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Design and implementation of a chatbot in the
context of customer support

Florian Peters

Abstract

Customer support is perhaps one of the main aspects of the user experience for
online services. However with the rise of natural language processing techniques,
the industry is looking at automated chatbot solutions to provide quality services
to an ever growing user base. This thesis presents a practical case study of such
chatbot solution for the company GAMING1.

First, an introduction to the market the company operates in is presented as well
as a quick review of the field of conversational agents, highlighting the previous and
current techniques used to develop chatbots. Then, the theory behind the techniques
used is presented. Mainly deep learning techniques such as gated recurrent unit
neural networks are discussed.

Afterwards, a checklist of the issues solved by the chatbot is put on paper. Then
a scalable software architecture for the chatbot is proposed and explained. A way
of extracting ticket data as well as a quick dataset analysis are shown.

A complete analysis of various neural network structures for user intent classifi-
cation is shown alongside models for requesting a human operator if need be. The
gated recurrent units were shown to be the most effective for classification whereas
simpler models worked quite well for the human operator requester.

Finally, a summary of performance metrics for the chatbot’s various submodules
is shown. However since performance metrics are hard to interpret for dialogue
systems, a series of practical test cases are presented as they show that the bot’s
behaviour is more than satisfactory despite certain performance metrics remaining
unsatisfactory.
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Chapter 1

Introduction

This chapter will introduce briefly the context in which this work takes place in sec-
tion 1.1. Then, a definition of chatbot will be given in section 1.2. Afterwards, a brief
history of the field of conversational agents will be recalled in section 1.3. Finally,
it will also motivate the need for further developments in chatbots by referencing
recent surveys conducted on this subject in section 1.4.

1.1 Context

Casino games are being digitized more and more each day due to the market’s
growth. The task of creating digital casino games is nontrivial as it requires very
fine tuning on the game designers’ end to create both engaging and viable games.
As such, customer service is an important point in the user experience, especially
on the online scene where most users are extremely demanding both in terms of
response time and quality of the answers given. Customer support talks the users
through their problems with products and are sometimes a mandatory step when
validating one’s account.

Tools already exist for organizing and structuring customer support, for instance :
Zendesk, Freshdesk, Happyfox, and others. Generally speaking, these tools provide
great pieces of functionality to define levels of support, assessing agents’ perfor-
mances, managing communication channels and so on. However there is one area
in which these tools lack proper support : automation. Indeed, even though users
can potentially issue many different tickets varying in problem types, writing style
and vocabulary, most of these tickets only refer to a small subset of problems that
can be answered in a systematic fashion. Much like in the famous Pareto princi-
ple, only a limited part of users’ problems is responsible for most of the workload.
Unfortunately, most help desk software do not offer satisfying fully automated so-
lutions to this. Partly because it heavily depends on the type of users contacting
the business and because these solutions are generally not built from scratch for the
specific target-audience in question. They also tend to be proprietary and difficult to
customize. Therefore, a tailored solution for automation is a more suitable approach.
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CHAPTER 1. INTRODUCTION

In order to improve their workflow, the GAMING1 company is looking for ways
to automate part of their interactions with customers on their help desk platform.
In particular, they would like to deploy a dialogue system solution, also known as
chatbot, that would be integrated seamlessly in the existing customer support team.
The goal of this work is to design such system.

1.2 Chatbot: A definition

According to the Oxford English Dictionary, a chatbot is defined as follows:

chatbot (n.):
A computer program designed to simulate conversation with human users,
especially over the Internet.

In the scientific literature, chatbots are more formally referred to as conversa-
tional agents. In the context of this document, the terms chatbot/conversational
agent will be used interchangeably.

The underlying principle of every chatbot is to interact with a human user (in
most cases) via text messages and behave as though it were capable of understand-
ing the conversation and reply to the user appropriately. The origin of computers
conversing with humans is as old as the field of computer Science itself. Indeed,
Alan Turing defined a simple test referred to now as the Turing test back in 1950
where a human judge would have to predict if the entity they are communicating
with via text is a computer program or not [1]. However this test’s ambition is
much greater than the usual use case of chatbots; the main difference being that the
domain knowledge of a chatbot is narrow whereas the Turing test assumes one can
talk about any topic with the agent. This helps during the design of conversational
agents as they are not required to have a (potentially) infinite domain knowledge
and can, as such, focus on certain very specific topics such as for instance helping
users book a table at a restaurant.

Furthermore, another general assumption chatbot designers bear in mind is that
users typically have a goal they want to achieve by the end of the conversation when
they initiate an interaction with a chatbot. This then influences the conversation’s
flow and topics in order to achieve the chosen goal. This can be exploited by devel-
opers since certain patterns of behaviour tend to arise as a result.

Therefore, the definition of a chatbot adopted for this document is a computer
program communicating by text in a humanly manner and who provides services to
human users in order to accomplish a well-defined goal.

2



CHAPTER 1. INTRODUCTION

1.3 A brief history of chatbots

The first instance of a conversational agent was born in 1966: ELIZA was a com-
puter program that simulated a psychiatrist and rephrased user input using basic
(by today’s standards) natural language processing techniques [2]. Despite being
relatively simple, the program managed to give the illusion of understanding the
user’s problems and successfully fooled a great many people. Its creator, Joseph
Weizenbaum, even mentioned that his secretary would ask him to leave her so she
could have a private conversation with ELIZA.

Then during several decades, chatbots heavily followed ELIZA’s approach with
minor additions brought into the field like speech synthesis and emotions man-
agement. Then in 2001 came SmarterChild, a conversational agent developed by
ActiveBuddy, Inc. (now Colloquis) that operated on AOL Instant Messenger and
MSN Messenger. Inspired by the rise of instant messaging platforms such as SMS,
SmarterChild was created to provide quick access to news, weather forecasts, sports
results, etc... The main innovation was that SmarterChild was connected to a knowl-
edge base and detained useful information for its users. Unfortunately, the technical
limitations of natural language processing caught up with bots on those platforms
at the time and they were forgotten by History.

The next advancement for conversational agents was made by a team at IBM
through the Watson AI project that has been in development since 2006. The agent
was designed with the sole purpose of winning the American TV show Jeopardy!
which it did in 2011 when competing against two of the show’s former champions.
Jeopardy! is interesting from an NLP point of view since the questions involve a
lot of play on words and require fast information retrieval in vast knowledge bases.
Unfortunately this AI in its past form could only answer to one-liner questions and
was unable to carry on a proper conversation with someone else.

Finally in the early 2010’s came the rise of virtual assistants such as Apple’s Siri,
Microsoft’s Cortana, Google’s Google assistant, Amazon’s Alexa and others. Those
agents brought in the field the concept of conversation as well as goal-oriented dia-
log. Another major event in the field of chatbots was the release of the Messenger
Platform for Facebook Messenger in 2016 and allowed the creation of conversational
agents for non-AI related companies.

As shown in this brief summary of the field of conversational agents, a lot of
progress has been made since the early days of NLP. This does not imply however
that current solutions are without flaw as will be highlighted in the next section.

3
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1.4 Motivation

Several studies have been conducted studying user preferences concerning customer
service. In particular, a recent survey done by Drift in collaboration with Survey-
Monkey Audience, Salesforce, and myclever assesses the image of chatbots in the
eyes of the customers [3]. It stems from the survey the following observations :

1. Customers experience problems with traditional online communication chan-
nels : 34% state that websites are hard to navigate, and 31% say that they
can’t get answers to simple questions through those communication vectors.

2. Customers see the following potential benefits in chatbot services : 24-hour
service (64%), instant replies (55%), answers to simple questions (55%).

It is clear that the customers’ needs and expectations are not being fulfilled by
traditional channels. They even see the perks of chatbots in comparison to other
solutions.

