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Abstract

The latest investigations on vibrations has highlighted the importance of their nonlin-
ear behaviour. These new theories have brought new challenges for structural engineering.
Indeed, the way to control their consequences can be derived from the linear theory by
using devices called absorbers. This extended theory states that the nonlinear absorber
has to present the same restoring force form than the excitation. This is the aim of this
thesis, create nonlinear absorber by imposing a force/displacement curve with the help
of topology optimization. Thus, the different type of nonlinearities are cited and the way
to identify them is explained. Then, a nonlinear optimization model is built. The main
problem of nonlinear optimization is the mesh distortion appearing in low density ele-
ments. To solve this problem, the energy density interpolation has been chosen between
several methods. This model has been validated by solving a classical end-compliance
problem. After that, the prescribed curve problem is investigated. The problem takes the
form of an error minimization. After comparison, the L1 normalized error gives the best
results. Some linear curves are imposed taking the stiffest beam behaviour as a reference.
The code shows its limit when the imposed behaviour is under 30% of the reference curve.
Then nonlinear curves are imposed and converge under certain conditions. Finally, the
current model shows interesting results.
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Chapter 1

Introduction

In structural mechanics, vibrations are an important source of problems. More precisely,
when a structure comes to resonance, this phenomenon can induce a degradation of the
structure or have an impact on its performance. Indeed, a perfect example is the famous
Tacoma bridge which collapses because of aeroelastic induced vibration. In order to avoid
these effects, researchers have worked on device that can reduce the effect of resonance.
In 1934, Den Hartog proved that a resonance peak can be reduced into two peaks of
lower intensity using a vibration absorber ([9]). This device, composed of a spring and a
damper, has been largely studied for the linear mode of vibration. The scientific commu-
nity has recently intensified the research about the nonlinear vibrations. These are more
representative of the reality and they could be present in any structure. Moreover, it is of
special interest in the aerospace domain where the performance and the security are the
most important. In fact, new materials often show a nonlinear behaviour and the added
devices increase the number of contacts in the structure. The feature of these vibrations is
that the resonance peak is not associated to only one frequency. The resonance effect can
be extended on a large bandwidth and it can highlight a frequency energy dependence.
This dependence can be linear but not only, the nonlinear part can present any form.
Obviously, all the assumptions made in the linear case such as the superposition princi-
ple and the invariance of frequency response function are no longer true in this domain.
Even though nonlinear behaviours are less predictable than their linear counterparts, a
complete way to identify them has been developed for the last decade. (G.Kerschen et
al., 2006, [10]). The Den Hartog’s theorem seems to be useless here since it focuses on
a narrow bandwidth. Nevertheless, this theorem has been extended to the nonlinear do-
main. From this extension, some theories on nonlinear vibration absorber have appeared
(Habib et al, 2015, [5]). It allows to design the same kind of devices but focused on the
nonlinear type of vibration.

Parallel to these discoveries, topology optimization has become really popular these
days, especially for the first design of new features. Indeed, topology optimization allows
to explore more exotic model that will not come in mind of a human. However, with
the expansion of the 3D printing, the shapes that were not machinable are now a reality.
With the optimization, everything is possible, even the use of nonlinear models in order
to explore new domain.

The main goal of this thesis is to design a nonlinear vibration absorber with the help
of the topology optimization. This will be done using two types of domain shapes, a
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cantilever and a doubly clamped beams. This work can be divided in three chapters.

In the first chapter, the nonlinear vibrations will be reviewed. More precisely, their
origins and its different types will be explained, such as the way to identified it. Then,
the absorber theory will be detailed for the linear and nonlinear cases.

The second chapter will focus on the nonlinear topology model. It will contain few
theories about nonlinear mechanic and topology optimization. Then, the major issue re-
lated to the nonlinear optimization will be highlighted. Several methods to solve it will
be explained and the most convenient will be performed. This chapter will be put in
parallel with a end-compliance optimization which will allow to validate the result of the
previously built model. Finally, the performance of the code will be discussed.

The last chapter will contain the first steps to design a nonlinear absorber with the
topology optimization model built. Thus, some formulations will be compared and tested.
Then, it will be applied to simple cases to see their limits. Finally, the effect of some pa-
rameters will be investigated to get the best results.

