
and Mode Shapby Blevins provides a review of analytical formulas and pifites on the vibration of
structures and fluid systems [6]. The natural frequencidsemding f; of a single span straight beam are

given by
A2 /ENY2
fiZzTLz(ﬁ) ) (3.2)

whereL is the beam lengtt is its Young’s modulusl, is the area moment of inertia of the beam about its
neutral axis andn is the mass per unit length of the beam. The coefficiangppearing in this formula
depend on the boundary conditions. They are listed in Tal3léd3 a clamped-clamped beam. A nearly
perfect agreement is observed between the eigenfrequgmieided by (3.2) and the bending natural fre-
guencies obtained with the finite element model for a zerssmess-stress (Table 3.4). Note however that
torsion modes are not considered in (3.2).

i 1 2 3 4 5 > 6
A | 473004074 7.85320462 10.9956078 14.1371655 17.2787%%7 1)1/2

TABLE 3.3 - Coefficients\j of (3.2) for the eigenfrequencies of a single span straighnibfor
clamped-clamped boundary conditions [6].

Frequency [Hz] Frequency [Hz]

MATLAB Analytical
Bending mode 8.4364 8.4365
Bending mode 23.2554 23.2554
Bending mode 45.5900 45,5899
Bending mode 75.3626 75.3625
Bending mode 112.5786 112.5785

TABLE 3.4 - Eigenfrequencies obtained with tHaTLAB finite element model with zero pre-stress of the
structure and analytical eigenfrequencies of a single spraight beam.

Eventually, the natural frequencies of the pre-stressepl cin be compared with the analytical so-
lutions provided by [6]. Tensile loads applied to beamseéase their natural frequencies. Conversely,
compressive loads decrease the natural frequencies. Thelnfiequenciesf; of a beam supporting a
uniform axial loadP differ from the natural frequencies in the absence of axiatllf|,_, according to

P A2\ "?
fi= fi|p 1+——1> ,
| ""—°< [Po| A2

where the coefficient; are found in Table 3.3 for clamped-clamped boundary camstiandR, is the
critical buckling load of the structure which is given by

°TPE|
P, = LKL, ER (3.4)

where the coefficient? depends on the boundary conditions and equals 4 for clamipetped boundary
conditions.

(3.3)
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The eigenfrequencies obtained numerically are compartdtiaé analytical frequencies in Table 3.5.
The two results differ by about 4 to 9%. These differencesbeapartially ascribed to the fact that the strip
is not clamped at its two ends; its lower end can move in thecaddirection.

Frequency [Hz] Frequency [Hz] Relative error

MATLAB Analytical [%]
Bending mode 18.36 19.10 3.9
Bending mode 39.71 36.74 8.1
Bending mode 65.93 60.54 8.9
Bending mode 98.16 91.11 7.7
Bending mode 137.01 128.80 6.4
Bending mode 182.81 173.76 5.2

TABLE 3.5 - Eigenfrequencies obtained with tMaTLAB finite element model and analytical
eigenfrequencies of a pre-stressed single span beam daahijis extremities.

3.1.2 Experimental modal analysis

This section describes the methodology and the main restitfse experimental modal analysis of the
physical prototype of the structure. First, the measurerpestess and the signal processing parameters
are described and justified. Then, a preliminary data aitiquiss performed in order to get a first estimate
of the modal parameters of the strip. Eventually, a moreildetalata acquisition is carried out and the
modal parameters of the structure are identified.

Measurement process

The simplest way to perform the experimental modal anabyfsike structure is to excite it with an impact
hammer and to analyze the response of the structure to impHiuis is indeed a simple way of obtaining
the impulse response functions required to identify the ahpdrameters of the structure because it does
not require to attach anything to the structure. More infation about the impact hammer and its use are
given in section 2.3 dedicated to the description of the nmessent chain.

The data acquisition and signal processing are carried sing uheLMS Test.Lab software and the
LMS SCADAS Mobile acquisition system. The to@ipact Testing of the Test.Lab Structures Acquisition
module is chosen to perform the modal analysis with an impagtmer [43]. This module is particularly
well suited for the current application and shows a wide eaofycapabilities, from the definition of the
acquisition parameters to the detection of unusual cirtamees, such as double hammer hits, to avoid
incorrect measurements.

The finite element analysis performed in the previous sed#@n be used to prepare the measurement
process. In order to correctly represent the dynamics ofithiesix bending modes identified in Fig. 3.2,
9 equally spaced points on the central fiber of the strip ansidered (Fig. 3.4). These points are denoted
by P1 to P9 in this report. Because of its lightness, the &trads very responsive to hammer impacts.
In order to avoid any overloading of the channels, the atinecis only excited at the point closest to the
bottom fixation (point P9 in Fig. 3.4). The laser transdusaised to measure the response at the different
points P1 to P8. A roving accelerometer technique is usedeasnre a row of the frequency response
functions matrix. As shown below, some measurements ofdkgonse at points located outside the neu-
tral fiber are also performed to identify the torsion mode.
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FIGURE 3.4 - Excitation and measurement points.

Selection of the appropriate bandwidth for the test andctiele of the hammer tip are two very im-
portant factors that have to be considered at the beginrfitigegprocess [3]. All the modes of interest
identified with the theoretical modal analysis have fregiesbelow 200 Hz. As justified in detail further,
a bandwidth offhax = 400 Hz is selected in order to avoid errors below 200 Hz duéecanti-aliasing
filter. In order to reach an accuracy close tt Biz on the frequencie$y = 4096 spectral lines are consid-
ered. This gives an acquisition time of.20 s.

On the one hand, if the tip is too soft with respect to the setkbandwidth, the power spectral density
drops before the end of the frequency band so that the hiffteegtencies are not excited. This leads to
bad coherence and wrong frequency response functionstiretjian. On the other hand, when a too hard
tip is selected, the power spectral density is very flat onathele frequency band, but the actual excited
frequency range may be well beyond the selected bandwidtthéomeasurement. Actually, some of the
data acquisition range will be used for the energy of the m@xeited outside the desired bandwidth and
will have a detrimental effect on the measurement. Only dldnaation of the total energy measured is
associated with the bandwidth of interest. This results guantization problem in the analog-to-digital
converter. The power spectral density of a typical impadhwie vinyl tip is represented in Fig. 3.5(a) on
the frequency band [0 ;400 Hz] and in Fig. 3.5(b) on the fregyeéband [0 ; 1600 Hz] (4 times the band-
width). These figures confirm that the chosen tip is appramridhe power spectral density appears to be
sufficiently smooth on [0; 400 Hz] and the roll off is suffictdmeyond 400 Hz so that higher frequencies
are not excited.

When processing the signal, two types of errors may appeaiance and bias errors [15]. Variance
errors are due to the discrepancy between the mean of eagitesand the mean of the ensemble. Such
errors can be reduced by averaging a sufficiently large nuofteamples. To achieve a good compromise
between the acquisition time and the accuracy of the measunts, the average between three successive
tests is made. Bias errors can be separated into aliasingakabe errors.
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FIGURE 3.5 - Power spectral density of a typical impact force pented with the vinyl tip.

The LMS Test.Lab software sets the sampling frequenfgyat a sufficiently high value to avoid alias-
ing [43]. TheLMS SCADAS Mobile acquisition system has a built-in anti-aliasing filter. §fiiter is
however not ideal and the last 20% of the frequency band tabe treated with care. This justifies a
posteriori the choice of the frequency band that is suffibfemider than the band of interest.

In order to reduce leakage errors, windowing techniquegpéed to the excitation and the response
signals. These windows force the signal to vanish at the &ttt @bservation time and, therefore, filter out
otherwise unavoidable noise components at the end of thelsifhe forms of the windows are adapted
to the forms of the signal in order to limit its distortion: @ctangular window is chosen for the impact
and an exponential one for the response (The response tatisries the form of the damped exponential
response of all the modes excited by the input.). The obsenveme must be long enough to ensure that
the response decreases sufficiently and that the windowrdiesistort too much the time measured data.
The optimum parameters defining the windows are set by ki Test.Lab software by analyzing and

averaging several successive impacts [43].

Potential quantization problems must also be addressed@ntization refers to the accuracy with
which the amplitude of an analog signal is digitized. If stiéfint resolution is not available, the signal will
be distorted. The voltage ranges for each channel must e sgipropriate values so that the analog-
to-digital converter is optimized. The acquisition systenmused to autorange the response levels. The
overload reject switch is turned on so that overloaded nreasents are not accepted.

In order to correctly capture the impacts, two quantitiegsehm be defined: the trigger level and the
pretrigger. Those are automatically defined by tiMsS Test.Lab software by analyzing and averaging
several impacts [43]. The acquisition is triggered whendigmal on the hammer channel exceeds the
trigger level, which is Gl N here. The pretrigger determines the time prior to thg&igondition that will
be included in the acquisition. It is given bylGs in the considered experimental set-up and avoids losing
part of the impact in the acquisition.
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Preliminary data acquisition

Before embarking upon the complete modal analysis of thg, $tre analysis of the response of the struc-
ture to a single impact is used to provide a first estimate efriitural frequencies and damping ratios.
As explained previously, the structure is triggered at pBid (Fig. 3.4). The measurement point must be
carefully chosen in order to detect all the modes identifigtl the finite element method. It is therefore
important that this point does not coincide with a vibratimue of any bending mode. The point P2 meets
this condition and is therefore selected.

The measured frequency response function and its cohef@mction are represented in Fig. 3.6. The
coherence function is a good indicator of the accuracy aadgpeatability of the performed impacts [23].
The values close to 1 taken by the coherence function in tlidewhnge of interest indicate that the noise in
the measured signals is limited and that the three suceeisspacts are performed with enough accuracy
at the same location. As expected, the coherence functapsadt low frequency and at the anti-resonance
frequencies. This is not a problem since the output is vellsahthese locations.

FRF [(m/s)/N]

0 20 40 60 80 100 120 140 160 180 200
Frequency [Hz]

Coherence |[-]
o o
= [=>]
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FIGURE 3.6 - Frequency response function and coherence functivaspmnding to an excitation at point
P9 and the measurement of the response at point P2.

The measured frequency response function plotted in Fégprévides a quick way of determining the
number of modes in a given frequency band [15]. It allows ghhght the resonance peaks of the struc-
ture and, therefore, to identify the resonance frequencss modes can be clearly seen between 0 and
200 Hz. They correspond to the six bending modes identifigd thie finite element model. The natural
frequencies obtained by this analysis of the experimertta dre given in Table 3.6.
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| Frequency [Hz]

Bending mode 17.9
Bending mode 38.3
Bending mode 63.7
Bending mode 94.7
Bending mode 132.4
Bending mode 1755

TABLE 3.6 - Eigenfrequencies identified with the frequency respdnnction plotted in Fig. 3.6.

This preliminary data acquisition can also provide estesaif the damping ratios associated to the
different modes. Two single-degree-of-freedom methodsiraplemented itMATLAB: the peak-picking
method and the circle-fit method. These two methods workénfitaquency domain. Single-degree-of-
freedom modal analysis methods may be applied when the naoeegell separated in frequencies and can
therefore be analyzed separately by focusing on a givendirezy band. The accuracy of the peak-picking
method and the circle-fitting method depends on the numbpoiots that describe the resonance peak.
These methods are used here to estimate the damping rakie fifth bending mode. Similar results can
be obtained for the other modes of the structure.

The peak-picking method is illustrated in Fig. 3.7 [23]. histfigure, the peak corresponding to the
fifth bending mode is isolated. The Bode plot of the frequeregponse function amplitude is used to
detect the maximum response and the half-power points. Tuahdamping is evaluated by

Af
€~ >F (3.5)
whereAf is the frequency bandwidth between the half-power pointsfais the natural frequency of the
mode (Fig. 3.7). A damping ratio of 0.09% is found.
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FIGURE 3.7 - Peak-picking method (fifth bending FiGuRE 3.8 - Circle-fit method (fifth bending
mode). mode).
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The circle-fit method is illustrated in Fig. 3.8. It is basead the circular nature of the Nyquist plot
of the frequency response function when viscous dampingssmaed and when the frequency response
function is expressed in its mobility form [23]. The modahtzing associated to modecan be expressed
by

fz— 2
N 2f[fatan(0a/2) + fptan(6p/2)]’
wherefy is the natural frequency of the modg/ f, are frequencies close fg around the circle anél, /6y
are the corresponding angles measured with respect todhesraf the circle associated to the resonance
frequency. An example of these parameters is shown in R8g.The mean value of the differeet com-
puted with different values fof, and f, is equal to 0.096% and is therefore in good agreement with the
result of the peak-picking method.

(3.6)

€k

In order to check the linearity of the behavior of the struefa second test is performed by switching
the excitation and the measurement points. The structdheisfore excited at point P2 and the response
is measured at point P9. Notice that the point P2 is also sriflg close to the top fixation of the strip
to avoid overloading of the channels (Fig. 3.4). The normtheftwo frequency response functions are
plotted in Fig. 3.9. The curves are in good agreement exddptvarequencies where the data are noisy,
as already shown by the coherence function in Fig. 3.6. EfysBows that the reciprocity principle is
verified and that the assumption of linearity is therefosified.

FRF [(m/s)/N]
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FIGURE 3.9 - Frequency response functions corresponding to ataéieci at point P9 (resp. P2) and the
measure of the response at point P2 (resp. P9). lllustrafitime reciprocity principle.

Before moving to the more detailed data acquisition, it théwe noted that the structure has also been
excited at other points and that the response has been raedagusther points to check that no mode is
missed in this preliminary study. Also, this preliminantalacquisition has been repeated several times
on several days characterized by different ambient canditi The frequency response functions appear
to be invariant with respect to these conditions. The systamtherefore hopefully be considered as
time-invariant.

Identification process

A more detailed data acquisition is performed on the stripe Structure is excited at point P9 (Fig. 3.4)
and the response is successively measured at each of thgothts. The values given to the various pa-
rameters used for the acquisition have already been givetjuatified previously. Using the measurement
data, it is then possible to extract the modal parameterkeoftructure. The natural frequencigsand
damping ratiog, are obtained using theeast Square Complex ExponentfaSCE) method. The mode
shapeg, are computed with theeast Square Frequency DomdliSFD) method.
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The LSCE method, introduced in 1979 by Brown et al. [7], wadrkghe time domain and requires ex-
perimental measurements in the form of impulse responszifuns (IRF). The impulse response functions
are not directly given by theMS Test.Lab software but are easily obtained by taking the inverse Eouri
transforms of the transfer functions.