However, despite all of this, they still feel that current chatbots are not as ef-
fective as they could be as observed in a survey conducted by Chatbots.org [4].
Across all generations, 53% of customers view chatbots as "not effective" or only
"somewhat effective". It highlights a discrepancy between the potential advantages
of these methods and the actual implementations’ capabilities. Nonetheless, when
dividing the customers’ impressions of chatbots by generations, it becomes clear
that younger and more tech-savvy people are more optimistic regarding conversa-
tional agents. According to this survey, millennials and generation Z respectively
rated chatbots as "effective" or "very effective" 56% and 54% of the time, whereas
boomers and the silent generation respectively gave chatbots that rating only 38%
and 49% of the time.

All in all, this suggests that additional research and advancements be made in
order to unlock conversational agents’ full potential.

4



Chapter 2

Theoretical background

In this chapter will be formally introduced the theory behind the main problems in
the conversational agents field as well as the state-of-the-art machine learning and
artificial intelligence techniques used in practice for chatbots.

2.1 High-level view of a conversational agent

Conceptually, a chatbot is composed of multiple components working in unison to
accomplish a common goal. Figure 2.1 summarises in visual form the relations
between each parts of a conversational agent.

Upon reception of a new message, it is first processed by the language identifica-
tion module. This can range from a simple tag retrieval to more elaborate statistical
methods. The new message, as well as the language and potential previous conver-
sation messages retrieved from backend, are then fed to the intent classifier module
whose role is to infer the intent the user is trying to convey.

Afterwards, the message’s metadata, inferred intent and other information from
backend will be used to determine an appropriate action or sequence of actions. For
instance, a chatbot may decide to reply with a question if the intent is still not
clear, or it could decide to reactivate a user account if the user’s intention is to ask
permission to reactivate his/her account.

Finally, the action handler module takes as input an action and properly executes
said action. This is useful to implement it this way since a same action can be
executed in different ways depending on the agent’s environment. The way an
action is performed can be completely different depending if the bot operates on the
Messenger platform than on a company’s website.

2.2 Common deep learning techniques

This section will introduce the theory behind the most promising deep learning
techniques for NLP. In particular, popular recurrent neural networks and word em-
bedding techniques will be discussed extensively.

5
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New messageMessage
metadata

Language
identification

Language

Intent
classifier

Intent

Action generator

Action

Action handler

Backend

Reply

Figure 2.1: High-level schematic of a chatbot.

2.2.1 Word embedding

In a nutshell, word embedding is simply the act of mapping words into vectors. This
vector representation can then be directly fed into a machine learning algorithm as
features. There are multiple ways of performing this operation, ranging from a
simple count vector to deep learning approaches such as Word2vec [5] and GloVe
[6]. The latter will be of particular interest for this thesis as they have proven to
work efficiently in the field of conversational agents. In particular, the skip-gram
model will be explained extensively since it is the technique used in the Keras library
for embedding layers.

Skip-gram model

First introduced in “Efficient Estimation of Word Representations in Vector Space”
[5], the underlying principle of the skip-gram model is very simple : train a shallow
neural network containing a single hidden layer of fixed size in order to predict
a context given a word. Figure 2.2 is a schematic view of the skip-gram model
architecture.

Essentially, artificial training examples of the form (wt, [wt−2, wt−1, wt+1, wt+2])

if the window size is 5, are generated. The definition of context varies between
authors but the basic principle remains the same : a sliding window of fixed size is

6
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wt w

wt−1

wt−2

wt+1

wt+2

Figure 2.2: Skip-gram model in the case of a 5 words window.

run across the words sequence; the middle of it corresponds to the target word and
the words preceding it and the ones after it form the context for that word. The
ultimate goal is to extract the inner layer and use it as the vector representation
for the trained vocabulary. Indeed, if the input words are one-hot encoded, it only
serves as a lookup table of vector representations. In practice it means that the
corpus is converted into sequences of indices at first, then the skip-gram model is
trained on those sequences and finally the sequences of indices are converted into
sequences of vectors to train the final algorithm on.

2.2.2 Recurrent Neural Networks

RNNs or Recurrent Neural Networks are a special type of neural networks specifically
tailored for sequences of data. In a nutshell, they are neural networks with loops.
More formally : they contain an internal state, usually denoted Ct for the state
at time t, which is fed back into the neuron as input at the next timestep. The
neuron also outputs a value ht at each timestep. However, the main issue with naive
RNN implementations lies in the fact that they suffer heavily from the vanishing
and exploding gradient problems as was proven by Pascanu, Mikolov, and Bengio in
“Understanding the exploding gradient problem” [7]. Several variants of RNNs have
been proposed in order to alleviate this issue using various mechanisms. The most
common ones will be presented in the following paragraphs.

Long-Short-Term Memory Units

Long-Short-Term Memory units (LSTMs for short) are used extensively in Natu-
ral Language Processing. They were first introduced in 1997 by Hochreiter and
Schmidhuber [8] and have become increasingly more popular in recent years thanks

7
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to advancements in hardware accelerated deep learning. They have also shown
promising results in machine translation [9] and image captioning [10].

An example of unrolled LSTM layer is depicted in Figure 2.3. The main com-
ponents of an LSTM unit are the forget gate, input gate, cell state and output gate
all of which will be explained in this section. Let x = (x0, x1, · · · , xτ )T be the input
sequence, and h = (h0, h1, · · · , hτ )T be the hidden state produced by the LSTM
layer, then the relation between x and h is given by the following equations :

Figure 2.3: Example of unrolled LSTM layer made of 3 units.

Source: Olah, Understanding LSTM Networks [11]

ft = σ(Wf · [ht−1, xt] + bf ) (2.1)

it = σ(Wi · [ht−1, xt] + bi) (2.2)

Ct = ftCt−1 + it tanh(WC · [ht−1, xt] + bC) (2.3)

ot = σ(Wo · [ht−1, xt] + bo) (2.4)

ht = ot tanh(Ct) (2.5)

Equation 2.1 is the forget gate’s output. Intuitively, it represents which infor-
mation the unit will keep or forget from the previous cell state Ct−1 as it is directly
multiplied with it. Figure 2.4 illustrates this process.
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Figure 2.4: LSTM unit’s forget gate.

Source: Olah, Understanding LSTM Networks [11]

The input gate’s response is given by equation 2.2. It simply creates a new
candidate value for the cell state, denoted C̃t, scaled by it as shown on Figure 2.5.

Figure 2.5: LSTM unit’s input gate.

Source: Olah, Understanding LSTM Networks [11]

The cell state is then updated according to equation 2.3. It simply combines the
effects of the forget and input gates. The relevant connections for this update are
highlighted in Figure 2.6.

Figure 2.6: LSTM unit’s cell state update.

Source: Olah, Understanding LSTM Networks [11]
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Once the cell state is updated, the output gate’s activation can be computed
using equation 2.4 to generate the unit’s hidden state ht. This is shown in Figure
2.7.

Figure 2.7: LSTM unit’s output gate.

Source: Olah, Understanding LSTM Networks [11]

Gated Recurrent Units

Introduced in 2014 by Cho et al. [12], Gated Recurrent Units (or GRUs) are a vari-
ant of LSTMs where the forget and input gates are merged into a single update
gate, as well as the cell and hidden states. This results in fewer parameters to tune
and hence shorter training times for GRUs compared to LSTMs. Nonetheless their
performance has been proven to be comparable to that of classic LSTM networks
[13].

For the sake of completeness, the equations for GRUs are given below :

zt = σ(Wz · [ht−1, xt] + bz) (2.6)

rt = σ(Wr · [ht−1, xt] + br) (2.7)

h̃t = tanh(W · [rtht−1, xt]) (2.8)

ht = (1− zt)ht−1 + zth̃t (2.9)

where zt and rt correspond to the GRU’s inner gates as shown in the diagram in
Figure 2.8.

Both the LSTM and GRU were considered for developing the chatbot. Their use
will be examined further in Chapter 6.

2.3 Language identification

Inferring the language of a text is sometimes a necessary first step in a larger natural
language processing chain. Some languages even share homographs (e.g. room
which appears both in English and Dutch even though it has a different meaning in
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Figure 2.8: Schematic view of a GRU.