Finally, the perspectives and the possible improvements of this thesis will be discussed.
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Chapter 2

Nonlinear vibrations and absorbers

2.1 Introduction

In engineering structures, vibrations are a common preoccupation. Most of the time the
issue induced by vibration are solved using linear assumptions. However, in reality, this
is more complex because most of the vibration has a nonlinear part. Consequently, the
use of linear assumptions which allow to solve simple problems is useless. Obviously, by
definition the superposition principle is not valid anymore, the uniqueness of the solution
or the invariance of the frequency response function (FRF) neither. Thus, nonlinearities
are present anywhere and their nature can be very different. Four main types of nonlin-
earity can be listed (Nam-Ho Kim, 2015, [1]): geometric, material, kinematic or force one.
These types of nonlinearity are briefly explained below.

Geometric nonlinearities
Geometric nonlinearities are the nonlinearities induced by the deformation of a struc-
ture. This is specific to large displacements. In this case, the second order term of the
Green-Lagrange strain tensor in Eq. 2.1 can not be ignored. It was possible with linear
assumptions because this term is infinitesimal in these conditions.

εij =

(
∂uj
∂dxi

+
∂ui
∂dxj

+
∂um
∂dxi

∂um
∂dxj

)
(2.1)

where εij is the strain, ui the displacement in the i direction and xi the i coordinate.

As it will be explained in the next chapter, geometrical nonlinearities are the most in-
teresting in our case. Indeed, the purpose will be to find a geometry that shows interesting
features with the help of topology optimization.

Material nonlinearities
Material nonlinearities are related to the constitutive law of the materials itself. Indeed,
the stress strain relation is not always linear like for elastic materials but it can take
various shapes such as the hyperelastic one as illustrated in Fig. 2.1a. Even for the elas-
tic materials, when the strain becomes bigger, it enters in plastification and the relation
is no longer linear. In this case, the deformation becomes permanent as shown in Fig. 2.1b.

In this type of nonlinearity, one can also mention the viscoelasticity which shows a
time dependent behaviour that is modelled with a spring and a dashpot.
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(a) For linear and non linear materials. (b) For plasticity.

Figure 2.1: Stress-strain constitutive relation.

Kinematic nonlinearities
Kinematic nonlinearities or boundary nonlinearities are due to the boundary conditions
which influence the mechanism. It happens when boundary conditions depend on the
deformation of the structure. In other words, it means that either the location and/or
the amplitude of these conditions are unknown. A perfect example is the case where two
bodies enter in contact. It can induce some nonlinear behaviours.

Force nonlinearities
Force nonlinearities, like the kinematic one, occur when the force that acts on the system
is related to the deformation. Contrary to the kinematic nonlinearities, it is the direction
and/or the amplitude of the force that change. The obvious example is the pressure
induced by a fluid on a beam that goes on large displacement as shown in Fig. 2.2.

Figure 2.2: Example of force nonlinearity from [1]: Follow-up pressure load of a beam
under large deformation.

All of these types of nonlinearies can be found in one system but it will be very complex
to model. It is usually preferable to consider only one type.

2.2 Nonlinearity identification

A complete procedure has been developed through the years in order to identify nonlin-
earities in any system. The complete evolution of this procedure has been reviewed and
improved by G.Kerschen et al. (2006, [10]), J.P. Noel and G. Kerschen (2017, [2]). The
first step of the process is the detection for seeing if a nonlinearity is actually present or
not. Then, the nonlinearity is characterized. Its localization, its physical type and the
way to model it are found. Finally, the parameter to fit the mechanical model with the
data is estimated (e.g. the stiffness of the nonlinear spring).
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2.2.1 Detection

The first step is the most straightforward but probably the most important one because
of its power of decision. Indeed, it will induce the engineer to use or not a nonlinear
modeling. This is an experimental step and many methods could be used. Three of
them will be cited. In order to detect the presence of any nonlinearity, the system is
excited by a measured signal and its response is studied. The easiest signal to impose
is the sinesweep signal (sin(ω1−ω2

2n
t2 + ω1t)) given that it concentrates the energy. This

concentration actives a lot the nonlinearities. A common method to detect the presence
of a nonlinearity is the use of the superposition principle. If the system is linear, the
response of the system to a sum of excitation fi(t) should be the sum of the response of
each excitation xi(t). By homogeneity principle, these expressions can be multiplied. As
example, for three excitations:

f1(t) −→ x1(t)

f2(t) −→ x2(t)

f3(t) = αf1(t) + βf2(t) −→ x3(t) = αx1(t) + βx2(t)

If it is not the case even for a set of parameters, there is no doubt that nonlineari-
ties are present as mentioned by K. Worden and G.R. Tomlinson (2001, [11]). Another
way of detection is the harmonic distortion which states that since the excitation signal
is monoharmonic, the response has to be monoharmonic as well (K. Worden and G.R.
Tomlinson, 2001, [11]).