An important issue of many identification techniques is #lecion of the model order. The stabiliza-
tion diagram allows to differentiate between real and spugimodes. In Fig. 3.10, a mode is considered as
“stabilized in frequency” (green marker) if its frequendifets by less than 4 Hz from a mode identified
with the previous order. A mode is considered as “stabilirefiequency and damping” (blue marker) if
it is stabilized in frequency and if its damping ratio difdry less than 0.01% from the mode identified at
this frequency at the previous order. If the mode is not Bzadol in frequency, it is classified as “unstabi-
lized” and represented by a red marker. The six modes camelspy to the peaks of the mean frequency
response function (represented in gray in the figure) aeelgladentified.
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FIGURE 3.10 - Stabilization diagram of the LSCE method applied ortbn-instrumented structure. The
gray curve represents a reference frequency responséoiunct

The eigenfrequencies and damping ratios obtained by fieiion with the LSCE method are given in
Table 3.7. It should be noted that identification methodsae directly implemented in theMsS Test.Lab
software. In particular, thBolyreference Least-Squares Complex Frequency-DofRailyMAX) method
is a general purpose method for strongly and weakly dampadtstes that provides very clear stabiliza-
tion diagrams [27]. It was introduced as an alternative t€ESand allows to work directly on the fre-
guency response functions to identify the natural fregigsnand damping ratios. The natural frequencies
and damping ratios obtained with the PolyMAX method are hdded in Table 3.7. A good agreement is
observed between the two sets of results and gives confidletfoeMATLAB implementation of the LSCE
method. This table shows that the damping in the structurealy light. The fourth and sixth bending
modes have a modal damping larger than the other modes. Tédwgts can be compared with the results
of the preliminary data acquisition. The natural frequeaddentified with the single frequency response
function measured (Fig. 3.6) are close to the frequencidheofable. Moreover, it can also be checked
that the value = 0.09— 0.10% obtained for the fifth bending mode with the peak-pickimgthod and the
circle-fit method is a good estimate of the damping ratio.
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Frequency [Hz] Frequency [Hz] Damping ratio [%] Damping iat[%]

LSCE PolyMAX LSCE PolyMAX
Bending mode 17.8 17.8 0.06 0.06
Bending mode 38.5 38.4 0.03 0.05
Bending mode 63.8 63.7 0.08 0.06
Bending mode 94.7 94.8 0.20 0.20
Bending mode 132.5 132.5 0.08 0.10
Bending mode 175.9 176.2 0.21 0.25

TABLE 3.7 - Comparison of the eigenfrequencies and damping rakitssned with the LSCE method
implemented ilMATLAB and the PolyMAX method implemented in theIS Test.Lab software.

The companion method LSFD is implemented to identify the esithpes of the structure. Unlike the
LSCE method, the LSFD method works in the frequency domesh [Zhis method takes advantage of
the previous knowledge of the natural frequencies and dagnigitios identified with the LSCE method
(Table 3.7). The modes extracted with this method are complewever, because the identified damping
ratios are small, one can expect that the different degreésaedom of the structure vibrate in phase.
The complexity of the mode shapes is assessed with the Adjagcam. Fig. 3.11 represents the Argand
diagrams of the six bending modes identified with the LSFDhoet It is checked that all the nodes of
the structure vibrate in phase in the different mode shapée. real bending modes extracted from the
complex ones are shown in Fig. 3.12.

Different tools are commonly used in industry in order toahthat the modes are physical and, there-
fore, that the order is correctly selected [43]. The firstathis provided by a visual inspection of the
modes. At low frequencies, the simplest modes must be abgeibhis is the case here: the first modes
identified correspond to the usual first bending modes of mb&hen, the different mode shapes must be
independent. This is checked with the auto-MAC matrix repneed in Fig. 3.13. Because all the out-of-
diagonal terms are close to 0, the modes are indeed independe

To end this experimental part, an estimate of the first tarsatural frequency is obtained by measuring
the response at several points that are not located on thehter of the strip. A value of = 1014 Hz
is found.

3.1.3 Model updating

At this stage of the study, two sets of modal parameters aidahle. On the one hand, estimates of the
natural frequencies and mode shapes of the strip have béaimexbin section 3.1.1 based on finite ele-
ment models. On the other hand, a second set of modal paranfeatural frequencies, damping ratios
and mode shapes) comes from the experimental modal anglydirmed in section 3.1.2. In the first
part of this section, the two sets of modal parameters argpaped. Then, the finite element is updated in
order to reduce the discrepancies between the results ditioectical and experimental modal analyses,
in agreement with the methodology set in Fig. 3.1.

The results obtained with th@ATLAB finite element model and with the experimental modal analysi
are summarized in Table 3.8. The natural frequencies adataiith the initial finite element models sys-
tematically overestimate the corresponding natural feegies identified with the experimental analysis
by 3-4% for the bending modes, which leaves room for imprasem
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Frequency [Hz] Frequency [Hz]

TMA EMA [%0]
Bending mode 1 18.4 17.8 3.1
Bending mode 2 39.7 38.5 3.1
Bending mode 3 65.9 63.8 3.3
Bending mode 4 98.2 94.7 3.7
Torsion mode 1 101.9 101.4 0.4
Bending mode § 137.0 132.5 3.4
Bending mode 6 182.8 175.9 3.9

Relative error
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FIGURE 3.11 - Argand diagrams of the six first bending modes idedtifeperimentally on the

TaBLE 3.8 - Comparison of the eigenfrequencies obtained fromrétieal (TMA, initial model) and
experimental EMA, non-instrumented structure) modal analyses.
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FIGURE 3.12 - The six first bending modes of the non-instrumentastttre identified with the LSFD
method (in red) compared to the modes obtained with thaltitite element model (in blue).

Visually, the two sets of mode shapes are in good agreemémt 3E2). They correspond to the
successive bending modes of the strip. The Modal AssurariteiGn (MAC) can be used to quantify the
correlation between the two sets of modes [1]. The MAC coeghbetween modieof the first familqu(li)

and modej of the secondpfj) is given by

etz

(i) T

MAC (gL, w2 )= [ 2 "W} (3.7)
OO\ N0, T

The MAC matrix based on the two sets of modes available issgmted in Fig. 3.16. The close-to-one
values of its diagonal elements and the negligible valuets afut-of-diagonal elements confirm the very

good correlation reported above.
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FIGURE 3.13 - Auto-MAC matrix of the FIGURE 3.14 - MAC matrix between the
experimental bending modes identified with the numerical modes (initial model) and the
LSFD method (non-instrumented structure). experimental modes (non-instrumented structure).

Despite the high correlation between the mode shapes, al mpdating can be carried out to reduce
the relative errors between the natural frequencies.

The imperfect agreement can result from a bad experimentdysis or from modeling errors and
uncertainties. It has been shown in the previous sectidnttleameasurement process is performed in a
rigorous way and that the choice of the measurement codeding justified. Moreover, the modal iden-
tification gives the same results as the PolyMAX identifmatimethod implemented directly in the1S
Test.Lab software. It is therefore argued that it is the finite elentanteling of the structure that must be
improved.

While errors can be introduced by the discretization precésvas shown in section 3.1.1 that the
number of finite elements used in the numerical models isceeifii to capture the dynamics of the prob-
lem. Refining the mesh does not lead to any significant chantieinatural frequencies.

The errors can be related to the assumptions about the phystbe model. Here, the natural fre-
guencies obtained with the model are slightly higher thanekperimental ones. The model is therefore
more rigid than the real structure. This can result from th@ae of the boundary conditions in the initial
model. Perfect clamping is a mathematical idealization tleser exists in practice. It is impossible to
completely prevent any rotation about thaxis at the fixations of the strip (Fig. 2.2). The finite eleme
model is therefore corrected by introducing a stiffnesotation about thg-axis at both ends of the strip.
To simplify the analysis, the stiffness coefficient is suggmbto be the same on both sides. The rigidity
of the clamping is determined in such a way that it minimizeserror (in a least-square sense) between
the natural frequencies obtained with the numerical anémx@ntal modal analyses. Fig. 3.15 shows the
global error as a function of the stiffness in rotatlkorAn optimum value ok = 3.83 Nm/rad is found.

Table 3.9 shows the natural frequencies computed aftertingdaf the finite element modeilge. after

modification of the boundary conditions. These frequencasbe compared with the experimental fre-
guencies and show now relative errors less than 0.2%.
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FIGURE 3.15 - Global error on the natural ~ FIGURE 3.16 - MAC matrix between the numerical
frequencies as a function of the stiffness in rotation modes (updated model) and the experimental
and determination of the optimum value. modes (non-instrumented structure).

Frequency [Hz] Frequency [Hz] Relative error

TMA EMA [%]
Bending mode 17.8 17.8 0.1
Bending mode 38.5 38.5 0.1
Bending mode 63.7 63.8 0.1
Bending mode 94.8 94.7 0.1
Torsion mode 1 101.9 101.4 0.4
Bending mode 132.2 132.5 0.2
Bending mode 176.3 175.9 0.2

TaBLE 3.9 - Comparison of the eigenfrequencies obtained fronrétieal (TMA, updated model) and
experimental EMA) modal analyses of the non-instrumented structure.

One can also check in Fig. 3.16 that the adjustment of the hulm#s not have any detrimental effect
on the correlation between the numerical and experimentalenshapes. The out-of-diagonal terms are
really close to 0 while the diagonal terms vary between Or#b(a99.

3.2 Modal analysis of the instrumented structure

While the model derived above provides an accurate desxripf the dynamics of the strip itself, the
shakers mounted on it have a non-negligible influence on yhardics and require therefore to modify
the model. The objective of this section is to obtain a rddiainodel describing the dynamics of the
structure when both the horizontal and vertical shakeravavented on it. The first part is devoted to
the experimental modal analysis of the structure. In thersgépart, in agreement with the methodology
summarized in Fig. 3.1, the finite element model of the n@triimented structure is updated to take into
account the influence of the shakers on the dynamics of thetste. The last part describes how damping
is added into the finite element model.
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3.2.1 Experimental modal analysis

The experimental modal analysis is carried out by excithmg structure with the horizontal shaker. As
explained previously, the horizontal shaker is located tie@ bottom fixation. The point of excitation is
chosen in such a way that all the modes previously identifieégxecited. The vertical shaker is not exciting
the structure but is mounted on it in such a way that its ictéya with the structure is taken into account.
The toolSpectral Testing of the modul€eTest.Lab Structures Acquisition allows to control the excitation of
the shaker. A white noise defined on the complete acquiditgmuwidth is selected. The same acquisition
parameters as before are chosen and a free run triggerdgesklds it is usually done for random signals,
Hanning windows are used on both the excitation and the rsspio limit leakage problems [3].

The excitation levels for modal testing are usually very.lGWere is no need to provide large force
levels for conducting a modal test, especially if apprdpri@sponse transducers with good sensitivity are
selected. Large forces can excite nonlinear charactesjstihich has to be avoided in the context of linear

modal analysis.

Fig. 3.17 shows the frequency response function measutthdive impedance head at point P9 where
the horizontal shaker acts. As expected at drive pointgeth@nances are separated by anti-resonances.

10%

10!
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102 | | | | | | | | |
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FIGURE 3.17 - Frequency response function measured at the drivne pei

The identification of the natural frequencies, dampingogtind mode shapes is performed with the
Stochastic Subspace Identificatié®SI) method. This method directly works on the recordedk tiig-
nals [34]. The stabilization diagram represented in Figl8 &llows to distinguish real modes from spurious
ones. A mode is considered as stabilized in frequency if@guency differs by less thanl0Hz from a
mode identified at the previous order. A mode is considerestadmlized in damping if its damping ratio
differs by less than 0.01% from the damping ratio of the malgmiified at this frequency at the previous
order. A mode is considered as stabilized in mode shape ihttgal assurance criterion (MAC) between

the mode and a mode identified at the previous order is lainger @.95.

The eigenfrequencies and damping ratios obtained by faeiton with the SSI method are given in
Table 3.10. The results are compared with those obtaindttigtPolyMAX method implemented iitMS

Test.Lab.

3.2.2 Model updating

Table 3.11 summarizes the natural frequencies obtainddthétMATLAB finite element model and those
identified experimentally. The relative errors greatenttii@% observed for the last bending modes are
clearly not acceptable. The interaction of the shaker whighstructure has to be taken into account.
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FIGURE 3.18 - Stabilization diagram of the SSI method applied tankeumented structure. The gray
curve represents a reference frequency response function.

Frequency [Hz] Frequency [Hz] Damping ratio [%] Damping iat[%]

SSi PolyMAX SSi PolyMAX
Bending mode 18.4 18.6 0.61 0.63
Bending mode 38.9 38.9 0.17 0.18
Bending mode 64.7 64.6 0.62 0.60
Bending mode 94.1 94.4 1.09 1.10
Bending mode 118.1 118.8 2.81 2.99
Bending mode 145.8 144.8 0.35 0.39

TABLE 3.10 - Comparison of the eigenfrequencies and dampingsrefithe instrumented structure
obtained with the SSI method implementedATLAB and the PolyMAX method implemented in the
LMS Test.Lab software.

Frequency [Hz] Frequency [Hz] Relative error

TMA EMA [%]
Bending mode 17.8 18.4 4.3
Bending mode 38.5 38.9 1.0
Bending mode 63.7 64.7 15
Bending mode 94.8 94.1 0.4
Torsion mode 1 101.9 101.2 0.7
Bending mode 132.2 118.1 12.2
Bending mode 176.3 145.8 21.7

TaBLE 3.11 - Comparison of the eigenfrequencies obtained fromrétieal TMA, non-instrumented
structure) and experimentatNIA, instrumented structure) modal analyses.
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The horizontal shaker, the stinger and the impedance head ¢b the strip (Fig. 3.19) are modeled
by a spring-mass system. This equivalent system is repgexbanFig. 3.20. The values of the masses and
stiffness coefficients used in the model are given in Talde.3.

ksuspension

/

kstinger

Mmoving Mhead

FIGURE 3.19 - Horizontal shaker picture. FIGURE 3.20 - Horizontal shaker modeling.

Parameter Symbol Value Units

Shaker mass Mshaker 1.7 kg

Moving mass Mmoving 15 ¢

Impedance head masSmheaq 30 ¢

Suspension stiffness  Ksuspension 4.0 1¢ N/m

Stinger stiffness Kstinger 45.1¢ N/m

TABLE 3.12 - Equivalent parameters of the spring-mass systemlingdbe horizontal shaker.

The influence of the impedance head is modeled by adding @otated massheag(equal to the mass
of the impedance head) at the point where the horizontaksteadts. The aluminum stinger connecting the

shaker to the strip is replaced by a spring of stiffness aoefft

EA
kstinger: <T> ) (3-8)
stinger

whereEstinger is the Young’'s modulus of the ro@stingerits cross section area amginger its length. The
values of these three parameters are given in Table 3.13.

Parameter Symbol Value Units
Young's modulus  Egtinger 70 GPa
Cross section areaAstinger 3.1 mn?

TABLE 3.13 - Mechanical and geometrical properties of the alumistinger.
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The shaker itself is modeled by two masses connected by mgspfihe massnghakerrepresents the
main body of the shaker and the massoying Corresponds to the small moving mass. The spkifighension
represents the moving mass suspension. The values of tiregseparameters are given in the technical
sheet of the TIRA shaker [45].