Source: Olah, Understanding LSTM Networks [11]

each language) which may confuse algorithms with the semantics of these particular
words hence requiring the need to identify the correct language for a given text
before processing it further.

In this work, the assumption that messages can only be written in a single
language will be made; however, there are versions of this problem which involve
detecting multiple languages in a single piece of text [14].

2.4 Intent classification

Upon receiving a new message, the conversational agent has to be able to identify the
goal the user is trying to accomplish. This is usually modelled as a multiclassification
problem whose labels are the names of the possible user intentions. Techniques to
solve this problem vary from simple keyword extraction to Bayesian inference in
order to determine the user’s request based on multiple messages. LSTM networks
have been previously known to work well in this area [15]. Those are used as well
for the development of this project.

2.5 Knowledge management

An intelligent agent can only do so much without knowledge. The field concerned
with allowing computers to handle knowledge has progressed significantly in the
1980’s under the name of knowledge engineering. Early techniques involved usually
an inference engine in order to manipulate facts and derive new knowledge using
second and first order logic. It is a way of deriving answers to incomplete questions
and are usually easily transcribed into API calls.

For conversational agents, knowledge engineering is extremely useful for instance
to answer basic questions about general facts. Siri and Amazon Alexa use internally
knowledge inference methods to retrieve facts from the web and other sources (e.g.
asking Alexa about trains departing from Brussels today might trigger an internal
inference operation of the form train(brussels,D, today) where D is an anonymous
variable representing a destination).

11
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Nowadays, knowledge management is mostly done through API calls and opti-
mised database requests. Although more exotic methods inspired by graph-structured
ontologies are used every now and then for knowledge bases [16].

2.6 Responses generation

In order to communicate, a conversational agent must possess the ability to reply.
Moreover, the replies need to be coherent according to the conversation’s context.
This issue can be tackled using two different modules working in pair : one that
generates a list of candidate replies and the other that selects the most appropriate
one or ranks them based on a certain metric. Two popular approaches have emerged
from this subproblem : retrieval-based and generative-based methods.

Retrieval-based techniques simply rely on a large database of candidate responses
and matches them with information from the user’s message to find the most ap-
propriate answer. This information can simply be a regular expression that looks
for particular sentence structures or can be the output of a machine learning model.
The main advantage of this approach is that the chatbot’s maintainers can control
every answer and thus avoid inappropriate replies.

What is ULiège? Agent Where is CITY ?

What is NOUN?

Did PERSON direct MOV IE?

NOUN is dict(NOUN)

Figure 2.9: A toy retrieval-based example where the user query matched a simple
rule, in green, which triggers the corresponding answer.

Generative-based techniques on the other hand rely on generative models to
produce new replies without the need for an extensive database of examples. Novel
responses can be generated easily provided the model is trained correctly. However
as of today, generative-based approaches’ performance is insufficient relative to com-
panies’ constraints. and the industry is still not convinced of its potential, as shown
by the unfortunate tale of Microsoft Tay [17].

Good morning!:D Agent Generative model Hi how r u?:)

Figure 2.10: A toy generative-based response generation example.

Recent developments have attempted developing hybrid solutions where replies
are generated if they cannot be retrieved as demonstrated by Tammewar et al. in “Pro-
duction Ready Chatbots: Generate if not Retrieve” [18].

12
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2.7 Performance assessment

One area of improvement in the field of conversational agents is the performance as-
sessment and metrics used to quantify the quality of a chatbot’s behaviour. Liu et al.
in “How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsuper-
vised Evaluation Metrics for Dialogue Response Generation” show how uncorrelated
standard metrics in the field tend to be against intuitive human judgement [19] such
as the BLEU [20] and ROUGE [21] scores. The fundamental issue is that speech
and eloquence is inherently subjective and it is therefore very difficult to accurately
quantify it, as is the case with any other subjective property of a system.
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Chapter 3

Objectives and milestones

This chapter will start by a brief description of the problem in section 3.1. Then,
the overall objectives that were agreed upon with the GAMING1 company will be
listed in section 3.2, as well as their requirements outlined in section 3.3.

3.1 Problem description

Usually, users encountering issues contact customer service through one of the sup-
ported communication vector (E-mail, social media, website chat, etc ...) creating
what is called a ticket. Tickets are a special data structure which contain a con-
versation between an agent and a customer as well as metadata such as the time
and date of the messages, the language of the conversation, tags used for filtering
tickets, etc ...

Customer service agents then analyse the messages through the Zendesk tool
[22]. They can generate automated replies called macros which also assign specific
tags to the ticket. Sometimes, the agent might be allowed to perform certain actions
in specific cases. For example, if a player complains about not being able to log into
their account and has been blacklisted, the policy is to escalate the ticket to the
Risk & Fraud department.

The opportunity for automation in this case comes from the fact that certain
patterns of behaviour arise in the messages sent by users. For instance, the vocab-
ulary used for a player that is stuck in a game is very different than a player that
has forgotten their password. Therefore, such patterns could be exploited to easily
automate certain aspects of customer support and alleviate part of the workload to
a conversational agent.

3.2 Goals

The high-level view of the final objective is to design a scalable and easily maintain-
able multilingual chatbot solution that can interface with the company’s existing
customer support software. It should serve as the first communication layer in
the company’s customer service and provide a way for users to send free-form text
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messages to help them with the most common issues they encounter regarding the
company’s products. In short, it should replicate the menial tasks performed by
customer service agents on a daily basis.

Ideally, the software should :

• Provide means to automatically extract messages from the company’s cus-
tomer support software.

• Process extracted data into a suitable format for machine learning solutions.

• Provide a scalable machine learning pipeline for the system’s models, starting
from the raw data.

• Be designed in such a way that it can be deployed on multiple platforms with
little effort.

• Be able to reply to users in real-time.

• Help users with a subset of problems that they often experience.

• Ask the user for more information if their intent is not clear enough.

• Request human intervention when appropriate.

• Allow tuning of the bot’s responses.

• Support multiple languages.

3.3 Constraints

Quite naturally, the designed solution must also follow certain guidelines enforced
by the company :

• Other developers should easily understand the codebase and pick up the project
later on without difficulties.

• Using the software should be straightforward and well-documented.

• Training the system’s models must take a reasonable amount of time.

• The bot should make as little errors as possible to ensure that customers do
not get frustrated.

The project is therefore articulated around those constraints in order to not
violate them.

16



CHAPTER 3. OBJECTIVES AND MILESTONES

3.4 Identified user problems

The first question to answer is "Which customer problems should the chatbot be able
to handle?". This is a non-trivial issue since the problems should be

1. common enough to provide enough training samples.

2. simple to resolve so as to limit the chatbot’s potential mistakes.

A few user scenarios were thus identified, with the help of customer support
representatives, as adequate for this project. They are summarised in Table 3.1.

User problem Description

Stuck in game

The user is experiencing difficulties playing a game and
cannot progress further. Usually it indicates a rarely
occurring turn of events which makes their in-game

credit stuck.
Email modification The user would like to change its email address.

Suspended account
The user cannot access their account as they have been

suspended.

Account activation
The user cannot access their account or are prevented
from using certain functionalities because they forgot

to activate it.
Registration The user is unable to register on the online platform.

Withdrawal
The user has issued a credit withdrawal to his bank
account but is asking why it has not been completed

yet.

Forgot password
The user has forgotten their password. The proper

action for customer service agents is to provide a new
generated password for the user.

Table 3.1: List of considered user problems

Customer service agents then respond appropriately using macros which attach
tags on the ticket. This can be useful to trace the usual responses agents make
regarding particular types of tickets. An additional assumption is made : users will
only talk about one problem at a time in a single ticket.
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Chapter 4

Software architecture

This chapter will talk about the overall architecture of the conversational agent.
More specifically, section 4.1 describes the agent’s environment in details, section
4.2 will present the chatbot’s class diagram, and section 4.3 will describe the agent’s
modules, what purpose they fulfil and how they accomplish it.