One last method that can be cited is the violation of the invariance principle. It means
that the response should not depend on the amplitude of the excitation. If nonlinearities
are present, the range of frequency response often depends on the excitation amplitude
and the jumps/bifurcations are more distinct.

2.2.2 Characterization

If a nonlinearity has been detected, it is important to characterize it, i.e. find its physical
nature and its localization. This step is more complex that the previous one since the
physical reason of the nonlinear behaviour can be very diverse (as mentioned, geometric,
kinematic,...). Moreover, the characterization is important for the smooth running of the
parameters estimation. Two methods can be used: the wavelet transform (WT) or the
acceleration surface method (ASM).

TheWT is based on a time-frequency analysis which highlights the frequency-amplitude
dependence of the nonlinear vibration. The classical time-frequency analysis is based on
the Short-Time Fourier Transform (STFT) but the fixed observation window is not the
most convenient. It leads to the introduction of the WT which allows to use a variable
resolution on the windows. This expression can be seen in Eq. 2.2

X(ω, τ) =

∫ +∞

−∞
x(t)ψ(

t− b
a

)e−jωtdt (2.2)

where ψ is the mother wave wavelet. The observation window can be modified with the
frequency ω, b locates the observation windows and a is the scaling factor of the resolution.
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When the graph is plotted (instantaneous frequency as a function of the sweep fre-
quency), it is possible to see if harmonics happen. Indeed, they will produce some lines
(for linear sinesweep). As represented in Fig. 2.3a, the lines of higher amplitude appear
in red. The one slope line is the fundamental response.

(a) For WT. (b) For ASM.

Figure 2.3: Typical graphs used for characterisation step from [2].

The ASM is derived from the restoring force plot (Fig. 2.3b) which directly shows
the nonlinear stiffness or damping. It is based on the second law of Newton applied to a
degree of freedom (DOF) adjacent to a nonlinearity. Mathematically, it is expressed as in
Eq.2.3 and schematically represented as in Fig. 2.4.

Figure 2.4: Scheme of the ASM from [3].

np∑
n=1

mi,nẍn + gi(x, ẋ) = pi (2.3)

where i is the DOF studied, mi,n the mass matrix element, x the displacement, ẋ the
velocity, ẍ the acceleration, gi the restoring force and pi the excitation vector.

This equation can be simplified to only one DOF, the one with the highest amplitude
response. It is also possible to get rid off the inertia terms and the restoring forces external
to the studied connection. The approximated equation of motion is the next one:

mi,iẍi + gi (xi − xj, ẍi − ẍj) ≈ pi (2.4)

where j is denoting a DOF next to the ith. Lastly if no force are applied on the node
considered it comes:
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gi (xi − xj, ẍi − ẍj) ≈ −mi,iẍi (2.5)

As the Eq. 2.5 shown, after assumptions, the nonlinearity is related to the acceleration
of the adjacent point. It allows to visualize the nonlinearity by plotting acceleration
response as a function of restoring force ton obtain a graph as represented in Fig. 2.3b.
Obviously, the two assumptions (external connections are linear or negligible function of
the displacement inside the connection considered) used in this method have to be kept
in mind otherwise it can lead to inaccurate results.

2.2.3 Parameters estimation

The last step should finalize the model used to represent the nonlinearity. It is important
to estimate the parameters because this model will be the basis of the absorber. A method
to do this is the Frequency-domain nonlinear subspace identification (FNSI)(J.P. Noël and
G. Kerschen, 2013, [12]). The behaviour of the system can be expressed as follow:

Mq̈ + Cq̇ +Kq + knlfnl = p (2.6)

where M,C,K are the mass, damping and stiffness matrices respectively, q and p are
the generalized displacement and external forces and finally, knl is the nonlinear strength
which has to be estimated and fnl is the assumed nonlinear function form (e.g. a polyno-
mial form).