This modification of the finite element model allows to betepresent the first modes of the structure.
The relative error on the higher natural frequencies is vewef the order of 5% and the model still needs
to be updated. The impedance head glued to the structur@wteshorizontal shaker acts prevents the strip
from deforming and exhibiting significant curvature in thisttom region near the clamping (Fig. 3.21).
Because the modes shapes characterized by a high curvatbre fiegion are precisely the high frequency
bending modes (Fig. 3.2), it is not surprising that the nuca¢model does not predict these natural
frequencies with high accuracy. To reduce the errors, tfirests of the two elements of the finite element
model in contact with the impedance head is increased alificThe increase in stiffness is determined
to minimize the errors on the first height natural frequen@gthe structure in a least square sense. The
elementary stiffness matrices of the two elements are aseak by 2%. It has also been checked that the
number of elements near the clamping of the strip is suffiderepresent the boundary layer.

FIGURE 3.21 - Close-up on the impedance head/structure interactio

This numerical model update allows to considerably redbeestrors on the natural frequencies. Ta-
ble 3.14 summarizes the natural frequencies provided Wétfihite element model and with the experi-
mental modal analysis. The relative errors are now acckptab

Frequency [Hz] Frequency [Hz] Relative error

TMA EMA [%]
Bending mode 18.3 18.4 0.7
Bending mode 39.3 38.9 1.2
Bending mode 64.6 64.7 0.1
Bending mode 92.8 94.1 13
Torsion mode 1 102.0 101.2 0.7
Bending mode 116.8 118.1 1.1
Bending mode 147.2 145.8 0.9

TABLE 3.14 - Comparison of the eigenfrequencies obtained fromrétieal TMA, updated model) and
experimental EMA) modal analyses of the instrumented structure.
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With respect to the theoretical modal analysis conductedhermon-instrumented structure, a new
mode appears at low frequency. This mode is a deformatiorerobthe mass-spring system added to
model the horizontal shaker. This is not a bending mode obtheture but a deformation mode of the
shaker itself that will not be studied in the following andhist represented. The finite element bending
modes are shown in Fig. 3.22 where the position of the hoti@maker is indicated with a red marker.

Regarding the mode shapes, the MAC matrix is represented.iB23. A good correlation is observed
between the bending modes obtained numerically and expetatly for all the modes, except around the
fifth bending mode. It was already observed in Fig. 3.18 thatftequency response function at this fre-
guency is noisy. The coherence also drops on this frequesrny. iMoreover, a very high damping ratio of
nearly 3% has been identified (Table 3.10). When excitingth&ture around 118 Hz, it is observed (and
heard) that the mechanical slider of the pre-stress masansinoFig. 2.12 seems to enter in resonance at

these frequencies, which could explain the bad identificatif the fifth bending mode. This is not a big
issue: this mode will be avoided when performing the modaliction.

z-axis [-]

z-axis [-]

x-axis [m)]

z-axis [m]
y-axis [cm] y-axis [cm)]

(a) Bending mode 1. (b) Bending mode 2.

z-axis [-]
z-axis [-]

x-axis [m]

z-axis [m]
y-axis [cm] y-axis [cm]

(c) Bending mode 3. (d) Bending mode 4.

z-axis [-]
z-axis [-]

x-axis [m]

z-axis [m]

y-axis [cm] y-axis [cm]

(e) Bending mode 5. (f) Bending mode 6.

FIGURE 3.22 - The six first bending modes of vibration obtainetM#TLAB with the updated model of
the instrumented structure. The red marker allows to ifletite position of the horizontal shaker.
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of the instrumented structure.

3.2.3 Damping

Damping is introduced in the conservative finite element ehtittough a damping matri€ based on the
experimentally identified damping ratios. The methodologyoduced by Géradin and Rixen in [16] is
followed. According to Rayleigh assumption, linearizedodgus like dissipation with damping matfixis
assumedi(e. no dissipation force present when the velocity is 0). Theaiqn of motion takes therefore
the general form

MX(t) + Cx(t) + Kx (t) = f(t), (3.9)
where matrice andK have been determined previously. In general, the modesoanplex so that the
equations are coupled and interactions occur between thiesndefining® as the modal matrix, the
matrix @' C® is not diagonal and there is therefore no orthogonalitytiaahip.

As shown previously, the modes identified experimentally flwa considered in good approximation as
real modes. The matrib" C® is therefore supposed to be diagonal, with elem@gtsn its diagonal. In
the modal damping assumption, modal damping coefficiertsleiined by

s (3.10)

wherews stands for the pulsation of modg, by analogy with one-degree-of-freedom systems and where
Ms = X[y MXs). (3.11)

A way to construct a damping matrix that guarantees diagomadal damping is provided by the
proportional damping approach

d 2es 1
C=Y KXg—XK. (3.12)
szl ¥ s
In practice, only a small numben of modes are identified experimentally a@ds computed as
C= EnKx 25 (T K (3.13)
& Y '
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where the diagonal elements of the modal damping mdifi€® are given by

(3.14)
Bs=0, s>m

{ Bs = 265005k, s<m
This automatically generates zero damping for the missindeas, which is not physical. The truncated
expression is corrected by assuming for the higher mode®early increasing damping coefficient with
frequency. It is assumed that the damping of the higher misdgs/erned by

C=aK, (3.15)
so that a0y
85: 7, S> m, (316)

and the diagonal elements @ C® can be expressed as

Bs = awlps, s>m. (3.17)

The damping matrix is therefore built as

C—aK+n§nKx (ﬁ i)xTK (3.18)
=] (S) s Wil ) T .

where the damping coefficierds are identified experimentally (Table 3.10).

It has been shown that the finite element model reproduceas @teurate way the natural frequencies
and mode shapes of the structure. To go one step further,xfferimental and numerical frequency
response functions can be compared. Fig. 3.24 comparesetheshcy response functions corresponding
to excitation at point P9 and measurement at point P3. Tredwve is derived from the numerical finite
element model where damping is taken into account througlddmping matrixC. A good agreement is
observed between the curves. At the resonances, the pealasaxpected, slightly shifted in frequency
and the amplitudes are slightly different. This comparigames confidence in the way damping is taken
into account in the numerical model.
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FIGURE 3.24 - Comparison of the frequency response functions t@iam at point P9, measurement at
point P3) of the numerical finite element model and the expenial set-up.
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3.3 Nonlinearities detection

Because of the lightness of the structure, it is expectetitltan show nonlinear behaviors when it is
subjected to high amplitude excitations. Such nonlinedrabiers must be avoided in the scope of the
current study of the linear Mathieu equation. It is therefonportant to identify when they occur. The
modal analysis described in the previous section has bedorped with very low excitation levels so
that the structure behaves linearly. In order to highligiiet monlinear behavior of the strip, the structure
is excited with the horizontal shaker with both sine-sweegitations and simple sine excitations. These
fully deterministic signals allow for an easy visual intexfation of the data.

The moduleviIMO Sweep & Stepped Sine Testing of the toolTest.Lab Structures Acquisition is used in
this section for the acquisition of the response of the snedo sine-sweep excitations. Sine-sweep exci-
tations allow to strongly activate nonlinearities as epésgconcentrated in frequency. Linear sine-sweep
excitations are selected to give the same importance tofezmiency of the frequency band.

Sine-sweep excitations of increasing amplitudes are eghipdi the structure with the horizontal shaker
to get a global view of the structure dynamics. The frequevenjes linearly between 20 and 70 Hz
at a sufficiently low rate of @5 Hz/s. This frequency interval covers two modes of the linearcstire.
Fig. 3.25 shows the envelope of the amplitude of the respoiithe structure measured at point P3 in terms
of velocity for excitation amplitudes between 0.125 and 4B4ch point €, X) of a curve corresponding
to an excitation amplitud@ relates the amplitude of the steady-state response ofrinetlgtex to a sine
excitation of amplitudé\ and frequencyf. When the amplitude of the excitation increases, the pestkei
response appear to be shifted towards the left. This is a elimpevidence of the existence of softening
nonlinearities in the system when the amplitude excitat®sufficient. It can also be noted that the
superposition principle does not apply here: multiplyihg excitation amplitude by 2, does not multiply
by the same factor the response of the structure. At low anags (for excitations below.®5 N), the
linear behavior of the structure is recovered. Naturalfezies are independent of the level of excitation
and the superposition principle is verified.
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FIGURE 3.25 - Envelope of the velocity of the structure as a functibthe frequency for sine-sweep
excitations of amplitudes 0.125, 0.25, 0.5, 1, 2 and 4 N. Pddines indicate the respective positions of
the two linear natural frequencies.
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The comparison of the responses to sine-sweep excitatioadof equal amplitudes but reverse direc-
tions also provides interesting information about the maar behavior of the system. The responses of
the structure in terms of the velocity of point P3 to two sgvaeep excitation forces of amplitude 4 N and
frequency varying linearly between 20 and 70 Hz are showrign3:26. According to linear theory, both
responses should superimpose, which is not the case farttpsitude of excitation. Nonlinear amplitude
jumps are also observed in the response of the structurehe&etjumps, the response of the structure
appears to suddenly increase or decrease [18]. Fig. 3.2#ghe very different responses of the structure
to sine excitations of amplitude 4 N and very close frequesiticated just before and just after the jump.
These jumps do not appear at the same frequencies for segpsexcitations of increasing or decreasing
frequencies.

The shapes of the envelopes of the responses of the struotsitge-sweep excitations of increasing
and decreasing frequencies suggest the shape of the ramiiequency response (NLFR). NLFRs de-
scribe the evolution of the steady-state response amelitfidhe structure with the excitation amplitude
and frequency [25]. For instance, it is expected that thdimear frequency response takes the form shown
in Fig. 3.28 between 50 and 70 Hz. Contrary to linear FRF, re¢\amplitudes of steady-state solutions
can exist for a single frequency excitation. The solutiondsunique but depends on the initial conditions.
Initial conditions do not only influence the transient pdrtie response of a nonlinear system, but also its
steady-state response [18]. However, all the solutionaatame observed in practice and some regions of
the NLFR are characterized as unstable. It is expecteddhah most nonlinear systems, the branch of
the NLFR between points A and B is unstable. Therefore, amtydifferent solutions can be observed for
excitation frequencies betwedp and fa.

Fig. 3.26 shows a non-smooth region around 65 Hz. This behaginnot be explained by the linear
theory. This suggests the existence of another nonlineangrhenon. According to linear theory, the
response of a system to a periodic solution is itself pecioldi this region, the periodic solution is periodi-
cally modulated. This illustrates the concept of quasgabcity well known in nonlinear theory [25]. The
quasiperiodic response of the structure is representewirBR29. The Fourier transform of this response
confirms that two distinct frequencies are present in theamse. Out of this region, the frequency content
of the response of the structure is dominated by the exaitdtequency.

The objective of this work is not to characterize the nordiitees in the system neither to build a
nonlinear numerical model of the structure but to study ihear Mathieu equation. In the following, the
strip will be excited with sufficiently small force amplitad to limit the excitation of the nonlinearities. It
should also be noted that sine-sweep excitations are thet wase for nonlinearity since all the energy is
concentrated on a single frequency. In the following, ranéxcitations with energy content distributed on
a finite frequency band will be applied. Moreover, randomitations have the characteristics of averaging
slight nonlinearities [3]. At the end of this report (seat®.2.3), some experimental results obtained in the
nonlinear domain will nevertheless be shown.
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PART 4

NUMERICAL STUDY OF FIRST PASSAGE TIME

This chapter is dedicated to the numerical study of firstagssime using the finite element model of the
structure introduced and validated in the previous partis $tudy is carried out in order to prepare the
experimental validation described in the next chapter.

The analytical theory of first passage time summarized iti®ed.2 applies to one-degree-of-freedom
structures governed by the linear Mathieu equation ancestdyj to broadband forced and parametric ex-
citations. The studied multi-degree-of-freedom struetgrsubjected to forced and parametric excitations
and its dynamics is governed by a multi-dimensional Matlggquation. In order to fit into the particular
framework defined by the theory, several steps have theréddoe taken.

In the first section, the multi-degree-of-freedom equatiohmotion are reduced to a set of uncoupled
single-degree-of-freedom equations. It is then shown tbasspecific forced and parametric excitations,
some aspects of the dynamics of the structure can indeecpbexaipated with a single-degree-of-freedom
Mathieu equation. This study of the validity of the reduceddel will naturally lead to introduce the
concept of narrow-band excitations and the necessity wystumerically their influence. The second
section therefore reports the results of a numerical stegdigded to analyze the influence of the frequency
bands of the random excitations on the first passage time Bame general conclusions are drawn and
used to define the parametric and forced excitations to béedpp the experimental study of the structure.

4.1 From multiple-degree-of-freedom to single-degree-efeedom equations
of motion

This section describes the first step towards relating theptex reality of the physical set-up to the frame-
work under which the analytical results of section 1.2 hagerbderived. It focuses on the assumption
of single-degree-of-freedom system of the theory. In teidien, the multi-degree-of-freedom equations
of motion are reduced to a set of uncoupled single-degrdeeefiom Mathieu equations. The conditions
under which a profitable use of this model reduction can be dwe then identified.

4.1.1 Model reduction

The finite element modeling of tH¥-degree-of-freedom structure provides the mass mitrithe damp-
ing matrixC and the time-varying stiffness mattk(t). The governing equation of the structure subjected
to an external excitatiof(t) therefore writes

MX(t) + CX(t) + K (t)x(t) = f(t), (4.1)
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wherex is the vector of generalized coordinates. The stiffnessirmit(t) can be decomposed into a sum
of three terms

K (t) = K0 +K prestress,iniﬁ‘ K prestresét)7 (4-2)

whereKj is the usual linear stiffness matrix (constant in timi€ hestress,initiS the geometrical stiffness
matrix due to the initial pre-stress mass (constant in tiame)K prestresét) varies in time and characterizes
the modulation of the stiffness induced by the zero meampetréc excitationF,(t). If K prestress,denotes
the stiffness matrix due to the application of a unit paraimdorce to the structure, the third term of
eqguation (4.2) can be expressed as

K prestresét) =k (t) K prestress,1 (4 . 3)

The stiffness matriceK o and K prestress,iniiave been introduced in section 3.1.1. The stiffness neatric
K prestress, ANAK prestress, ini@re obviously related by

Kprestress.ni (4.4)
Mprestres§

K prestress, =

The response of the structux&) can be written in the modal basis as

X(t) = @q(t), (4.5)

where® is the modal matrix (each column df corresponds to a mode of the structure) aig is the
vector of modal coordinates. Pre-multiplying the dynaraguation (4.1) by®" and introducing (4.5)
gives

®'M@{(t) + ®TCRY(t) + DK (t)®q(t) = DT(L). (4.6)

Defining modal matrices and vectors as the projections opthysical structural matrices and vectors in
the modal basis by

M*=®'M®, C'=®'Coh, 4.7
K* = (I)TKOq) + (I)TK prestress,in@a Erestress,lz (I)TK prestress,@ (4-8)

and
*(t) = ®'f(t), (4.9)

the equation governing the dynamics of the modal coordinaterritten as
MG (t) + Cq(t) + [K™ + Fy(t)K prestress Ja(t) = f*(t). (4.10)

In the ideal case where the modal matriéés, C*, K* and Ky s 2r€ diagonal, th&l equations
of system (4.10) can be decoupled and the dynamics of thetsteuin the different deformation modes
can be studied separately. In such a caseNtuegree-of-freedom system behaves kesingle-degree-
of-freedom systems. The modal matridd$s andK* are diagonal by definition. The matr®* is also
diagonal under the modal damping assumption (section)3.Btre is no reason for the math qiess 1
to be perfectly diagonal. In the current study, its diagoslaiments are only one order of magnitude
larger than its out-of-diagonal elements. As long as thelyets ofF,(t) by the out-of-diagonal terms of
K restress, 1€ Well below the diagonal terms kf', the coupling between the modes is small. In the follow-
ing, only small amplitude parametric excitations will baswered to limit the excitation of nonlinearities
and to keep a quasi-Hamiltonian system. It is therefore eepethat this condition will be verified in good
approximation.