4.1 Agent environment

AgentMessages Backend

Replies

Users

Figure 4.1: Agent environment model.

The agent environment consists of a few different parts. One of them is the
user messages : they are a dynamic input that the agent can receive at any given
time. They consist in a string representing the actual text sent by the user, and a
metadata structure containing additional information like a pointer that links the
message to the structure representing the particular conversation it belongs to, and
possibly the time the message was sent, on which platform the message was sent,
etc ... The chatbot can only read the information it contains with no possible means
of modifying it.

Another significant part of the environment the agent has access to is the com-
pany’s backend which contains additional information about the user and the database’s
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state. The agent can both inspect and influence certain aspects of the backend. The
chatbot also has the ability to send replies to the users in order to obtain new in-
formation, or simply to tell them that their request has been accepted and treated
accordingly.

A visual representation of the agent’s environment is presented in Figure 4.1.

4.2 Class diagram

In this section, the connections between all the agent’s modules will be highlighted
and discussed. Figure 4.2 shows the class diagram of the agent’s modules.

Figure 4.2: Chatbot class diagram.

As can be clearly seen from this diagram, the chatbot is made of several com-
ponents each solving one particular problem. The component labelled Client at the
top of the diagram is simply a generic client program that makes use of the chatbot.
It can simply be a terminal client or a more complicated dynamic online listener
that fetches new tickets when they are issued through the system. The chatbot’s
5 main components are : IntentClassifier, HumanRequester, ActionPlanner, Con-
textManager, and ActionExecutor.

In particular, it is also shown that the ActionPlanner has access to 2 submodules,
one of which (BackendInterface) being shared with another submodule.

20



CHAPTER 4. SOFTWARE ARCHITECTURE

4.3 System modules

This section will present the system’s submodules by discussing their respective
roles, and will also give their inputs as well as their outputs.

4.3.1 Intent classifier

This module is responsible for inferring the user intent based on a message. It heavily
uses neural networks to perform its normal operation. Its only input is a single user
message and its output is a dictionary that maps every supported user intent with
its corresponding probability for that message. The training of this module will be
explained more thoroughly in chapter 6 section 6.1.

4.3.2 Human intervention requester

This module operates right after the intent classifier. Its role is to request the
intervention of a human customer service agent in the case the intent of the user
could not be identified correctly. It is provided as a module as it is easier to change
between behaviours (For instance, one might want a more conservative chatbot
when dealing with high profile customers that will request human intervention more
often).

Its input is the whole context of a dialogue with a user, as provided by the context
manager. Its output is simply a boolean value which is true if the module judges
that, given the context, human intervention is required; it returns false otherwise.
Its implementation is discussed in more details in section 6.2 of chapter 6.

4.3.3 Context manager

The module whose role is to handle the structure which organises contexts. A con-
text in this case is defined as the sequence of messages, as well as metadata attached
to them, which are useful for helping a user with a single problem. In human terms,
this roughly corresponds to our intuitive concept of a single conversation/ticket.

4.3.4 Action planner

The action planner’s goal is, given a probability vector, decide which actions the
agent should take. It is responsible for observing the backend’s state and generating
a payload that contains the actions to perform and in which order. In this case, the
payload’s format will simply be a JSON object. It is also responsible for constructing
the actual reply to be sent to the user. It makes use of two submodules: the locales
handler and the backend interface.
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Locales handler

This module is a simple wrapper for everything related to localisation. Inspired
from Chrome’s i18n infrastructure for browser extensions, it provides a common
interface for all localised text. This enable common code without having the need
to localise every constant or string that appears in the codebase.

Backend interface

A simple interface class over the system’s database that specifies which functions
are available to the agent. It is useful to specify it as an interface since it gives
the chatbot versatility. Indeed, to deploy the chatbot on another platform, one can
write a new class inheriting from this interface that works with a different kind of
backend.

4.3.5 Action executor

This module, as the name implies, is responsible for executing sequences of instruc-
tions. It works directly on the Action planner ’s output and actually sends the
messages and performs the planned instructions on the backend.
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Chapter 5

Software implementation

This chapter will justify the use of certain libraries for the project, as well as discuss
the concrete implementation details of the completed system.

5.1 Programming language and libraries

Considering the context of the project and the company’s software environment,
the language Python was chosen as main programming language to implement the
chatbot. This is a trade-off between ease of implementation due to the language’s
prolific machine learning catalogue, and the ease of use for future developers at
GAMING1. Indeed, the company mainly works with the .NET framework and as
such writes a significant amount of code in the C# language. However, Python is
not a difficult language to learn and was deemed appropriate in this situation.

Concerning libraries, there are a few used to implement the chatbot in practice.
The first one is the Keras library [23] whose overall goal is to provide a common
and easy-to-use interface for several deep learning frameworks such as Tensorflow
[24], Theano [25], etc ... The chatbot uses Keras on top of the Tensorflow library.
Another important library used is pandas [26] which provides ways to efficiently
store and organise datasets. It is useful for manipulating large amount of data.
Finally, a minor (relative to this project) but nevertheless important library is the
scikit-learn library [27]. It is used in this context for some utilities such as splitting
a dataset into train validation and test sets.

5.2 Extracting data

The starting point is to be able to extract a messages dataset from the company’s
customer support system. Since the company started using Zendesk since 2013,
there is a significant amount of data to retrieve from their database. There are a
little more than 1,400,000 tickets present in total in their system as of the writing
of this report1. However, Zendesk unfortunately does not provide means to export
large amount of tickets easily or at least not including the tickets’ messages. Besides,

1Numbers presented in graphs may vary as more tickets were downloaded in the meantime.
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it is easier to design a custom solution that can periodically export new tickets every
week or so.

Therefore, a simple API crawler was designed to overcome this issue. The soft-
ware is simply an infinite loop that requests ticket data in JSON format directly
from the Zendesk API 100 tickets at a time since that is the maximum amount
of tickets the API can send in one request. It first starts with a seed date which
corresponds to the oldest date the crawler will extract tickets from. It will then
process the remaining tickets in chronological order. Each time a batch of 100 tick-
ets has been processed, the crawler requests what is called the next page of tickets
to process. After a defined amount of processed tickets, the crawler will save the
current batch of tickets to disk in order to create a backup in case of failure. This is
implemented because fully extracting tickets takes a non-negligible amount of time.
If it does fail, the crawler looks for the last processed ticket in the backup file and
restarts the process starting from that ticket. This mechanism is also used every
time the crawler is launched making it possible to execute it every week or month
in order to fetch new ticket data and update the model dynamically.

Once all tickets have been extracted, they are then separated by language using
the tags attached to them. There are currently 9 supported languages in the GAM-
ING1 system : French, Dutch, English, Portuguese, Spanish, Romanian, Serbian,
German and Turkish. Figure 5.1 contains the distribution of tickets amongst all
languages.
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Figure 5.1: Dataset’s language distribution

As can be clearly seen, the dataset is significantly biased towards French tickets,
making up approximately 48% of the total amount of tickets. However, most other
languages contain a satisfactory amount of tickets except for the extremely scarce
ones : Spanish, Romanian, Serbian, German and Turkish. The smallest amount
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of tickets considered will thus be around 100,000 tickets for Portuguese. All other
languages are ignored for the time being due to a lack of data. Moreover, since
there is the same amount of tickets for English than for Portuguese, the Portuguese
dataset will be ignored for the time being as its analysis would be the same as for the
English dataset. Therefore only the French, Dutch and English data are considered
for the rest of this thesis.

The data provided by the API contains all sorts of information like the date of
the ticket, the time it took for customer service agents to resolve the ticket, the VIP
status of the user, which customer support level the ticket was processed, etc... Most
of which is useless for the chatbot and is meant for customer support managers as
they will use this data to monitor statistics about the workforce and see how well
or how badly it is doing. As such, only the first message received from the user and
the Tags field will be used to train the chatbot.

Once each language dataset has been created, the crawler will iterate through
each one of them if a file labelled tags-<ISO-639 language code>.csv exists. These
files contain on each line a user problem label alongside a list of tags that identify
that particular problem (Usually leftovers from using certain macros). The tags are
language specific hence why there needs to be a separate file for each of them. This
will generate new datasets used for intent classification which will be explained in
more details in section 6.1.

5.3 Generating responses

Due to the constraints outlined in Chapter 3, the approach taken for generating
responses is a retrieval-based one. Indeed, doing so allows the maintainers to ensure
that the agent does not say something offensive to the user. The module responsible
for retrieving the responses is the ActionPlanner and in this case, it contains all the
logic that is triggered whenever the user intent is correctly identified. For example,
it might call the backend to ensure that the user’s account is not blacklisted or that
the delay of the user’s last withdrawal is because it is performed to an international
bank account. The responses have a structure that is reminiscent of what customer
support agents might actually answer in real life. Thus they are formulated to look
a lot like formal e-mails since that is the primary source of tickets customer service
receives.
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Chapter 6

Experiments

This chapter will focus on the experiments performed for tuning the chatbot’s mod-
ules as well as results obtained during training and discuss them extensively.

6.1 Intent classification

The first problem to solve is the intent classification problem. It will be modelled
as a multiclassification problem whose output is simply the label of the detected
problem. However, in order to allow fine-tuning of the bot’s behaviour, the classifier
should also output the corresponding vector of class probabilities when predicting.

6.1.1 Dataset generation

The dataset obtained from section 5.2 cannot be fed directly to the intent classifier as
it is. The main issue is that the samples are not properly labelled. Fortunately, due
to the fact that tags are attached to each macros, most user problems are identifiable
using tags attached to the ticket. Thus, the samples are labelled by going through
the list of tags attached to the ticket and seeing if they match certain tag types that
correspond to a given problem as explained previously in section 5.2.

Furthermore, in order to allow quick experimentation and for efficiency, only
the French tickets’ dataset will be used at first for exploring the possible network
structures; the main reason being that it is the biggest dataset (Containing roughly
600,000 tickets). The implicit assumption is that the French dataset’s class distri-
bution, which is displayed in Figure 6.1, accurately represents the other languages’
class distribution. As can be seen, the dataset is highly imbalanced and is extremely
skewed towards the Other class.

Figure 6.2 shows both the French and Dutch distribution of user problems.
As can be observed, the two distributions look very much alike except, perhaps,

for the Stuck in game class which is more prominent for French than Dutch. Nev-
ertheless, this further confirms that tuning the network for French and then porting
it to other languages is a suitable course of action.

Considering the amount of available samples, a simple training-validation-test
scheme is used for assessing the performance of the classification model; the corre-
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Figure 6.1: Problem distribution for French.
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Figure 6.2: Problem distributions without the Other class.

sponding sizes are 60/25/15. Finally, each sample’s label is one-hot encoded as a
vector of 0’s and a 1 at the index which represents that sample’s label. Due to the
imbalance of classes in the dataset, the weight of each sample j will be given by

wj ,
Nyj
m∑
i=1

Ni

(6.1)

where Ni is the number of samples belonging to class i and yj the true label of
sample j.

6.1.2 Preprocessing

Due to their design, textual data cannot be fed directly to the neural network. They
require a small extra step of preprocessing before actual training. They need to be
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transformed into sequences of integers of the same length. The preprocessing steps
are listed below in the order they are performed :

1. Turn all characters to lowercase.

2. Filter unimportant punctuation characters (e.g. "!?,ˆ ...).

3. Tokenize the texts by using words as tokens. A word in this context is defined
as a contiguous sequence of characters surrounded by whitespace.

4. Compute the texts’ vocabulary (i.e. the set of tokens used).

5. Swap each token in the sequences by their corresponding index in the vocab-
ulary.

6. Pad the sequences to a fixed length of 100 tokens.

The final sequences obtained are suitable for training the neural networks.

6.1.3 Network training

Different network topologies were considered for the intent classification subtask.
This section will present briefly each of them as well as their performance.

Common structure

Each network is a variant of the same base structure, which is represented in Figure
6.3. x is the tokenized input message. In this case, the tokenization is done word
by word and each word is then converted into an integer that uniquely identifies it
amidst the training vocabulary. Then, the sequence of integers is converted into a
sequence of real vectors of size 128 by an embedding layer. This sequence of vectors
is then sent to the RNN substructure. Finally, the RNN’s output is fed through a
softmax layer using the standard softmax function, S(z), defined as

S(z)j ,
ez

Twj

m∑
i=1

ezTwi

(6.2)

where w is the weight vector for all connections between the softmax layer and the
previous layer, and m is the output size of the softmax layer i.e. the number of
classes. The interesting property about the softmax function is that

m∑
j=1

S(z)j = 1

and therefore
S(z)j ≈ P (y = j|z)

This is useful in this case since it is expected that the intent classifier outputs a
vector of probabilities alongside its prediction.
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Figure 6.3: Common structure of each network variant.

The loss function that is minimised during training is the categorical cross-
entropy loss defined as follows :

L(θ) = − 1

n

n∑
i=1

m∑
j=1

yi,j log(ŷi,j(θ)) (6.3)

where n ∈ N is the number of samples, m ∈ N the number of classes, yi,j ∈ {0, 1}
is 1 if the class of sample i is j and 0 otherwise, and finally ŷi,j ∈ [0, 1] is the
predicted probability that sample i has label j. Another metric that is generated
during training is the accuracy of the model’s predictions.

The Adam optimiser [28] is chosen to train the neural networks as it has been
shown to produce good results in the field of deep learning. It is also computationally
efficient which is particularly useful here due to the amount of samples to optimise.

Single LSTM

The first topology considered is a simple single layer LSTM. Figure 6.4 shows the
full neural network’s structure.

Figure 6.5 depicts the evolution of the accuracy of the network as the number
of epochs increases both on the validation and training set1. It can be seen that
the behaviour displays an erratic behaviour during training as its loss and accuracy
fluctuate greatly. Nevertheless, it still almost learns completely how to correctly
classify the entire training set and achieves a maximum accuracy of 87.6% on the
validation set. The total training time was 314 minutes.

1Loss functions for every accuracy graph in this section are presented in Appendix A.
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Figure 6.4: Single LSTM structure.
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Figure 6.5: Single LSTM layer’s accuracy during training.

Single GRU

The next recurrent neural network type considered is the GRU. The goal here is to
study the similarities and differences between using LSTM and GRU layers. Figure
6.6 shows the single GRU network’s structure.

As is shown in Figure 6.7, the single GRU layer structure performs approximately
the same way as the single LSTM layer structure. It displays the same erratic be-
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Figure 6.6: Single GRU structure.

haviour during training and achieves almost the same maximum accuracy of 87.5%.
However, its total training time is significantly lower since it only took 196 minutes
to fully train.
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Figure 6.7: Accuracy during training of a single GRU layer network.
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Inverted input sequence GRU

The next structure introduces a small variant to the single GRU layer structure
by inverting the order of the input sequence. This is because inverting the input
sequence has shown to be a simple heuristic that can marginally improve the per-
formance of certain networks, particularly in the subfield of machine translation
[9].
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Figure 6.8: Inverted GRU sequence structure.
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Figure 6.9: Accuracy for a single GRU layer with inverted input sequence.

The evolution of its accuracy is shown in Figure 6.9. It clearly shows that this
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structure is much more stable than the previous ones during training as there is less
jitter for the loss and accuracy. The training time did not suffer too much from the
input sequence being reversed as it took 198 minutes to fully train.

GRU bilayer structure

Another possible way to improve accuracy would be add 2 layers of GRUs stacked
on top of each other as this would be able to capture a richer information from the
input sequences. Figure 6.10 shows what the underlying network structure looks
like.