When the modal matrices are diagonal, the equations of mota be decoupled for each modal co-
ordinate. According to the conventions introduced by Evilngl5], the diagonal elements of the modal
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matrices are referred to as the modal masses, modal dangtiog and modal stiffnesses. There is how-
ever no unique value for these modal parameters as theyrawdlyglirelated to the scaling method used to
define the mode shape eigenvectors. Ewins therefore irdesdeffective parameters defined for a given
modei at a given degree-of-freedonby normalizing the modal parameters by the square of theewadiu
modei at degree-of-freedom. The effective parameters are unique and form a useful igésecr of the
underlying behavior of the structure point by point and mbgenode. Eventually, Ewins introduces gen-
eralized properties that are referred to as unique praseofieach mode. They are defined as the effective
properties at the degree-of-freedom with the largest dog#iof response in the mode.

The single-degree-of-freedom equation governing-tiemodal coordinate(t) = g (t) takes therefore
the form

MeqZ(t) + CeqZ(t) + [Keq+ Fu(t)kp,ed2(t) = p(t). (4.11)
Using Ewins’ approach, the generalized mass, damping aatiostiffness coefficients in this equation are
defined by
M*(i,i) C*(i,i)

T on T em?

K*(i,i)

K*resress I’I)
[@(n;,i)]? kpeq= —or 4 (4.12)

o= @(n,i)]?

wheren; is the degree-of-freedom with the largest amplitude of @asp in modd. The participation
factor of the forced excitation to modés given by

(I)(npw, I) -
WF\N(U = aRy(t), (4.13)

whereng,, is the degree of freedom where the forced excitakgms applied.

p(t) =

If the multi-degree-of-freedom system is vibrating in madenly, gi(t) = 0Vi # j and the response
of the structure is given by
X(t) = ®q(t) = @;q;(t), (4.14)

so that the solution(t) of the single-degree-of-freedom system characterizedtiyi| is directly related
to the real displacement of the structure.

In conclusion, for parametric excitations of sufficientipal amplitude, the responses of the structure
in each of its mode can be decoupled. If the structure is @Xdit such a way that it responds only (or
mainly) in a uniqgue mode, then the response of the structgiaen point is the solution of an equivalent
one-degree-of-freedom equation of the form (4.11), whéch linear Mathieu equation.

4.1.2 Validity of the single-degree-of-freedom governingquation

The objective of this section and the next two is to identifynerically under which excitations the solu-
tion of the one-dimensional equation (4.11) provides adafitly accurate approximation of the solution
of the multi-dimensional equation (4.1) at a given pointleé strip. In other words, these sections aim
at answering the question: “What excitations should beiagb the structure so that the equations of
motion are decoupled and the strip only responds in a singldef®’. In a first step, deterministic excita-
tions are applied to the structure (section 4.1.3). Thipsidrawing some general conclusions used in the
second step where the same numerical experiment is carriedth stochastic excitations (section 4.1.4).

In order to identify the conditions under which an efficiesewf the reduction of the multi-degree-
of-freedom system can be done, both one-degree-of-freeatamulti-degree-of-freedom equations of
motion are integrated using a Newmark integration schee® gppendix B for more details). On the one
hand, the governing equations of the multi-degree-ofdfoee system (4.1) subjected to given forced and

57



parametric excitations are solved and the response at anodatof vibration of the studied mode is ex-

tracted. On the other hand, the reduced one-degree-afeine@quation of motion (4.11) is solved for the

same excitations. The objective is to determine the cheniatits of the excitations that ensure that both
responses agree in good approximation. The responsesrapai at an antinode of vibration in order
to minimize the influence of the other modes.

The next question to answer is the choice of the mode usethdareduction. Several aspects of the
problem have to be taken into account, keeping in mind thé dibjgctive of the work: the experimental
validation of the theory of first passage time described dti@e 1.2. First, the equivalent parameters of the
selected mode must allow to cover the largest possible paredirst passage time in a reasonable amount
of time. This will be detailed further (section 5.1.2). Thémorder to have equations of motion highly
decoupled, the selected mode must be such that the ouagdil terms oK prestress,1are sufficiently
small with respect to the diagonal elements. The structurstralso respond in a single mode. The
selected mode therefore has to be sufficiently far from therstin frequency to avoid exciting them. The
first numerical mode is avoided since it does not corresporaddeformation mode of the structure but to
a mode of the shaker. The first bending mode is also rejectabid the risk of exciting the shaker mode.
Based on these remarks, the second bending mode is studieel fiollowing. It is characterized by the
equivalent parameters

Koeq=39 M1, keqg=3273Nml,  Cceq=0.08N[m/§~! and me=005kg  (4.15)
The frequency of this second bending modéyis- 39.3 Hz.

4.1.3 Validity of the reduction for deterministic excitations

As a first step, the system is studied under deterministid (aore precisely harmonic) excitations. First,

the instabilities of the structure are illustrated. Théwe, influence of the forced and parametric excitations
are studied separately. For each excitation conditiorl) bot single-degree-of-freedom and the multi-

degree-of-freedom equations of motion are solved and 8poreses are compared.

Instabilities

As pointed out in section 1.1, the system under study carbixhio different kinds of instabilities, namely
simple instabilities when the forced excitation frequeisogqual to a natural frequendy; of the structure
and parametric instabilities when the parametric exaitatias a frequency equal tdd;/k wherek is an
integer. These issues are shortly addressed here to géinh insgght for understanding the results below.

Fig. 4.1 shows the responses of the single-degree-ofdraeahd multi-degree-of-freedom undamped
systems to a forced excitation at the frequency of the sslettodefy. No parametric excitation is con-
sidered. As expected, the response envelope grows lin@aHyime. The structure responds quasi exclu-
sively in a single mode and the instability is well capturgdie model reduction.

Fig. 4.2 illustrates the concept of parametric instabilitile strip is excited with a parametric excitation
at twice the frequency of the second bending mode of thetstieic No damping, nor forced excitation
is considered. As expected, the response grows exporgntidre again, the single-degree-of-freedom
eguation does a good job and provides an accurate desorgftibe dynamics of the instability. Numerical
simulations also show that higher parametric excitatiopldandes are required to observe an instability
when damping or forced excitation are considered. This haady been mentioned in section 1.1. The
other parametric resonances of the second bending modg, @t3fo, ...) are also much more sensitive
to forced excitation or damping. In conclusion, parameimstabilities are well captured by the model
reduction. They occur for slightly damped modes when theebrexcitation is sufficiently small. As
expected, the second harmonic is the most critical.
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FIGURE 4.2 - Comparison of the temporal

responses of the single- and multi-DOF undampegsponses of the single- and multi-DOF undamped

motion equations to a forced excitation of
amplitude 1 N and frequencfg.

motion equations to a parametric excitation of
amplitude 2 N and frequencyfg

Forced excitation

Obviously, the model reduction requires that the secondlibgnmode of the structure is the only one
to be excited. To avoid exciting the other structural modes,frequency of the forced excitation must
therefore be close to the selected natural frequefigcyFor the particular system considered here, nu-
merical experiments show that the dynamics can be deschpéde single-degree-of-freedom equation
if the frequency of the forced excitation lies between 0g%8nd 1.05,. As shown in Fig. 4.3, the time
responses of the single-degree-of-freedom and multiegegf-freedom systems superimpose nicely when
the structure is excited at the frequency ¥{5The solution is damped and a phenomenon of beating is
observed. When the forced excitation has a frequency autbilinterval [0.9%, ; 1.05fp], other modes

of the multi-degree-of-freedom structure are excited &ede€sponses do not match.
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FIGURE 4.4 - Comparison of the temporal
responses of the single- and multi-DOF damped
motion equations to a parametric excitation of

amplitude 0.1 N and frequency9bfy.

FIGURE 4.3 - Comparison of the temporal
responses of the single- and multi-DOF damped
motion equations to a forced excitation of

amplitude 1 N and frequency5fy.
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Parametric excitation

Regarding the amplitude of the parametric excitation, @usth be noted thal, cannot exceed the pre-
stress of the strip. When this is the case, the multi-degfdeeedom system becomes unstable and the
single-degree-of-freedom system cannot reproduce thiighility. In fact, in the single-degree-of-freedom
model,F, only maodifies the stiffness of the strip but does not act ascgeral force applied to the system.
In the multi-degree-of-freedom system, the low compressidfness of the strip is modeled and leads to
strip instabilities. It is therefore important to keEplower thanmprestresg = 17.8 N to ensure the integrity
of the structure and the correspondence between the sangdanulti-degree-of-freedom equations of mo-
tion. Since the shakers used in the experimental set-uptapply a force larger than 9 N, this will not
be an issue (section 2.3). Moreover, as detailed in sectibi,4he equations decoupling remains valid as
long as the diagonalization of the equations is valiglshould therefore remain sufficiently small so that
the out-of-diagonal elements Bfi(t)K ;oqrresq remain small with respect to the diagonal elementk of
Finally, the parametric excitation should remain suffidiefow so that the modes of the structure are not
significantly affected.

Regarding the frequency of the parametric excitation, adgmatch between the responses of the
single-degree-of-freedom and multi-degree-of-freedgpmagions of motion is observed provided that the
second bending mode dominates the response of the strulstumeerical simulations show that this is the
case when the frequency of the parametric excitation iscéefily close to the natural frequency of the
mode fj or its second harmonicfg (Fig. 4.4). When this is not the case, other modes of the rdaljree-
of-freedom structure are excited.

4.1.4 Validity of the reduction for stochastic excitations

Now that the dynamics of the deterministic system is wellarstbod, the same reasoning is followed in

the case of stochastic excitations. The general conclsisicawn for deterministic excitations are used as a
starting point to draw conclusions valid when the strucisigibjected to stochastic excitations. To fitin the

framework of the analytical results of section 1.2, the éok@nd parametric excitations are characterized
by constant power spectral densitisand$§, (more details in appendix A). It is however rapidly observed
that these excitations cannot be defined as broadband pescgisice this causes the excitation of different
modes of the structure so that the responses of the singlemaiti-degree-of-freedom systems do not

match. Forced and parametric excitations are thereforaatbfis narrow-band processes.

Forced excitation

The forced excitation is defined in a limited frequency baedtered onfg. When the band covers more
than the second bending mode, several modes are excitecharsihgle- and multi-degree-of-freedom
equations of motion do not provide the same response at all.

When the system is subjected to forced excitation only, algoatch is observed as long as the fre-
quency band is contained 0.8y ; 1.2fo] (Fig. 4.5(a)). This interval is wider than the one identifiedhe
deterministic case. In fact, some compensation happemgbetthe response components at frequencies
fo+Af andfg— Af.

When the frequency interval is expanded beyondf;8.2f], the closest modes are excited in such a
way that the two responses do not superimpose perfectly4rs¢p), for instance, shows the two temporal
responses to a forced excitation defined on the frequenay [Ba8f, ; 1.4fp]. Although this band does not
include any other mode of the structure, other bending madesevertheless excited.
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FIGURE 4.5 - Comparison of the temporal responses of the singlerrarittDOF damped motion
equations to a forced excitation of power spectral der&ity 104 N2/Hz.

Parametric excitation

When the system is only subjected to parametric excitatienresponses coincide as long as the frequency
band ofF, includes the second harmonic of the second bending modeobstrbt include the second har-
monics of other modes. It should however be noted that thensebarmonic of highly damped modes
can be included in the interval without degrading the acoucd the solution. When damping differs from
zero, the other harmonics of the other modes do not need tedidea.

When forced excitation is added, the responses of both rmoeelain close as long as the intensity of
the parametric excitatiof, is not too high with respect t§,. In practice,§, should not exceef, by more
than a factor 100 (see Fig. 4.6 By, defined on[0.8fq; 1.2fo], F, defined on0.8fy; 2.4fy] and different
ratiosSJ/éN). It should be noted that the interval Bf contains the second harmonic of the first bending
mode and the first harmonic of the third bending mode. Bectngse modes are sufficiently damped, this
does not deteriorate the validity of the model reduction.
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FIGURE 4.6 - Comparison of the temporal responses of the singlerarit-DOF damped motion
equations td=, of intensityS, = 10~% N?/Hz on[0.8fy; 1.2fg] andF, on [0.8fq; 2.4f].
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4.2 Influence of narrow-band excitations on the first passageme

The analytical results of the first passage time derived én 3] are based on three conditions. The sys-
tem has to be governed by a single-degree-of-freedom equatimotion, it must be linear and subjected
to broadband excitations. The previous section has alldwedhow that some aspects of the dynamics
of the structure studied are governed by a linear singleegegf-freedom motion equation. Indeed, as a
result of the reduction of thbl-degree-of-freedom system inbb single-degree-of-freedom systems, the
dynamic behavior of the system is governedNyquations that take the general form (4.11). Each of
these equations has the form of the linear single-degréeefiom Mathieu equation presented in part 1.
The conditions under which the reduced model can be useddisedeen determined and show that the
bandwidths of the forced and parametric excitations haveettmited. With the designed structure, it is
therefore not possible to meet at the same time the condifisingle-degree-of-freedom system and the
condition of broadband excitations.

Because no analytical results are currently available Herfirst passage time of systems subjected
to colored excitations, a numerical study of the influencahef frequency bands of the excitations is
required and is carried out in this section. The oscillasanumerically studied in its dimensionless form
characterized by the governing equation

K(t) ++ 2EX(t) + [1+ Ut)]X(t) = w(t). (4.16)

4.2.1 Introduction of the tools used in the study of narrow-land processes

First passage time maps are obtained numerically using &/0atlo simulations. The response of the
one-degree-of-freedom system in terms of displacementeladity is computed at each time step using
a Newmark integration scheme (see appendix B for more detaild the Hamiltoniai of the system

is computed. Whe reaches a given maximal value, the simulation is stoppedharalv simulation is
initiated. The average first passage time is eventuallyimdxiaby averaging the results of a large set of
simulations. This approach allows to have a uniform qualftthe map in the whole spagél;, AH*) as
the averaging is based on the same number of samples at éatbfiibe map.

Before studying the influence of narrow-band excitatiohe, hethodology followed to compute first
passage time maps and its implementation are validated fiilyiag it to a system subjected to broad-
band excitations. The different parameters used in thelation area=0, S, = 10 3 andS, =5-10"%.
Fig. 4.7 compares the first passage time maps obtained i@alllyvith results provided in section 1.2.2
and numerically with Monte Carlo simulations using 20 00 pkes. A perfect match is observed.

The mean square first passage time map obtained with the€@®2@mples is represented in Fig. 4.8(a).
More samples are required to smooth the curves in the boftgrhaorner. As shown in section 1.2.2, this
corner is characterized by a high coefficient of variatiod #re solution converges more slowly in this
region. The global trend is however recovered. Fig. 4.8(mws that 200 000 samples are required to
obtain a smooth behavior in the bottom right corner. Becdhisecomputation is relatively heavy, the
systematic study performed in the following sections tdyaathe influence of the frequency bands of the
excitations will be limited to the study of the average firasgage time map.

The Monte Carlo approach can be used to build numericallyfiteepassage time map of a system
subjected to forced and parametric excitations defined mewdand random processes (see appendix A
for more details on the numerical generation of stochasticegsses). The procedure is first applied to an
undamped system subjected to a parametric excitationSyith 103 uniform on the frequency interval
[0.1fo; 3fo] and a forced excitation witB, = 5- 10~* uniform on the frequency interva.8fy; 1.2fo].
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FIGURE 4.8 - Comparison of the reduced mean square first passag&i8j¢32 maps obtained
numerically and analytically for broadband excitatioas<0, S, =103, S, = 5-10%).

Before analyzing the results, it is important to check theveogence of the Monte Carlo simulations,
i.e. that enough samples are used to compute the mean first pasaagd-ig. 4.9 shows the influence
of the number of samples on the calculated reduced meandigsape time for five points distributed on
the (Hg, AH*) map. As suggested in [4], a logarithmic scale is preferretherhorizontal axis. Indeed,
the RMS value of the mean estimator scales witk/. In other words, ifn = 100, 300 supplementary
samples are expected to decrease the uncertainties bya2adf n = 1000, 3000 additional realizations
are needed for the same reduction. This behavior is natapparent with the logarithmic scale. Fig. 4.9
suggests thah = 20000 samples are sufficient to estimate the mean first passag. This gives con-
fidence in the map obtained and shown in Fig. 4.10. This is @sdirmed by the validation shown in
Fig. 4.7 in the case of broadband excitations.
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points of the map with the number of samples numerically for narrow-band excitations ¢n

(@=0,5=103,S,=5-10% uon[0.1fy; 3] [0.1f; 3fo] andw on [0.8fy; 1.2fg]) and
andw on [0.8fy; 1.2fo)). analytically for broadband excitationa € 0,

=103,S,=5-10"%).

Visual inspection of the maps (Fig. 4.10) reveals that thayaical results are not recovered when the
system is subjected to narrow-band random processes. ugjiththe additive, multiplicative and incuba-
tion regimes can still be clearly identified, the curves dbosuperimpose. This shows that the analytical
results obtained for broadband excitations do not simplgdfer to narrow-band random processes. Here,
the frequency bands are limited and the corresponding fastgge times are larger than those computed
with broadband excitations. This is easily explained byftw that, when the frequency band is wider,
more rapid oscillations are added to the solution and dsertree first passage time.

To further analyze the difference between the broadbanigtarz results and the narrow-band numer-
ical ones, indicators are defined to get a quantitative wisiche problem. The objective is to quantify the
distance between the two results and to decide whetheritfésace is significant or not.

As a first step, a distance between the two sets of resultsfilsede If Zgg denotes the mean first
passage time matrix expected under broadband excitatioeach point of the map, andyg the one
obtained with the Monte Carlo simulations of the system ectied to narrow-band excitations, a RMS
distanceA between the two first passage time maps is defined as

B (ZeB)ij — ZNB)Lj 2
A= Z Z o), , (4.17)

whereN is the number of data points in the comparison. It was obdervéig. 4.8(a) that convergence
is slower in the bottom right corner of the map. The corresipan distribution of the first passage time
computed numerically is therefore rather noisy. For thisom, this corner is neglected in the computation
of the distance\.
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The introduction of narrow-band excitations has a signifi¢gafluence on the dynamics so that the an-
alytical results reported in section 1.2 are no longer vialithis case, at least quantitatively. Based on the
inspection of several average first passage time maps,shtideof 4% o is introduced to differentiate
between maps showing a good concordance and maps exhiagibte differences. The RMS distanfe
reaches 9% for the numerical results shown in Fig. 4.10.

As a second step, a statistic approach can also be used &s aklee narrow-band results differ
significantly from the analytical results derived for brbadd excitations. Based on the Monte Carlo
simulations, a confidence interval is defined in which theiactalue of the mean first passage time be-
longs with a probability of at least 95%. If the analyticalugis outside this confidence interval, the
difference between the broadband and narrow-band resutisnisidered as significant given the number
of samples. However, very little is known about the probatid distribution of the first passage time.
Without damping nor forced excitation, and when the paramexkcitation is a-correlated noise, the first
passage time distribution follows an inverse Gaussian famean 4S,In(H:/Hp) and shape-parameter
2/SuIn(He/Ho)? [31]. In more general cases, the first passage time shows @ coanplicated distribu-
tion. As an example, Fig. 4.11 shows the histogram of the POfl6t passage times computed at the
point of the map characterized g = —1.6 andAH* = 0.7 for the excitation and damping conditions
of Fig. 4.10. The red curve represents the inverse Gauss#ibdtion fitted to the numerical data. Al-
though the visual inspection of the experimental distidousuggests that the distribution remains similar
to an inverse Gaussian distribution, such a hypothesigdstesl by this Chi-square tesl£TLAB function
chi2gof). Other goodness-of-fit tests also lead to reject the hyseth that the first passage time follows a
Gamma law or a Weibull law. For the large samples consideegd f = 20000), these tests are indeed
very sensitive and lead to reject the hypothesis even if tperémental distribution only slightly departs
from the theoretical one against which the data are tested.
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FIGURE 4.11 - Histogram of the reduced first FIGURE 4.12 - Second indicator. Regions are
passage time at the point characterized by  colored in red when the mean first passage time
H; = —1.6 andAH* = 0.7 (n = 20000 samples) obtained numerically for narrow-band excitations
and inverse Gaussian distribution fitted to the dat@u on [0.1fy; 3fg] andw on [0.8fq; 1.2fo]) differs

(uon|0.1fp; 3fp], won [0.8fy; 1.2fg], a= 0, significantly from the value obtained analytically
S=103S,=5-10"%). for broadband excitations& 0, S, = 1073,
Sy="5-10%).
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In the absence of more information about the probabiligstriBution of the first passage time, the Bi-
enaymé-Chebyshev inequality, which is valid whateverdis&ibution of the parent variable characterized
by a finite mearu and a finite non-zero variane®, can be used to define confidence intervals [4]. This
inequality writes

PlZ-cL cpchrcl|>1- 2 (4.18)
n \/ﬁ X |J\ n \/ﬁ = C2 .
and states that 1 1/c? is an underestimation of the probability that the value ef pnocess meap lies
within the confidence interval centered around the samplknrigand of semi-widttca/+/n, wheren is
the number of samples. Sincgs unknown, it is estimated with the unbiased estimator

10 -
$1-7712, (T—T)° (4.19)

It is called an unbiased estimator because the expected wélihis estimator equals the variance of the
process. Since the number of samples studied is very ldrgdiased version of the estimator

$=-"7¢, (4.20

would provide similar results.

In Fig. 4.12, the Bienaymé-Chebyshev inequation (4.18)s&d to check if the analytical broadband
mean first passage times fall within the confidence intedatived from the numerical results for narrow-
band excitations corresponding to the conditions of Fi04Regions colored in red indicate a statistically
significant difference between the two sets of results. Tibisre leads to conclude that the mean first
passage time of systems subjected to these narrow-bandteas significantly differs from the values
derived analytically for broadband excitations in the véholap except in the bottom right corner where
the coefficient of variation of the first passage time is togdato conclude that there exists a significant
difference. Note that the same approach applied to the césopeof the analytical and numerical broad-
band results leads to the conclusion that there is no signifidifference between the two sets of results.

The above discussion shows that a more detailed analysitohazes carried out to determine under
which conditions (frequency bands of the excitations, damforce intensities) narrow-band excitations
lead to significant differences with respect to the anaytiesults derived for broadband excitations. In
the next section, the influence of the forced excitationdesqy band is analyzed. Then, the influence of
the parametric excitation frequency band is studied. AHat, the influence of the damping factor and the
power spectral densities of the parametric and forced atiaits is characterized.

4.2.2 Influence of the frequency band of the forced excitatio

As a first step, the system is studied for parametric exoitatin broadband and several different narrow
bands for the forced excitation (includirfg or not). A first passage time map is drawn for each case. The
tools described in the previous section are used to andhzeesults.

The three incubation, additive and multiplicative reginsas only be recovered if the frequency band
of the forced excitation includes the natural frequefigyFor instance, when the forced excitation is de-
fined on the frequency intervéll.2fy; 1.6f], the distancé\ (4.17) between the maps is larger than 200%
and the qualitative behavior of the system is totally défer For limited frequency intervals around the
natural frequencyy, a nearly perfect match between the broadband and narrodi#iesults is observed in
the whole map. For instance, Fig. 4.13 shows the map obtavhedw is defined or0.9fy; 1.1fo]. The
corresponding distanakis equal to 3%.
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FIGURE 4.13 - Comparison of the reduced average FIGURE 4.14 - Second indicator. Regions are

first passage timdg1S,/4 maps obtained colored in red when the mean first passage time
numerically for broadband and narrow-banev obtained numerically for broadbancand
([0.9fp; 1.1f5]) and analytically for broadband  narrow-bandw ([0.9fy; 1.1fo]) differs significantly
excitations §=0,S, =103, S, =5-10%). from the value obtained analytically for broadband

excitations §=0,S, =103, S, =5-10%).
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FIGURE 4.15 - Comparison of the reduced average FIGURE 4.16 - Second indicator. Regions are

first passage timdg1S,/4 maps obtained colored in red when the mean first passage time
numerically for broadband and narrow-banev obtained numerically for broadbancand
([0.8fp; 1.2f5]) and analytically for broadband  narrow-bandw ([0.8fy; 1.2fo]) differs significantly
excitations §=0,S, =103, S,=5-10"%). from the value obtained analytically for broadband

excitations 8=0,5,=1023,S,=5-10%).
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The second indicator is shown in Fig. 4.14. It reveals thatrésults are significantly different only
in the bottom left corner corresponding to small valuesipfandAH*. This is not surprising, the bottom
left corner corresponds to the limiting case where theraiparametric excitation; the forced excitation
has therefore a dominant influence in this zone. The distantieator A decreases when the width of the
frequency band around the natural frequency increasesdisbeepancies in the bottom left corner of the
map also tend to disappear. This is expected since thisspames to conditions closer to the assumptions
used to develop the analytical results. For instance, Big$.and 4.16 show the average first passage time
map and the second indicator for a forced excitation defimef@.8fy; 1.2f].

In conclusion, in order to recover the general trend of theragye first passage time map for broadband
excitations, the natural frequency of the oscillator muesiriziuded in the frequency band of the forced
excitation. When this is the case, results are very clodeetamnalytical results. The narrow band influences
only the bottom left corner of the map.

4.2.3 Influence of the frequency band of the parametric excétion

The influence of the frequency band of the parametric exaitatppears more complex than for the forced
excitation. Increasing the bandwidth does not always hageeffect of getting closer to the analytical
broadband results. A systematic study is required to chkeniae the influence of the parametric excitation.

As a first step, the parametric excitation is defined as awaloand process of constant power spectral
densityS, = 103 on the frequency intervéfy ; f] and the bound$; andf, are varied. For these tests, the
forced excitation is defined as a narrow-band process oftaongower spectral densif§y, = 5-10% on
the frequency intervg0.8fp; 1.2fg], in agreement with the conclusions of the previous sectBetause
of its large computation cost (the full map of first passagetmust be computed, which requires about
20 000 samples), the distanfiés inappropriate to carry out a systematic sensitivity gtwih two or more
parameters. A simplified indicatdris therefore introduced and defined as

(4.21)

)
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whereUNB andUE® are respectively the mean first passage time obtained frontévidarlo simulations
with narrow-band processes at one single point of the maptlEaorresponding analytical value for
broadband processes. Based on the conclusions of the ggesgotion, the observation point is chosen far
from the bottom left corner where the influence of the limibeshdwidth of the forced excitation is large
and for moderate values bf; andAH* to limit the computation time.

Fig. 4.17(a) shows the value 6f(4.21) as a function of the lower and upper frequendieand f;
(normalized by the natural frequengy) that define the parametric excitation at the point of the ateg-
acterized byH; = 10~ 1° andAH* = 10P. The results are similar when other observation points seel.u

This figure shows that it is necessary to include the seconadvdc of the natural frequency,fg
in the frequency interval to be close enough to the analytiEsults for broadband excitations. In fact,
when the second harmonic of the natural frequency does tandpéo the frequency interval of the para-
metric excitation, the first passage time map looks comigleliéerent; even the three regimes identified
in section 1.2 do not appear. By contrast, it is not necedsairclude the natural frequency itself in the
frequency intervalfy; fy]. This can be supported by the deterministic theory of Matlgguation. As
shown in section 1.1, instabilities occur at frequenciés/R (k integer). While the instability fok = 1,
i.e.at f = 2fg, is the most critical, the other instabilities do not depelthen forced excitation or damping
is introduced in the system unless the amplitude of the petréarexcitation is large.
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FIGURE 4.17 - Indicator (4.21) at pointH} = 10-1° andAH* = 10° as a function of the lower and upper
bounds of the frequency band of the parametric excitation.

If the same Fig. 4.17(a) is plotted for different amplitudéghe parametric excitation,e. different
values of its constant power spectral density (see forrest&ig. 4.17(b) fo§, = 10 1 andS, =5-102),
it is observed that the value of the indicator varies. Evahefgeneral shape of the figure is not strongly
modified when the magnitude of the parametric excitationgiases, the value of the indicator increases. In
other words, a larger frequency interval fors required to get the same value of the indicator. A detailed
study of the influence of the other parameters of the problleenpower spectral densiti& andS, of the
excitations and the damping fact@is therefore required. This study is performed in the nestige.

4.2.4 Damping and power spectral densities influence

In this section, the influence of the damping faci@nd the constant values of the power spectral densities
Sy and§, of the forced and parametric excitations is studied. Basati® results of the previous sections,

it seems acceptable to define the forced excitation on thypidrecy interval0.8fy; 1.2fg] and the para-
metric excitation on the frequency interdb; 4fo]. The same indicator is computed at the same point of
the map H; = 10 1° andAH* = 10°) by systematically varying between 0 and 4, between 102 and
101 andS, between 10° and 10 L. The results are plotted in Fig. 4.18.

Fig. 4.18(a) shows the indicatdr(4.21) as a function of the power spectral densities of tmeeft
and parametric excitations for a damping factoe 1.6. At fixed a, the value ofl seems independent
of the power spectral density of the forced excitatiSp, By contrast, the power spectral density of the
parametric excitation$,, influences the value of indicatbr The higher the power spectral density of the
parametric excitatioy,, the larger the difference between the narrow-band andibeoad results.
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FIGURE 4.18 - Indicatorl (4.21) at pointH} = 101> andAH* = 1(° as a function of the parameters of
the problemg, S, andS,.