ŷ
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Figure 6.10: Two GRU layers structure.

As Figure 6.11 points out, this type of network does not perform better than
the previous iterations. More to the point : it performs worse than a single GRU
layer. This might be due to the fact that the overhead of training an extra GRU
layer is much greater than the extra information gain it is supposed to provide. The
maximum accuracy the network can achieve is only 86.4% for a total training time of
352 minutes which is significantly higher than a simple single GRU layer structure.
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Figure 6.11: Accuracy of a network with two GRU layers.

6.1.4 Final network structure

Having explored multiple candidate structures, the best one can be chosen. Table
6.1 summarises the performance of each network type.

Network type
Best validation
loss (lower is

better)

Best validation
accuracy (higher

is better)

Total training
time [min]

Single LSTM 0.45 87.6% 314
Single GRU 0.46 87.5% 196

Inverted GRU input 0.49 88.2% 198
Two GRU layers 0.52 86.4% 352

Table 6.1: Intent classification results summary.

Based on these results, the final architecture chosen for the intent classifier is the
single GRU layer with inverted input sequence as it provides the greatest accuracy
and trains much faster than its LSTM counterpart.

6.1.5 Towards multiple languages support

One of the requirements is for the chatbot to be able to work with multiple languages.
In order to do so, there are two approaches that can be explored :
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1. Train a different model for each language supported.

2. Train a single model that works on any language.

Both approaches are discussed hereafter. In a first time, two extra models were
trained respectively on Dutch and English tickets using the final model architecture
chosen in section 6.1.4. Figure 6.12 shows the evolution of accuracy for Dutch as a
function of trained epochs.
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Figure 6.12: Network accuracy for Dutch.

As can be seen from the graphs, the accuracy is slightly lower for the Dutch
dataset than for the French one. Indeed, on the Dutch dataset, the network only
achieves a final accuracy of 80.7%. Therefore, the accuracy over both datasets would
be the average between the two which is around 84.5%. This is nevertheless still an
acceptable accuracy in total.

The other approach, consisting in concatenating multiple datasets into a single
multilingual one and then training a single model on it, generates the training curve
shown in Figure 6.13.

In this case also the accuracy stabilises at 84.3%. Therefore, strictly speaking
from the point of view of accuracy, the multilingual dataset and single language
dataset approaches are equivalent. However, there are some pros and cons using
one or the other. The main advantage of training a model for each language is that
the maintainers can fine-tune each model separately. This gives more control to the
chatbot’s maintainers over the classifiers. The drawback though is that each model
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Figure 6.13: Accuracy of the final network on a bilingual dataset.

takes extra space in memory and thus come at a total memory footprint that is
higher than a model trained on a mixed dataset as shown in Table 6.2.

Training set used Size in memory [MB]
French dataset 233.5
Dutch dataset 99.2

Bilingual dataset 319.5

Table 6.2: Memory size of different intent classifier networks

Another drawback for using the mixed dataset approach is that the embedding
will be the same for all languages. This could potentially hinder the performance
due to the presence of homographs between languages (e.g. ’de’ in French and ’de’
in Dutch). The embedding layer is not capable of differentiating between the two
and must produce only one vector for both words even though their semantics might
be different.

The choice of the approach used only changes a few minor details which are
closer to quality of service than fundamental differences. Nevertheless, for the sake
of this project, the first one will be used since it provides flexibility and takes less
time to train one model which is useful during the experimenting phase. However,
functions are provided in the code to take the second approach if need be.

37



CHAPTER 6. EXPERIMENTS

6.1.6 Epochs analysis

Hereafter, the influence of the number of epochs is analysed. In order to ensure
that an optimum does not lie past the previous window of epochs of 20, the neural
network is trained for 580 epochs. Figure 6.14 shows the training curve generated
as a function of the number of epochs.
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Figure 6.14: Network accuracy as a function of epochs.

As shown in this graph, the most useful epochs are the first ones since the
validation accuracy worsens the more epochs the model is trained on. It is a clear
sign of overfitting in this case. Thus, it can be deduced that as soon as the model
starts to show significant signs of decline in accuracy or loss, there is no point in
trying to force it to learn on more epochs as it has reached its maximum achievable
performance.

6.1.7 Required number of samples

In order to guarantee efficient models, a minimum number of samples is required.
This is useful since it can help quantify the amount of data needed in order to
train a model that is good enough for deployment. This lower bound is somewhat
dependent on the language, however that influence is insignificant in this case and
can be safely ignored.

Figure 6.15 shows the training curves for a model trained on an English dataset
consisting of 4,614 samples.
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Figure 6.15: Network accuracy on an English dataset.

As can be seen, the model requires more epochs to reach the satisfying accuracy
of 80% due to the relatively low number of samples contained in the dataset. In
this particular case, the model needs to train on more than 40 epochs to achieve the
required accuracy. However, despite the small amount of examples to train on, the
model can still reach a satisfying validation accuracy if trained for long enough.

6.2 Human requester

This section will talk about the experiments conducted in order to analyse a po-
tential model for a human assistance requester. This model should output a binary
value which is 1 if the model wants to call a human for help, or a 0 if the chatbot
thinks it should be able to handle the conversation. The model should therefore
ideally saturate around those two values. This is translated directly in the model’s
architecture by using a tanh layer as last layer.

6.2.1 Dataset generation

The main idea is to take the output of the intent classifier (i.e. the vector of class
probabilities) and use it as features to feed to this network. Therefore, the features
are simply 7 floating point values ∈ [0, 1]. For the samples’ label, the classes’ labels
from the dataset extracted in section 5.2 are simply converted by changing the
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ones labelled Other into 1’s and all other labels into 0’s. Since the total amount
of tickets is around 500,000 when including the Other class for French, a simple
train-validation-test dataset division is used much like in section 6.1.

6.2.2 Training

Since the number of features is low for this classification problem, a basic neural
network architecture is used. Figure 6.16 shows the simple structure adopted for
the requester.

ŷ

tanh(zTw)

ReLu layer

x

Figure 6.16: Requester’s network structure.

As can be seen from the diagram, the features are sent through a layer of neurons
with the ReLu activation function which is defined as :

ReLu(x) , max(0, x). (6.4)

Then, this output is fed to a second layer of neurons using the tanh activation
function.

The loss function used in this case is the binary cross-entropy which is a par-
ticular case of the categorical cross-entropy where m = 2. Taking into account
the regularisation of the ReLu layer, the following loss function is optimised during
training :

L(θ) , − 1

N

N∑
j=1

yj log ŷj(θ) + (1− yj) log(1− ŷj(θ)) + λwTw (6.5)

where N is the total number of samples, yj is the true label of sample j, ŷj is the
predicted label for sample j by the network, and w is the weight matrix of the ReLu
layer.

Once again, the training and analysis were performed only using a single language
(in this case French since it contains the most tickets). Nevertheless, models were
trained for other languages as well.
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Figure 6.17: Requester accuracy for French.

As can be seen from Figure 6.17, the model reaches quickly its top accuracy
of around 80.6%. The discrepancy between the training and validation loss is also
relatively low as shown in Figure A.9 in Appendix A. A major positive observation
is that due to the simple model architecture and the low number of features, the
model takes a small amount of time to train : these curves only took 47 minutes to
generate.

Overall the precision of the requester is sufficient. It is far from perfect but it
might be due to the fact that some tickets are incorrectly labelled as Other . Indeed,
older tickets did not have tags attached to them because the tags system was put
in place after the first tickets were issued back in 2013. Therefore, it is possible
that the model simply cannot reach a higher precision than 80%. Nevertheless, the
learned requester will still be used for the rest of the developments.