Fig. 4.19 shows a cross-section of Fig. 4.18(a) at a constloe of S, and allows to describe the
evolution of indicatoll with S,. The indicator grows linearly for large values &, (larger than 0.02) but
scales as a logarithm for smaller valuesSef It is not really surprising tha®, directly influences the first
passage time, as it is also the case for broadband exciatfsmdetailed in section 1.2 (Equation 1.53),
the first passage depends on the reduced parantéjeasndAH*, in which only the ratioS,/Sy appears,
but also explicitly on the power spectral densgty
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FIGURE 4.19 - Indicator (4.21) as a function df, for S, = 10 2anda=1.6.
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Fig. 4.18(b) shows the influence afand S, on | for S, fixed to 10°2. It is observed that results
from narrow-band Monte Carlo simulations depart from thealdband ones whemnand/orS; is increased.
Curves of isol appear as parallel lines (with tlaeaxis in linear scale and ti&-axis in logarithmic scale).

Before concluding, it should be noted that, even if this gtisgdlbased on a single point of the map
(Hg = 1071° and AH* = 1(°) located in the additive regime, the same exercise has bedormed at
other points located in other regimes. The study of the ¢iariwof the indicatod with parameters,, S,
anda at different points located in the three regimes shows ttegeneral behavior dfis recovered and
that the conclusions drawn in the additive regime are valithé whole map.

4.3 Numerical study of first passage time conclusions

This chapter constitutes the last step before the expetahealidation of the first passage time theory

described in the next part of the work. This part aims paldity at preparing the experimental tests and
has allowed to highlight some new results related to first@ges time of systems subjected to narrow-band
excitations.

As a first step, the multi-degree-of-freedom equations digndiave been reduced to a set of decou-
pled single-degree-of-freedom equations of motion. Arcieffit use of the reduced model can be done
when the forced and parametric excitations are defined onited narrow band in the frequency domain,
and when the parametric excitation amplitude is not too.high

Because the available analytical results are only validbfoadband excitations, a numerical study has
been conducted to characterize the influence of narrow-bacithtions on the first passage time map. The
global behavior is recovered when the frequency bands ofdaifted and parametric excitations include
respectively the natural frequency of the oscillator and@cond harmonic. A small shift can however be
observed between the broadband and narrow-band resultstiidbandwidths of the excitations decrease
and when the intensity of the parametric excitation or theglag factor increase.

All these important conclusions will be taken into accound avill help to define the right forces to
apply on the experimental set-up in the next part.
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PART D

EXPERIMENTAL STUDY OF FIRST PASSAGE TIME

This part of the work is dedicated to the experimental stuidfirst passage time. The numerical study
performed in the previous part will help to prepare the expental part. The first section is devoted to
the physical limitations that constrain the experimentdidation of the theory. Then, the second section
focuses on the experimental study of the one-degree-etlinem Mathieu equation. Eventually, the third
section draws some experimental conclusions in the cabe ofitilti-degree-of-freedom Mathieu equation.

5.1 Experimental limitations

In the previous part, it was supposed that the paramg&te&, anda could take any value. The first passage
time maps corresponding to narrow-band excitations weifefouranges of variation of these parameters
that allow to highlight the three additive, multiplicatiged incubation regimes. In practic®, Sy andaare
linked to physical parameters and their values are therafonstrained. In this section, the dimensionless
parameters of the single-degree-of-freedom system atediased to the physical dimensional parameters
of the problem. Then, the practical experimental limitai@n these parameters are listed. The mode used
for the model reduction is also selected and this choicestfied.

5.1.1 Nondimensionalization

As a result of the reduction of tH¢-degree-of-freedom system inkbsingle-degree-of-freedom systems,
the dynamic behavior of the system is governedNgguations that take the general form

MeqZ(t) + CeqZ(t) + [Keq+ Fu(t)kp,ed2(t) = p(t), (5.1)

where meq, Ceq, Keq and ky eq are equivalent parameters defined in section i) is the parametric
excitation applied to the multi-degree-of-freedom syste@i) is the projection of the forced excitation
on the mode under consideration azft) is the modal coordinate corresponding to the mode studied. |
order to compare the results with the analytical expressiatnoduced in part 1, this equation needs to be
rewritten in a dimensionless form. A characteristic timdeined as

Meq
Tcharact: T (5-2)
Keq
and the dimensionless time ¢
1= (5.3)
Tcharact
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is introduced so that the derivative oivith respect to the dimensional timgz, can be rewritten in terms
of the derivative ofz with respect to the dimensionless timeZ, as

. z
= . 54
Tcharact ( )
Mathieu equation (5.1) can then be rewritten as
Ce kpe p(T)
(1) +—3 7t —l—[l—i—FT ’q]zr:—. 5.5
( ) kechharact ( ) U( ) keq ( ) keq ( )

This equation is equivalent to the single-degree-of-fopediimensionless Mathieu equation for the modal
coordinatez(1)

Z'(1) +28Z (1) + [1+ u(1)]z(t) = W(T) (5.6)

if the damping coefficieng is related to the physical parameters of the problem by

Ceq
= 5.7
E 2I<echharact ( )
and the forced and parametric excitationg) andu(t) are respectively defined by
p(t) _ Fw(®) Fu(Tkp.eq

Wl =—>+=a———= and u(t) = ———, 5.8
(T o e (T) e (5.8)

wherea is given by (4.13). From the definition of the power spectrahgity (A.3), the power spectral
density of a signaBy as a function of the dimensionless frequerfgyf* is related to the power spectral
density of the signay function of the frequency by

Sy (/%) =B2F*S,(f). (5.9)

The constant power spectral densitiesFqft) andFy(t) (denotedS,(f) and§,(f) and functions of the
dimensional frequency) are therefore related to the power spectral dens®i€$Tcharac) andSy(f Teharacy)
(functions of the dimensionless frequentlnarac) Of W(T) andu(t) by

Sy a\? S kp,eq> ?
- —_ d = - . 5.10
Sw Tcharact<keq> and S, Tcharact< keq ( )

Accordingly, (5.1) and (5.6) provide the same solutioifithe dimensional and dimensionless times are
related by (5.3), the damping coefficients by (5.7) and theguospectral densities of the excitations
by (5.10).

5.1.2 Constraints on the parameters

This section aims at listing the practical limitations oe {rarameters for the experimental validation of
the first passage time theory described in section 1.2. Astiited in section 4.1.1, a set of equivalent
parameters is associated to each mode. Those are linkeel gedimetrical and physical parameters of the
structure and cannot be changed without redesigning a nperiexental set-up. The equivalent parame-
ters of several bending modes have however been identifetharchoice of the mode remains free. The
limitations detailed in this section restrain, on the onadiahe choice of the bending mode studied and,
on the other hand, the definition of the excitation appliethtostructure.

As shown in section 4.2, at least 20 000 samples are requiredtain a smooth average first passage
time map using numerical simulations. The same constraiplies to the experimental tests. In order to
observe experimentally reduced first passage times

~ ~ 2 ~ 2
lyg 1 0 & (kp,eq> :ﬁ<&‘> (5.11)

4 B 21TcharactTcharact keq 4 kechharac
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in a reasonable dimensional tirde the coefficients, (Kp,eq/ [kechharacﬂ)z has to be as large as possible.
This has an influence on the choice of the mode, since benditigscharacterized by a large value of the
ratio Ko eq/ [kechha,aC] are therefore to be preferred. To achieve this objective pdrametric excitation
power spectral densitg, should also be as high as possible.

As shown in section 1.2.4, whemis larger than 2, the iso-time curves in the multiplicatiegime
are characterized by a negative slope equal-t@Zin the case of broadband excitations). The higher the
damping factom, the higher the slope (in absolute value) and the more diffibe identification of the
multiplicative regime since the part of the multiplicatikegime reachable in a reasonable amount of time
reduces to the bottom right corner that is characterizetidhighest coefficient of variation (section 1.2.2).
According to (5.7) and (5.10), the dimensionless coefficéeis related to the dimensional parameters of
the problem by

S e

In order to minimizeg, the ratioce(],keq/kaeq should be minimized and high values®fmust be applied.

a B _ 4 Cedteq (5.12)

The above considerations form a set of guidelines for theah@tluction. Given the equivalent pa-
rameters of the first six bending modes of the structure ifiettin section 4.1, they provide the ultimate
justification supporting the selection of the second bemdiode, as already implemented in section 4.1.
The equivalent parameters of the second bending mode ae gy

Teharaci= 4107 s, Ko.eq=39 Mm%, Keq= 3273 Nt (5.13)

Ceq=0.08 N[m/s]!,  and  meq=0.05kg

The dimensionless paramefe= 4- 103 is therefore much smaller than one, as required by the theory
have a quasi-Hamiltonian system.

Regarding the definition of the excitations applied to thecitire, other conditions have to be met by
F. andF,. From a practical point of view, combinations of the poweedml densities and frequency
bands have to give rise to maximal amplitudes less than 9 bhéoparametric and forced excitations. This
corresponds to the limitation of the shakers mounted on ttuetsre (section 2.3). In any case, given
the lightness of the structure, it is not safe to apply lafgeces. One must also keep in mind that the
dimensionless paramete®s andS, have to remain significantly less than 1 (in practice, leas 1) so
that the system remains quasi-Hamiltonian.

All these constraints on the parameters hold for the remgiof the chapter. In the following sections,
other conditions will be added to address different speciies and will be detailed when required. Sec-
tion 5.2 is devoted to the study of the experimental one-@egf-freedom Mathieu equation. It focuses
on both the linear case and the nonlinear one. In sectiora®hBef study of the multi-degree-of-freedom
Mathieu equation is performed.

5.2 Single-degree-of-freedom system first passage time

This section focuses on the one-degree-of-freedom Matmigation and the experimental study of its
first passage time. The first paragraph briefly lists the ¢mmdi on the excitations that are valid in the
whole sectionj.e. those that ensure that the assumption of a single-degrreeafom system is verified.
Then, the linear equation is studied. Eventually, the annbdis of the forces are increased to excite the
nonlinearities of the structure.
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5.2.1 Constraints on the excitations

Some constraints on the excitations have to be added wipleceto those described in section 5.1.2. First,
because this section is devoted to the study of the singjeedenf-freedom Mathieu equation, the condi-
tions under which the model reduction is valid must be meesehconditions are detailed in section 4.1.
In practice,R, has to be defined on a frequency band centered on the natgakficyfy selected for the
model reduction and sufficiently narrow, must not be too high in amplitude and the second harmonic
of the other bending modes should not be included in its saqu band. Then, it was shown numerically
in section 4.2 that first passage time maps similar to theyioal broadband ones can be obtained with
narrow-band excitations provided that the frequency watisr of definition off, andF, include respec-
tively the natural frequencyy (condition similar to the condition for the validity of theadel reduction)
and its second harmonid@

5.2.2 Linear Mathieu equation

In order to avoid exciting the nonlinearities of the struefithe forced and parametric excitations should
be kept as small as possible. Based on all the conditionaipierg to the forced and parametric excita-
tions, they are defined as follows. The forced excitationeifingd as a narrow-band process of constant
power spectral densit§, = 5- 10-3 N%/Hz on the frequency intervdl).87fy; 1.13fo] = [34 ; 44] Hz. This
frequency interval covers the natural frequency of the sédmending mode but does not cover any of the
other natural frequencies of the strip. The parametrictation is defined as a narrow-band process of con-
stant power spectral densi = 5 - 10-3 N2/Hz on the frequency intervd.77fy; 2.57fp] = [30; 100] Hz.
This frequency interval covers the natural frequefigyand its second harmonic. It can be objected that
the second harmonic of the first bending mode and the natwaiéncy of the third bending mode are
also included. This is not an issue thanks to the high damgitigs of these two modes (Table 3.10).
Dimensionless parameteassS, andS, are obtained with (5.10) and (5.12) and given by

a=132 S§,=25-10° and §=18-10% (5.14)

As required by the theory to have a quasi-Hamiltonian sysf&randS, are much smaller than one. The
assumption of a quasi-Hamiltonian system is also checkedeiuby analyzing the measured Hamiltonian.
The high value of does not mean that damping is high in absolute figufes 4 - 102 < 1) but, merely,
that damping is high with respect to the parametric excitalintensity.

The approach followed numerically cannot be chosen to lthédexperimental first passage time map
because it is not possible to compute the Hamiltonian at tsaehof acquisition and to stop the acquisition
when a given Hamiltonian is reached. Another approach,ishiaésed on a single time-recording of the
structure response, is therefore followed. This approsctescribed in the next paragraphs.

First, data acquisition is performed in the lab on the realkstire. The reader is referred to section 2.3
for more details about the measurement chain. The struistesecited by the horizontal and vertical shak-
ers for 30 minutes and the response of the structure is meghatipoint P3 with the laser transducer. The
point P3 (Fig. 3.4) corresponds to an antinode of vibratibthe second bending mode (Fig. 3.22(b)). It
has been selected according to section 4.1.1 to limit thednfle of the other bending modes.

Data acquisition and signal processing are carried ougubi@LMS Test.Lab software and th&MS
SCADAS Lab acquisition system. For the study of first passage time amdatording of time signals, the
tool Multi-axis Random Control of the moduleTest.Lab Environmental is chosen. This tool is presented in
LMS documentation as a solution for advanced vibration testimjclosed-loop multi-shaker control [43].
The system implements a reliable, fast and accurate caaigolithm. In the current case, this module
is particularly well suited since the objective is to appdyded and parametric excitations that are char-
acterized by a power spectral density as close as possilBletnstant in a given frequency band. The
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tool Multi-axis Random Control allows to define and control a random excitation that mateh@®defined
power spectral density profile. Power spectral densitighaparametric and forced excitations measured
experimentally on the structure are plotted in Fig. 5.1 Wiith target power spectral densities defined as

references (dotted lines).
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FIGURE 5.1 - Power spectral densities of the forced and parametcitations measured experimentally
(solid lines) and reference power spectral densitieséddihes).

Fig. 5.2 shows a part of the time series of the velogityeasured at point P3. Its power spectral density
is represented in Fig. 5.3 and shows that the peak at theah&eguency dominates the other peaks. This
confirms that the structure responds quasi exclusivelydrsétond bending mode at point P3. The forced
and parametric excitations applied to the structure tbeeedllow to meet this necessary condition required

for the model reduction to be valid.
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FIGURE 5.2 - Fragment of the time evolution of FIGURE 5.3 - Power spectral density of the
the velocity measured at point P3. velocity measured at point P3.

The response of the structure measured at point P3 in termedagfity X(t) is then numerically inte-
grated to compute the evolution with time of the position oifp P3. Since the structure responds only in
the second bending mode, the positidt) is directly related to the modal coordinatg) of (5.6) and the
dimensionless Hamiltonian corresponding to this equati@omputed as

o z [2,]2 . z [.ZTcharac}2
H=Zt 5 =3t 5 -19)
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A fragment of the time evolution of the Hamiltonian is platten Fig. 5.4. The condition of a quasi-
Hamiltonian system can be verified graphically by reprasgrthe response of the structure in the phase
plane(x, x). Fig. 5.5 shows three segments of the trajectory of the sysidney appear to be nearly tangent
to the ellipses of constant energy so that the Hamiltoniaresanly by a small quantity over one period
of revolution of the unperturbed dynamical system.

5.5 X107 : : : x1077

1.5¢

i [m/s]

H [

0.5+

120 130 140 150 160
t[s]

FIGURE 5.4 - Fragment of the time evolution of FIGURE 5.5 - Three fragments of the measured
the HamiltoniarH. experimental trajectory of the system in the phase
plane and contours of the Hamiltoni&h

The average first passage time map corresponding to thetiewolf the Hamiltonian of the system
with time can then be built. If the time signal is sufficienltiyg, the same level of energy is reached several
times and the system passes many times from initial eneiiés higher energiesl. = Ho+ AH. Both
energy axes are discretized in a finite number of values. ftkevials between these values are chosen with
uniform sizes on a logarithmic scale as this is the physicalisg suggested by the stochastic model. The
mean first passage time corresponding to each point of the(imeagach combination of initial energy
Ho and energy incremerfiH) is obtained by averaging all the first passage times casrelipg to the
transitions between these levels of energy. The map olotagnepresented in solid lines in Fig. 5.6. The
main drawback of this method is that it provides an average timgt does not show the same quality every-
where because the number of samples used in the averagiogtieersame in the whole spa@d;, AH*).
Indeed, for a giverd;, points of the map characterized by smisl* are described by a larger number of
experimental data than the points with lasyd * as the system needs to go through lower energy levels
before reaching any higher energy level.

Fig. 5.6(a) compares the experimental results with theyéinal average first passage time map ob-
tained under the assumption of broadband excitations. dhts are qualitatively similar and the general
trend of the average first passage time is recovered expa@ihe In spite of the very small value &,
the damping factoa is large and a shift between the curves is observed, in agmtanith the conclusions
drawn in section 4.2.

Fig. 5.6(b) compares the experimental results with the niig@imed using Monte Carlo simulations of
the numerical system subjected to narrow-band excitatiG@bsbally, a good quantitative match between
the two maps is observed and the global behavior of the mesipéissage time is recovered. The different
regimes can be analyzed separately.
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FIGURE 5.6 - Reduced average first passage ihg§,/4 as a function oHg andAH*. Comparison of the
maps obtained experimentally and numerically for narr@amebexcitationsK, on [0.77fy; 2.57f], Ry On
[0.87fg; 1.13fg]) and analytically for broadband excitatiors=£ 132,S, = 2.5-10%0, §, = 1.8-10%).

The additive regime is well represented. In the left part igf B.6(b), the experimental curves tend
towards horizontal asymptotes, at least for sufficienttgdavalues of the incremeAH*. The incubation
regime can be highlighted by considering cross-sectiortseofap at constant values ldf;. Fig. 5.7(a)
shows the evolution of the average first passage time as tidoraf AH* for H; =2-102 and 2-103.
Crosses represent the average first passage time extramtedhfe experimental data. Dotted lines are
obtained by linear regression of the experimental data. chedficients of determination are higher than
0.99 and the linear trend characteristic of the incubatiginne is well recovered. Fig. 5.7(b) demonstrates
that the incubation regime is however limited to small valoéAH*. The linear behavior is lost outside
the incubation regime for larger values/ifi *.
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FIGURE 5.7 - Cross-sections of the average first passage time mgyb(B(b)) forH; = 2- 1072 (in blue)

andHg = 2-10°3 (in green).
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The multiplicative regime cannot be rigorously observeéim 5.6(b). In the right part of the figure,
the curves show the same negative slope but the multiplecagigime is not yet reached since the highest
value ofHjg is of the order of 101> while the multiplicative regime appears fidg > 1. On the one hand,
larger values oHj must be avoided here since this can trigger the nonlineariti the system. On the
other hand, it was shown in section 1.2.4 that, for dampegyssubjected to broadband excitations, the
asymptotic slope in the multiplicative regime equals & This result is certainly not directly valid in the
narrow-band excitations case but suggests that, giverighevhlue ofa= 132, the part of the multiplica-
tive region reachable in a limited amount of time reducesi¢ddottom right corner. Because this corner is
characterized by high coefficients of variation, very loinge signals are required to get a smooth map in
this region.

The differences between the numerical and experimentaltsesan be ascribed to different factors.
First, the experimental conditions never match exacthyntimerical ones. For instance, the power spectral
densities of the excitations are not perfectly constanherfiequency band of definition, and do not drop
to zero outside this interval (Fig. 5.1). Then, the struetisrinherently a multi-degree-of-freedom system
and it is not possible to excite a single mode of the structieen if Fig. 5.3 shows that the structure
responds mainly in its second bending mode at point P3, tier ohodes also slightly contribute to the
response of the structure, which limits the validity of tkduced model. Modeling errors are also inher-
ent to the process. Therefore, the response at point P3 isxactly described with the linear Mathieu
equation (4.11) with the equivalent parameters identifiedeiction 4.1. Structure nonlinearities can also
be a source of differences between the numerical and expetatresults. Even if the intensities of the
excitations have been chosen extremely small to limit tloet&tion of the nonlinearities, those are inherent
to the structure. When the system is excited, the Hamiltoimereases and can reach high values (corre-
sponding to high displacements and/or high velocitieshab the strip enters the nonlinear regime, even
for small excitations. Finally, it can be noted that the ekpental curves could be smoothed by increasing
the length of observation. Here, the different points ofegp are obtained by averaging between 4000
and 17 000 experimental samples. Increasing the numbengifiea would increase the quality of the map.

The requirement to include the second harmonic of the ndnaguency in the frequency band of the
parametric excitation has been introduced in section 4@s&d on numerical simulations but can also be
illustrated experimentally. The forced excitation is defims a narrow-band process of constant power
spectral densitg, = 41073 N?/Hz on the frequency intervd0.87fy; 1.13fo] = [34 ; 44] Hz. This fre-
quency interval does not cover any of the other natural fagies of the strip. The parametric excitation is
defined as a narrow-band process of constant power speetrsitglS, = 6- 103 N2/Hz on the frequency
interval [0.76fq; 1.27fg] = [30 ; 50] Hz. This frequency interval covers the natural fesgy fo but not
its second harmonic. Fig. 5.8 compares the average firsagassne map obtained experimentally with
the analytical results obtained under the assumption adirand processes. As already mentioned in
section 4.2, the results are totally different when the sddwrmonic is not included. In Fig. 5.8, none of
the three theoretical regimes can be identified.

In conclusion, the excitation of the designed experimesgtiup with the right forced and parametric
excitations allows to observe the incubation and the addiegimes. In order to observe rigorously the
multiplicative regime, the coefficierat should be decreased. The damping faet@s related to the other
dimensional parameters of the problem by (5.12). In ordegrtsure the validity of the multi-degree-
of-freedom system reduction and that the nonlinearitiesnat excitedS, should not be increased. The
structure has therefore to be redesigned. The equivaleagderseq, and therefore, could be decreased
by decreasing the initial pre-stress (see the definitioheéguivalent parameters in section 4.1.1). Another
way of decreasin@ is to decrease the length of the strip. It is indeed checkedenigally that this
modification has the effect of decreasing the ritig’k3 o
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5.2.3 Nonlinear Mathieu equation

The same exercise can be carried out with a larger excitéfiggering some nonlinearities of the struc-
ture. In this section, the structure is subjected to foraedi @arametric excitations defined on the same
frequency bands as in Fig. 5.6 but the power spectral degsitie increased by one order of magnitude.
The Hamiltonian is still computed by (5.15) wheFgaractis linked to the natural frequency identified at
low level when the system behaves linearly. Note that thismigpproximation of the actual energy since
the functional dependency of the energy is modified by nealitties. This approach to compute the en-
ergy is suggested in [20].

The experimental average first passage time map obtainegpiesented in Fig. 5.9 and compared
with the numerical map corresponding to the equivalent dsimnless parameters that characterize the
experimental test,e.

a=29, S§,=3-10° and §=8-10"“ (5.16)

This figure shows that the main characteristics of the aeefiast passage time map can still be observed,
but the experimental curves are shifted with respect todinees obtained with the linear numerical model.
The additive regime is observed for smifj. WhenH; increases, the curves go down with similar neg-
ative slopes. The slope has decreased in absolute valueasjtlct to the previous linear case (Fig. 5.6)
as the coefficiené is smaller. Fig. 5.10 shows cross-sections of the map fostaon values of the initial
energy level. For small energy increments, a more or lesatibehavior is observed. This linear behavior
in the incubation regime is however not as strong as in thereate case (coefficient of determination
close to 0.9).
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5.3 Multi-degree-of-freedom system first passage time

Numerical study of the first passage time of the multi-degriefeeedom system would be prohibitively
expensive in terms of computation time since it requiresrgelaaumber of numerical integrations of a
system with many degrees of freedom. Only experimentas fgstformed on the physical set-up of the
structure are therefore reported in this section. The gities of the excitations are chosen sufficiently
small to limit the excitation of the system nonlinearities.

The forced excitation is defined as a narrow-band processmstant power spectral densi§y, =
10~4 N?/Hz on the frequency interval [30 ; 70] Hz. As a first attemptesplore the dynamics of the
multi-degree-of-freedom system, this frequency intecelers the second and the third bending modes of
the strip. The parametric excitation is defined as a broatlpancess of constant power spectral density
& = 8-10°® N%/Hz on the frequency interv&l0 ; 400 Hz.

As far as the multi-degree-of-freedom equations of motiam lse decoupled in a set of single-degree-
of-freedom motion equations of the form (5.1), the Hamildonof the multi-degree-of freedom system
can be expressed as

HO =5 3 Meqi €(0) + 5 Y kea E(0), 517)

wheremeq; andkeq; are the equivalent mass and stiffness coefficients of medeg;(t) is thei-th modal
coordinate. The physical response of the structure at theedef freedonmp writes

X(t) = 3 ®(n,i)q (). (5.18)
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In the current case, even if the forced excitation covery tmb modes of the structure, the other
modes are also excited. Indeed, the broadband parametitate®n covers the second harmonics of the
other bending modes so that they are also triggered. Thesifirbiending modes are therefore taken into
account in the computation of the Hamiltonian. The equiviaarameters of the different bending modes
have been identified in section 4.1 about the model reduciitve modal coordinateg(t) are extracted
from the measured velocity signal. The produ®t&p,i)q;(t) are obtained by filtering the signal around
the natural frequencies of the corresponding mode. ([ti¢ are obtained by dividing these products by
®(np,i), the value of the mode at the point where the velocity is meakurlhis method assumes that an
accurate numerical model of the structure is available.

The experimental map is obtained using the same algorithinefme. The results are shown in
Fig. 5.11. A global behavior similar to the one expected fogle-degree-of-freedom systems is observed.
The first passage time is approximately independent of ttialienergy levelHo whenHg is small and
AH sufficiently high. This corresponds to the additive regifmiée beginning of a multiplicative regime
is also observed for the largest values of the initial endeggl. An incubation regime is identified for
small values of the energy incremekil. Fig. 5.12 illustrates the linearity of the first passageetimthe
incubation regime.
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as a function oHp andAH. Map obtained passage time map (Fig. 5.11) fdg = 10° J (in
experimentally for broadband excitatiorts,(on blue) andHo = 10->° J (in green).

y [30; 70] Hz,F, on [10 ; 400] H2).
Syv=10*N?%Hz, S, =8-10°N%/Hz.
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CONCLUSIONS AND PERSPECTIVES

This work aimed at designing and using an experimental gét-ilustrate and provide empirical evidence
of the main results of the theory of first passage time deweldp [36, 37]. As reported in the first part
of the work, the current theory applies to quasi-Hamiltarggstems meeting three strong and restrictive
conditions. Firstly, the system is characterized by a simgigree of freedom. Secondly, the dynamics of
the system is governed by a linear Mathieu equation. Thitdl/system is subjected to broadband forced
and parametric excitationg-correlated Brownian processes).

In order to provide a sound empirical validation of the tlyedie challenge was therefore to design
an experimental set-up using a real mechanical structatenttvertheless complies with the three above
conditions to a reasonable level of approximation. Thecsedestructure consists in a vertical steel strip
pre-stressed by a mass. Itis excited by horizontal andcakghakers to apply, respectively, the forced and
parametric excitations.

First, a finite element model of the mechanical structureldwen built to get a deep insight into its
dynamics and help guiding the choice of the experimentahrpaters. The Least Square Complex Ex-
ponential, Least Square Frequency Domain and Stochastisp&oe Identification methods have been
applied to conduct the experimental modal analysis of thip. shfter updating, the numerical model re-
produces the modal properties of the real strip with a vepdgaccuracy.

The inherently multi-degree-of-freedom system must beiced to match the assumption of a single-
degree-of-freedom system behind the analytical theorysif fiassage time. This is done by defining the
forced and parametric excitations as narrow-band randawepses triggering only one bending mode of
the structure. The amplitudes of the forced and parametditations have also to be kept small to avoid
entering the nonlinear regime.

Since analytical results are not available for the first @gegime of systems subjected to narrow-band
excitations, a numerical study has been performed and sem&ra@ conclusions have been drawn about
the influence of the frequency bands of the forced and parametcitations on the first passage time.
The general behavior of the average first passage time fadbemd excitations is recovered in the whole
map as long as the natural frequency of the oscillator isiged in the frequency band of the forced ex-
citation and the frequency band of the parametric excitationtains the second harmonic of the natural
frequency. When these conditions are met, small quangtdiiferences can be observed when broadband
or narrow-band excitations are used but the dynamics renpialitatively similar. The shift between the
corresponding maps increases when the frequency bandwdétirease. It also increases with the ampli-
tude of the parametric excitation and with the damping facto
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The previous steps provide a rationale for selecting theogpjate parameters of the experimental
testing. The experimental first passage time map has be#irahdi compared with the theoretical and
model results. A good quantitative match is observed baiviiee experimental map and the numerical
results obtained with Monte Carlo simulations of the systrjected to narrow-band excitations. The
experimental results are also qualitatively similar to ttheoretical ones for broadband excitations. Both
the additive and incubation regimes are clearly identift@dly the beginning of the multiplicative regime
can however be observed. Some results related to the negjted-of-freedom system and the excitation of
its nonlinear characteristics have also been presentediuildr regimes have been observed. The current
work provides therefore a sound experimental validatiotheftheory of first passage time.

The concepts presented and illustrated in this report cppaapvery theoretical and the considered
experimental set-up, while realistic, is still rather slmvith respect to actual mechanical systems en-
countered in the industry. Nevertheless, this work furthggns the way to promising applications of the
concept of first passage time to revisit many problems inellii$i of engineering. Some typical examples
of application in various areas of engineering are brieflycdbed below.

Sheet metal coating process The simple geometry of the experimental academic set-upestun this
work is very close to the geometry presented in [19] whiclaitlethe process of galvanization of metal
sheets. Galvanization is the process of applying a pregeeztnc coating to steel or iron to prevent rusting.
Fig. | represents the geometry of the industrial galvaionatool studied in [19] that looks similar to the
pre-stressed strip studied in this work. First, the vern thietal sheet is drawn through a bath of melted
zinc. Then, itis dried in air and transported between twtersiso that the zinc solidifies.