6.3 Clarifying user intent

The particular task of clarifying user intent requires the chatbot to actively ask
questions to the user or at least to give an opportunity to the user to clarify what
he/she means. This creates a feedback from the chatbot to the user and conversely
and enables a richer conversation.
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6.3.1 Bayesian approach

The Bayesian approach consists in using a Bayesian update in order to infer the
correct user intent. It is based on Bayes’ rule :

P (c|m) =
P (m|c)P (c)

P (m)
(6.6)

and in this context, c is a label of a user problem, andm is the message received from
the user. Since the result of the update should be a vector of all class probabilities,
the term P (m) can simply be ignored as it only depends on m and serves only as a
normalisation operation and is implemented as such. P (c) is the prior probability
and it is taken directly from the output of the intent classifier. It is assumed to
be the first time the message is classified but that constraint is not strict. Finally,
the term P (m|c) is estimated using the intent classifier on the user’s reply. The
assumption is that the user when clarifying will tend to use a vocabulary similar to
what other users might have said in their first message.

6.3.2 Comparison

Once the Bayesian update is implemented, a comparative analysis needs to be per-
formed in order to show if it helps the chatbot determine the user’s intent. 2 versions
of the conversational agent were considered : a standard chatbot without Bayesian
update and a chatbot with Bayesian update. Both are coupled with a user simu-
lator that clarifies itself by sending a reply according to the sample’s user intent.
The user simulator attempts to clarify 3 times before giving up. If the chatbot has
not understood the user by then, the sample is labelled as ’Failed to clarify’. The
dataset used for this comparison is simply the test set obtained from Table 6.3 holds
the distribution of tickets with the two variants.

Chatbot variant

Correctly
identified
w/out

clarification

Identified
after

clarification

Failed to
clarify

Incorrectly
identified

Standard 16,508 0 0 4,899
Bayesian update 16,508 4,302 37 560

Table 6.3: Comparison of chatbot with and without Bayesian update.

As expected, the bayesian update helps the agent correctly address the problems
that are unclear at first. As shown in the comparison, the Bayesian update almost
clarifies all user problems in the test set. However the results should not be taken at
face value since the clarifications generated by the user simulator are very optimistic
and represent an ideal world where users are perfectly clear when clarifying their
issues. If it were true, it means that the agent with a Bayesian update should be
expected to achieve an accuracy of around 97% as shown here. This is of course
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unrealistic but shows clearly that a Bayesian update is useful in determining a user
intent.
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Chapter 7

Results and performance

This chapter will assess the results of the completed system quantitatively and
discuss its overall performance when running in a realistic environment.

7.1 Performance metrics

The following section is concerned about quantifying the quality of the chatbot’s
modules. Mainly, the intent classification subtask as well as the intervention re-
quester subtask will be examined.

Figure 7.1: Confusion matrix for the French intent classifier.
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7.1.1 Intent classification

For the intent classification, the test dataset was used to derive these final metrics.
First, the confusion matrices of each intent classifier trained are derived. Figure 7.1
is the confusion matrix for French, Figure 7.2 for Dutch and Figure 7.3 for English.

The agent seems to correctly identify most French users’ intents. However it
seems to confuse some Email modification samples for the Suspended account
class. This could be due to two things : either the information contained in the
first message is not enough to distinguish accurately between the two classes, or
either the samples in the dataset were not labelled correctly. This could be the
case since some tags might overlap between the two classes for old enough tickets.
Nevertheless, all the other classes are correctly predicted so the overall performance
for French is satisfying.

Figure 7.2: Confusion matrix for the Dutch intent classifier.

For Dutch, the majority of tickets are correctly classified. There are of course a
small amount of outliers but the overall accuracy for each class is very satisfying.

46



CHAPTER 7. RESULTS AND PERFORMANCE

Figure 7.3: Confusion matrix for the English intent classifier.

For English, the results are less positive than the two other languages. There is a
significant amount of confusion between the classes as can be seen from its confusion
matrix. However it can be observed that the more samples there are in a class, the
more likely it is to be correctly classified. Indeed, for instance the class Stuck in
game is correctly predicted with an accuracy of 80.1% whereas the class Suspended
account only reaches a prediction accuracy of 45.4%. All in all, this suggests that
the English classifier is not robust enough to be used in a real customer service
environment yet.

Finally, Table 7.1 summarises each classifier’s final accuracy over the correspond-
ing test dataset.

Language Test accuracy
French 87.6%
Dutch 82.6%
English 70.9%

Table 7.1: Final accuracy on test set for each language

As expected, the English classifier shows a lower accuracy than the other clas-
sifiers. As a result, the English version of the chatbot might not be as efficient at
determining a user’s needs from a single message.
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7.1.2 Intervention requester

Since the requester subtask is formulated as a binary classification problem, specific
tools for assessing the performance of binary classifiers can be used. In this instance,
the Receiver Operating Characteristic curve is generated for each language : Figure
7.4 represents French, Figure 7.5 Dutch, and finally Figure 7.6 represents English.
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Figure 7.4: ROC curve of the final intervention requester for French.

For French, the ROC curve is promising and shows that the optimal threshold
can be achieved with an expected true positive rate of approximately 80% and a
corresponding false positive rate of 40%. The false positive rate can be even a bit
higher since it just means that the model will be more cautious and request humans
for more examples than necessary. Besides, it does not prevent the maintainers
to add a failsafe feature that prevents the agent from requesting a human if the
predicted class’ probability is higher than a given threshold.

For Dutch, the ROC curve shows that the requester struggles more at determin-
ing whether or not the message does not belong to one of the problems the chatbot
is expected to handle. Indeed, the AUC is slightly lower for Dutch than it is for
French. Once again, the argument that this is not so much of a problem since the
same heuristics of using a probability threshold for predictions can be made in this
case.
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Figure 7.5: ROC curve of the final intervention requester for Dutch.
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Figure 7.6: ROC curve of the final intervention requester for English.

Finally for English, the ROC curve is extremely unsatisfying. Indeed, the graph
shows that in order to reach an acceptable true positive rate of 80%, the false positive
rate needs to be as high as 60%. Furthermore, the AUC is only of 0.6, slightly
higher than having a requester triggering at random. Therefore this suggests that
the English requester be used only as last resort or that the chatbot should only
reply to messages where its predicted user intent probability is very high.
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7.2 Mockup environment test case

As stated previously, performance metrics do not tell the whole story when it comes
to conversational agents [19]. Thus, in order to make sure the chatbot exhibits the
right behaviour, a manual way of testing is devised from the ground up. The idea is
to be able to input messages directly in a terminal or other keyboard input method
much like a direct messaging app (be it a very primitive one in this instance). This
test environment makes use of the interfaces introduced earlier in Figure 4.2 in Chap-
ter 4. Specifically, the BackendInterface and ActionExecutor interfaces. Two
mockup classes are developed for this test environment : BackendSimulator which
inherits the BackendInterface, and ConsoleExecutor which inherits ActionExecutor.
Each of these submodules will be explained in the following subsections and finally
the manual test cases will be analysed as well.

7.2.1 Backend simulator

The simulator is simply implemented using a mockup database made of .csv files in
order to allow quick and easy configuration for setting up particular user test cases.
In this example, three particular tables are used :

• users.csv: contains the information concerning the users and their account’s
status.

• games.csv: contains information about the past and ongoing games.

• withdrawals.csv: contains information concerning withdrawals from games
including bank account used for the transaction, the country where the bank
account is hosted, etc...

7.2.2 Console executor

This derived action handler prints the planned action to the console but does not
actively executes them in the backend. This ensures that test cases are reproducible.
It also allows quick and easy debugging.

7.2.3 Manual testing

The following are transcripts of exchanges between the chatbot and the user in a
mock environment. There is one example of successful interaction with the chatbot
for each user problem. The first one is the Account activation in French.

User : Je n’ai pas reçu mon bonus d’activation.

Chatbot : Bonjour User,

Votre compte n’est pas activé. Pour activer votre compte, veuillez
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cliquer sur le lien suivant : <activate account link>

Bien à vous,
Bot

The user states that they have not received their activation bonus. This is a
common issue encountered for users when they have not activated their account as
they need to do that before receiving their activation bonus. The bot simply replies
by stating that the account is not activated yet and gives a link to activate the user’s
account.