\

Tension

FIGURE | - Sheet metal coating process: metal sheet moving betwerotlers at the translation speed
and subjected to tension [19].

Vibrations come from different mechanisms. An externaliteion is produced by the eccentric ro-
tation of the rollers. This triggers out of plane vibratiasfsthe sheet. This source of excitation can be
reduced by detuning the rollers rotation frequency from @ayiral frequency of the sheet or by reducing
roller eccentricity by frequent servicing of the rollerg€drings. This source of excitation is however never
completely suppressed as the bearings experience rapidmtbe zinc bath. Another external forcing is
experienced by the metal sheet during the drying phase wihé&nkdown on the surface to speed up the
drying. Then, the metal sheet also experiences a timengtgnsion. Fig. Il shows the temporal evolution
of the tension (measured experimentally on a real set-ugizhwaries randomly by up to 10% of the mean
tension. This causes a random parametric excitation oftthetsre.
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FIGURE Il - Tension measured experimentally on a plate during ttadicg process [19].

The vibration of metal sheets during zinc coating procesaedead to uneven coating thickness and
overall poor product quality. It must therefore be congdll It is suggested here that the theory of first
passage time could provide an efficient framework for thegtesf such mechanical systems. The metal
sheet is indeed subjected to both forced and parametribagtic excitations, which corresponds to the
conditions of the Mathieu equation. The first passage tiraerthcould help to answer the question of the
design of the velocity of the sheet, the design of the rollers and the conditionsrdflawing to apply
so that the plate does not reach a too high energy level irirtreerequired for the complete coating and
drying process.

This real industrial application departs however from tastnictive conditions of the theory devel-
oped analytically. Firstly, this structure can a priori betsimply modeled by a single-degree-of-freedom
system. Secondly, the forced and parametric excitatioesiar broadband processes of constant power
spectral densities. Fig. lll shows an example of the powectspl density of the experimentally measured
time-varying tension (the parametric excitation) thatsloet appear to be constant on the complete fre-
guency band. Thirdly, it should also be noted that the cralsi@pe of the roller creates spatially varying
tension in the lateral directiory (i Fig. ). This influences the linear vibration charactticks of wide sheets
and a nonlinear theory of first passage time needs therafdre developed.
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FIGURE Il - Power spectral density of the tension FIGURE IV - Power spectral densities of the forced
measured experimentally on a plate during the and parametric excitations acting on a crane
coating process [19]. measured during wind tunnel tests [35].
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Wind engineering As already introduced in [35], the first passage time theonyiges a nice new
analysis tool in experimental wind engineering. In thisdjefransient regimes are indeed induced by
the aerodynamic loading providing forced and parametn@oan excitations. The increasing number
of accidents due to high wind and to autorotation of towenesamotivates the search for new efficient
scientific methods. Since the dynamics of a tower crane $heftifree to rotate in turbulent (and therefore
random) wind field can be modeled by a governing equation efahm of the linear Mathieu equation,
the first passage time theory appears as a good candidateefstuidy of such systems. The first passage
theory could help to predict the time required for the cramexhibit large amplitude oscillations or even
complete autorotations under given wind conditions. Thigld also help to predict the duration of the
tests in wind tunnels required to reach some energy levelghd case of rotation of tower crane, the
assumption of single-degree-of-freedom structure is aofrbm reality since the focus is mainly put on
the rotation angle. Tests in wind tunnels have revealedtiteapower spectral densities of the excitations
are not broadband processes (Fig. IV), but are closer towdrand processes similar to those studied in
this work.

Microelectromechanical systems Some applications can also be found on smaller length sdales-
croelectromechanical systems (MEMS). As one example arotdrays, MEMS used for the detection of
particles are of great societal value. These systems ardymided in airports and public places to detect
explosives on people and luggage. Such systems are ofted badon Mobility Spectrometry that con-
sists in ionizing the sample, applying an electrical field detecting the concentration of ions that gain a
specific velocity [10]. It is suggested here that the thedriret passage time could help to design such
systems and understand which parameters of the problerd beulined to minimize the detection time,
i.e. the first passage time at a given energy level. This woulavettoreduce waiting time in airports.

Predictive maintenance The theory of first passage time could also be applied to gtieeimaintenance
tools. Predictive maintenance techniques are designeelt¢éordine the condition of in-service equipment
and predict when maintenance should be performed. Theythemuld also help to design a structure so
that the first failure occurs late enough with a given prolitgibi

The above examples in various fields of engineering showtligatheory of first passage time seems
very promising but needs some further developments to ctaaize real life systems, which are often
(always) multi-degree-of-freedom, nonlinear and sulejgdb colored excitations.

The current work contributes to broadening the scope of tts¢ fiassage time theory introduced
in [36, 37] beyond the context of one-degree-of-freedomdmMathieu systems subjected to broadband
excitations considered so far. It is also a first physicatlence that the first passage time of real multi-
degree-of-freedom mechanical systems can be charactevile the physical properties of the structure.
Moreover, by studying numerically and experimentally batirs subjected to narrow-band excitations,
some general conclusions have been drawn. The first expggahresults related to the first passage time
maps of nonlinear and multi-degree-of-freedom systeme hiso been reported.

This study suggests that work is still needed to go furthéi amnalytical, numerical and experimental
studies of the first passage time of systems subjected toecbéxcitations, showing nonlinear behavior or
inherently multi-degree-of-freedom. In this regard, tpedfic experimental set-up considered here could
be used to carry out an experimental study of the higher andenents of the first passage time of systems
subjected to narrow-band processes. Besides, a nonlinedelroould also be built to support a detailed
numerical and experimental study of the influence of noaliities on the first passage time map. More
generally, analytical studies of the first passage time sfesys subjected to colored excitations, and in
particular to narrow-band excitations, could be condutbegkt a better insight into the phenomena.
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APPENDIX A

NUMERICAL GENERATION OF STOCHASTIC PROCESSES

The first passage time theory introduced in section 1.2 eppdi oscillators subjected to broadband random
excitations characterized by a constant power spectraitygPSD). Narrow-band excitations are however
also considered in this work. The objective of this appeligito define the main conventions used through
the work and to describe how such stochastic processes a@mbeated numerically.

A.1 Power spectral density

Different conventions are used in the literature to defireegbwer spectral density. This section defines
the specific conventions used in this report and explainstheW?SD are computed numerically.

A.1.1 Definition

The stochastic procesét) can be seen as a succession of random variables [14]. Treetedlen by at a
given instant =t; is a random variablg; := x(t;). The first moment of the random process therefore
a function of time and can be evaluated at any tifnsy

i(tr) = E [Xq]. (A1)
The autocovariance function of the stochastic progésslefined by

Re(tr, ) = E [G] — () e(t2), (A2)

whereX; := X(t2). This function allows to quantify the degree of correlatimtween the values taken by
the process at two different instants. For stationary meeg the autocovariance function depends only on
the time incremenftt = |t, —t;| and is simply writterRy(At). The Fourier transform of the autocovariance
function is the power spectral densiy( f), which is defined in the frequency domain by
+o0 ionf
S(f) = Ry(t)e” /M tdr. (A.3)

The power spectral density describes the distribution afgrdanto frequency components making up the
signal. The integral of the power spectral density over thelerdomain of frequency gives the variance

of the signal
+00

S(f)df =02 (A.4)

and is therefore linked to the total energy of the signal.
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Under the assumption of ergodicity, the power spectralitieata stationary process can be estimated
from a single realizatiow; (t) by

.1
S(f) = lim Z|X(f,T)|?, (A.5)
Toeo T
whereX;(f,T) is the truncated Fourier transform of the process
+T/2 .
X (f,T) :/ X (t)e 12Tt (A.6)
-T/2

A.1.2 Numerical computation

Numerically, power spectral densities are usually not aatexgh by (A.5). In order to limit the importance
of the two underlying assumptionsd, ergodicity and stationarity of the process), the power spkc
density is computed by the Welch method [39]. This methodsists in subdividing the time sample of
the process in several blocks, which may overlap (Fig. AFb). each block, a formula similar to (A.5) is
used to get a spectrograire the power spectral density characterizing the block. Aimege of the power
spectral density of the process is obtained by averaginthalspectrogramsMATLAB function pwel ch
provides the power spectral density estimated via Welclethod.

Ay N0 AR L B 1, S 4 UL
N T T AT U

| AL Sb kU B L VISR A AL ARLA Rl
bkt (i H!H I [ A

YWY - Time

Overlap .
I Segment

length

FIGURE A.1 - lllustration of the Welch method for the computatiortioé power spectral density.

A.2 Random process generation

This section briefly explains how broadband and narrow-lsandom processes are generated numerically.

A.2.1 Broadband noise generation

The analytical theory of first passage time relies on theraption that the forced and parametric ex-
citations ared-correlated Brownian white noisese. stationary processes whose frequency content is
uniformly distributed onf € | —; +[. By (A.4), the energy associated with such a process would be
infinite, which is not physically acceptable. The autoc@mre of such a process can be expressed as

Rx(At) = Rpd(At), (A.7)

which means that there is no correlation between the vahlentby the process at two distinct instants,
even if the two instants are very close to each other. In jpec finite discretization is used with a small
but non-zero time stegt and no information is available about what happens betweemenerated val-
ues. Shannon theorem states that for a sampling frequigneyl/dt, the frequency content outside the
interval [—fs/2 ; fs/2] cannot be represented.
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Numerically, a white noise of limited band with a constanivpo spectral densit§ on the frequency
interval [—fs/2 ; fs/2] is therefore generated. The frequency content outsidénteis/al is equal to zero.
The variance of this process is found using (A.4) and giveoby S fs with the conventions adopted in
this report. One way of generating a Gaussian white noigefibre consists in generating a set of samples
coming from a Gaussian distribution of mean and varianceipé.

A.2.2 Narrow-band noise generation

Two different approaches can be followed to define humdyicgarrow-band noises of constant power
spectral densities.

On the one hand, narrow-band processes can be generatetebgdib generated broadband white
noise and keeping only the frequency content of interest.Fliter Designer tool of the Signal Processing
MATLAB toolbox is used to design the filter [42]. A Butterworth filierselected because it is considered
as the maximally flat magnitude filter and is designed to hdvecuency response as flat as possible in the
passband [8]. Fig. A.2 shows an example of the results addaivith this generation methddThe blue
signal corresponds to the white noise defined on the whotpiércy band. The signals shown in green
and red are obtained by filtering the blue signal with Buttattv filters of orders 60 and 90 respectively.
This generation method has a low computation time but theepepectral densities are not perfectly rect-
angular so that some leakage phenomena can be observeddéh@orease is limited by stability issues.

On the other hand, a narrow-band signal can be defined in ¢ygidncy domain using (A.5) and
transposed in the time domain using Fourier transform thgiat]. The limit expression (A.5) is required
because a finite temporal signal cannot contain all thernmftion required to describe the power spectral
density at low frequencies. In practice, however, the feaqy content of the studied stochastic processes
is often included in a frequency intendhin; fmax. The smallest frequencies can therefore be represented
with time signals of duration of the order of 5, and the limit symbol can be omitted provided the time
signal is sufficiently long. The truncated Fourier transfaf the signal must be such that

IX(F,T) = vTS(f). (A.8)
One way to satisfy this relation consists in choosing
X(f,T) = VTS(H)e?", (A.9)

whereq(f) is an arbitrary phase (e.g. a random variable of unifornritligion in [0 ; 2r]). The inverse
Fourier transform eventually allows to generate the nafipawd process. This generation method is very
accurate (see the Fourier transform of the signal genenateid. A.3) but the passage from the frequency
domain to the time domain using an inverse Fourier transfi@guires a large computation time. As il-
lustrated in Fig. A.4, the computation time of the first metlimsmaller than the computation time of the
second ong

For the current study,e. the numerical construction of first passage time maps, hégked that both
methods of narrow-band processes generation provide the faal map, with similar convergence rates.
Narrow-band processes are therefore obtained by filteriogdiband processes since this method is much
less demanding in computation time.

10nly the half parts of the PSD corresponding to positive deswies are represented as PSD are symmetric with respect to
the origin.
2Simulations done on a PC (Windows 10) with an Intel Core | &pssor.
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FIGURE A.2 - Stochastic processes and corresponding power speefrsities. The blue signal is a
broadband process defined on the whole frequency d&net (02 N2/Hz, fs = 500 Hz). The green and
red signals are obtained by filtering the blue signal witht&uwtorth filters of orders 60 and 90 between
30 and 50 Hz and between 120 and 200 Hz.
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FIGURE A.3 - Fast Fourier transform of the
narrow-band noise between 30 and 50 Hz
generated by the second method

(S =102 N?/Hz, fs= 500 Hz).
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APPENDIX B

LNUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

This appendix describes the numerical method used to ategne governing equations and compute the
time response. It also defines the numerical parametersiatsbto this integration.

The structural response to external forced and parameditadons is computed by direct integration
of the equations of motion using a Newmark integration saheBtarting from given initial conditions for
the position and the velocity, the prediction/correctioavwkinark scheme is used to advance the solution
forward in time. The procedure is summarized in Fig. B.1.

This integration scheme is characterized by three disfimtegration parameters: the time step of
integrationh and the two parameteysand3. The parametey is set equal to 0.5 because this leads to the
minimum integration errors [16]. Moreover, since this \eatorresponds to the stability limit, it does not
induce artificial amplification nor damping of the resporiBeensure an unconditionally stable integration
method 3 must be equal to or greater than 0.25. The maximum accuraegiéhed whef is exactly equal
to 0.25. For these reasorfsis set to 0.25 even if this choice does not minimize the irdegn errors. The
algorithm corresponding to these valuesyand 3 is called “average constant acceleration” and is the
standard algorithm used in commercial codes. For a singgees-of-freedom oscillator without damping,
the numerical damping associated to this algorithm is elquzdro while the relative error on the peridd
increases with the pulsatianas

AT  w?h?
T 12

A particular attention should be paid to the choice of theetstep of integratioh. First, the time step
must be smaller than the characteristic time of the exoitatiVhen the excitation is defined as a random
white process, this is not a constraint since there is ncachenistic time associated with such a process.
For a harmonic excitatior) is defined in such a way that each period of the excitationserdiized with
at least 100 points. Theh,must be sufficiently small to represent the response of thiesyaccurately.
At least 100 points are used to describe the smallest pecmesSponding to the highest frequency) in
the response. Because damping is very low, it does not adticedd constraints on the time step of
integration. Beside these conditions, the time step shalstsibe chosen in such a way that the periodicity
error (B.1) induced by the use of Newmark integration schisnmegligible for all frequencies of interest.

(B.1)
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Initial conditions
M,C,K
X0, X0

l

Computation of initial accelerations
Xo=M 71(fo —CXg— KXo)

l

Time incrementation
th1 =th+h

l

. P_rediction
Xpi1 = Xn+ (1—y)hXq

l

Evaluation of accelerations
S=M +hyC +h?BK
Szﬂ-‘rl = fn+1 - C).(;_A'_l — KX ;_A'_l

l

Correction
Xn+1 = Xp, 1 +YXni1
2..
Xnt1= Xp, 1+ BhXni1

FIGURE B.1 - Newmark integration scheme for linear systems [16].
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