Next is an example of interaction in Dutch about a very common issue : Stuck
in game.

User : Mijn credits zitten vast in het spel.

Chatbot : (Unblock user) Goedendag User,

We hebben geprobeerd het probleem op te lossen. Controleer of het
is opgelost aan uw kant.

Het bestje,
Bot

The user says that their credits are stuck in game. The bot immediately realises
this is the case and in this scenario, it is assumed it is able to simply unblock the
user. It then tells the user the problem has been solved and that they should check
on their side if everything is solved as well.

Next example is about a French interaction for the Withdrawal user problem.

User : Bonsoir, j’ai effectué une demande de retrait il y a quelques jours.
Je n’ai toujours rien reçu, est-ce normal ? Merci et bonne soirée..

Chatbot : Bonjour User,

Nous remarquons que votre retrait n’a pas été versé sur un compte
Belge. Il est assez courant que le versement de retraits prenne plus
de temps pour des comptes à l’étranger (De l’ordre de 2 à 3 jours).
Ne vous inquiétez donc pas, le versement devrait être effectué d’ici
peu.

Bien à vous,
Bot
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In this scenario, the user simply says that they have issued a withdrawal a few
days ago and they received no further confirmation since then. In this particular
instance, the user logged in has a withdrawal pending because it is supposed to be
withdrawn to a foreign account. Therefore, the chatbot replies stating that it is
normal to observe a small delay for foreign accounts and reassures the user that it
should be done shortly.

Another example is a Dutch interaction for the Email modification issue.

User : Hallo, ik wil mijn email veranderen alstublieft.

Chatbot : Goedendag User,

Geef ons een kopie van uw identiteitskaart en uw nieuwe e-mailadres
om uw e-mailadres te wijzigen.

Het bestje,
Bot

The user simply asks to change their e-mail. The chatbot then asks for a copy
of the user’s ID card and new e-mail address according to procedure, as expected.

Next up is the Registration problem addressed in French in this instance.

User : Je voulais m’inscrire sur votre site mais l’inscription est refusée.
Merci !

Chatbot : Bonjour User,

Afin de résoudre votre problème d’inscription, veuillez nous fournir
une copie de votre carte d’identité ainsi que vos coordonnées exactes
(adresse e-mail en particulier).

Bien à vous,
Bot

Here, the users tells the agent that their registration has been refused. The chat-
bot correctly identifies the problem and asks for a copy of their ID card as well their
coordinates and especially their e-mail address.

The final example is about the Forgot password user intent and it is shown
here in English.
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User : I forgot my password and can’t login.

Chatbot : Hello User,

Your password has been successfully reset, your new password is :
<password>

All the best,
Bot

As expected, the chatbot correctly identifies the user’s issue and resets the user’s
password and generates a new one for him1.

An interesting property to test is the robustness of the conversational agent to the
way messages are written. Therefore, this last example is shown with abbreviations
for password and please :

User : i forgot my pswd pls help.

Chatbot : Hello User,

We do not understand your request. Could you try to be a bit clearer?

All the best,
Bot

User : idk which pswd i put i cant login.

Chatbot : Your password has been successfully reset, your new password
is : <password>

All the best,
Bot

As we can see, the message is correctly understood by the chatbot after a
Bayesian update and clarification from the user even though most keywords are
abbreviated.

Overall, despite the performance metrics not being as good as they should be, the
chatbot is still able to correctly handle concrete user test cases in practice. It even
displays a somewhat robustness towards spelling errors and abbreviations. These
results are more than satisfying especially for the English version due to the small
number of samples and the pessimistic performance metrics.

1This behaviour is not final and can be changed in the action planner.
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Chapter 8

Conclusion

This chapter will summarise the content of all previous sections in order to recap
what has been accomplished. It will give a global view of the completed system as
well as provide pointers for future developments.

8.1 Summary

Starting from a subjective definition of the chatbot’s goals, a set of user problems
and constraints were laid down on paper in Chapter 3. Then in Chapter 4, a scalable
software solution was designed and developed for training and deploying chatbots.
This solution makes it possible to extract ticket data dynamically from an existing
Zendesk environment and label them using tags attached to the tickets as shown
in Chapter 5. Moreover, the chatbot concept was decomposed into several modules
which solve a particular design problem. Of those modules, some of them make
use of neural network models. These models’ structure and property were analysed
extensively in Chapter 6. A way for the chatbot to allow users to clarify themselves
was also devised in that chapter, derived from Bayes’ rule. Finally, the final results
from the chatbot were shown in Chapter 7. In particular, adequate performance
metrics were measured for each neural network generated beforehand and a manual
way of testing the chatbot was presented.

Looking back at the accomplished work, it can be said that the solution developed
is satisfying and allows for easy deployment and development if changes need to be
performed. It can be ported on virtually any system provided it can host a Python
environment. Furthermore, it leaves the door open for additional languages’ support
and user problems. It is not a perfect solution but considering the requirements, it
works well in practice. There might be a few pathological cases where the chatbot
might not behave in the best manner possible so the future system maintainers need
to be aware of that.
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8.2 Possible improvements

Since this solution is not a panacea, several improvements could be made in order
to extend the realm of possibilities for the agent. The following list should be taken
lightly however as no extensive studies have been conducted to confirm they are
indeed feasible in this case. They are intended more as brainstorming than an
actual roadmap to follow for the future of the chatbot.

• Additional languages could be trained in order to cover a wider user base.

• More challenging user problems could be investigated. In particular, computer
vision algorithms could be trained to extract information from photos users
send of their ID cards, credit cards, etc...

• A different dynamic version of the chatbot could be designed. This variant
would need to be more reactive than the variant presented in this document
by displaying more small-talk capabilities and creating more direct and cus-
tomised interactions with customers. This variant could then be deployed to
Facebook and other instant messaging services that support the use of bots.

• From time to time, users have multiple problems that they would like to ad-
dress in a single message. This changes the formulation of the intent classi-
fication problem into a multi-label classification problem. Different methods
could be considered to address this issue.

• If the user is unable to clarify itself, instead of directly requesting a human
operator, the chatbot could suggest potential problems to the user in the form
of a selection list with common problems. There could also be the option to
request a human agent in this list to prevent users from getting frustrated with
the bot.

8.3 Closing thoughts

Chatbots had a lot of weight put on their shoulders, labelled as "The New Apps".
There has been a significant trend in 2016 with chatbots, a trend which has faded
for now but is still lingering in the background. However there is still a long way
to go for conversational agents before they can be used completely unsupervised.
Nevertheless, the specific domain of customer service is very prone to chatbot use and
is already very systematic as shown previously. The future holds promising results
especially in the field of Natural Language Processing: new methods are born every
day and older methods become even better. The growth of chatbots left a mark in
History and in the minds of consumers. Besides, it might entirely be possible that,
in a near future, the roles might be reversed between humans and bots [29]. To go
further with that thought, we might see one day bots interacting with other bots
using human language as means of communication to improve the quality of life for
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mankind. As a matter of fact, these subjects already being investigated with mixed
results [30]. However, I remain optimistic for these types of technology as they will
shape the future of our societies. Maybe in a few years, these technologies will finally
be undistinguishable from humans. We need therefore to be careful about the way
researchers tackle these issues to make sure they do not end up in the wrong hands.
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Appendix A

Experiments

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
ro
ss
-e
n
tr
op
y
lo
ss

Training

Validation

1

Figure A.1: Single LSTM layer network’s loss.
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Figure A.2: Single GRU layer network’s loss.
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Figure A.3: Single GRU layer network with inverted input sequence’s loss.
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Figure A.4: Network with two GRU layers’ loss.
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Figure A.5: Network loss for Dutch.
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Figure A.6: Network loss for a bilingual dataset.
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Figure A.7: Network loss as functions of epochs on a French dataset.
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Figure A.8: Network loss on an English dataset.
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Figure A.9: Requester loss for French.
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