Generally, the acceleration and the external force are measured. Eq. 2.6 can be
reformulated as:

Mq̈ + Cq̇ +Kq = p− knlfnl (2.7)

Doing so, the right member is seen as known, like additional inputs. It can represent
the extended response function, it is used as a nonlinear feedback of the underlying linear
system. Then, the system of Eq. 2.6 can be rewritten in state-space form with the state
vector x = [qT , q̇T ]T :

{
ẋ(t) = Ax(t) +Be(t)

y(t) = Cx(t) +De(t)
(2.8)

where B =

(
0 0

M−1 knlM
−1

)
contains the nonlinearity term to be estimated and e =(

p(t)
−fnl(t)

)
is known. The last step is to discretize and to apply the Fourier transform to

this equation in order to save some computational resources:

{
zkX(k) = AX(k) +BE(k)

Y (k) = CX(k) +DE(k)
(2.9)

with the z-transform variable zk = ej2πk/N .
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This method is useful because it allows a general representation for nonlinear systems.
Moreover, it can be easily extend to multi-input/output case and the algorithm to solve it
for linear case are already developed and so highly efficient. The simplest function forms
that exist are the polynomials such as fnl = xn. It will be the first function forms used
to design absorbers.

2.3 Vibration absorber

In order to protect the system from the outcome of vibration, some devices have been
developed. These ones are the vibration absorbers. Firstly, they were focused on linear
system but nowadays, nonlinear system could also be protected. The different types of
absorbers are explained bellow.

2.3.1 Linear system

One way to minimize the perturbation induced by resonance is to use a device to absorb
vibration. In a linear case, the device is called linear tuned vibration absorber (LTVA).
The theory of this device has been developed by Den Hartog. He used a spring and a
damper which increases the robustness of the device (1934, [9]). The method is known
as the equal peak method. Schematically, if the primary system is linear as represented
by a spring k1 and a mass M1, the absorber will be represented by an added system
mass/spring as shown in Fig. 2.5, where M2 is the mass of the device, k2 the stiffness of
the absorber and c2 its damping.

Figure 2.5: Scheme of the linear vibration absorber.

To understand this theory, the equations of motion of this system can be written as
follow:

{
M1ẍ1 + k1x1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) = F sinωt

M2ẍ2 + c2(ẋ2 − ẋ1) + k2(x2 − x1) = 0
(2.10)

where F is the amplitude, ω the frequency of the force acting on the system and t the
time. The displacement of the primary system is x1 and x2 for the absorber.

The main observation of Den Hartog was that two invariant points of the primary
system displacement exist regardless of the damper value. The idea of this method is
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to find the absorber stiffness that allows to have two peaks of equal amplitude. Indeed,
this configuration is the optimal one. The device also works if a damper is added to the
primary system but the expressions become more complex because the invariant points
disappear. The response can still be minimized with more complex analytic expressions
of the parameters. It can be noticed that the exact close form solution has been expressed
many years later by T. Asami and O. Nishihara (2003, [13]). For the non damped linear
system, it is stated as:

λ =
wn1

wn1

=

√
k2M1

k1M2

=
2

1 + ε

√
2(16 + 23ε+ 9ε2 + 2(2 + ε)

√
4 + 3ε)

3(64 + 80ε+ 27ε2)

µ2 =
c2

2
√
k2M2

=
1

4

√
8 + 9ε− 4

√
4 + 3ε

1 + ε

(2.11)

with ε being the mass ratio M2

M1
. λ is the frequency ratio and µ2 the damping ratio of the

absorber. These ratios allow to minimize the maximum response of the primary system
displacement.

This theory is shown in Fig. 2.6 provided by Habib and Kerschen (2016, [4]) where
the black dotted line is the response of the system without any absorber. The three other
curves show the response for several values of the damper absorber, including the optimal
according to the Eq. 2.11 (in black). It highlights the presence of the invariant points
represented by black dots.

Figure 2.6: Frequency response function (h1) of an undamped linear primary system with
an attached linear vibration absorber from [4].

2.3.2 Nonlinear system

In the previous section, the principle of the LTVA has been explained. In this work, the
purpose is to get an absorber for a nonlinear system. The first step is to analyze the reac-
tion of the LTVA for a nonlinear system. The Duffing oscillator, a well known nonlinear
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system (G. Duffing, 1918, [14]), is used. In addition to the linear spring, the primary
system presents a nonlinear spring of stiffness kNL and a damper c1. The nonlinear spring
is a cubic one and its reaction force is expressed as kNLx3. The absorber is attached to it
as shown in Fig. 2.7.

Figure 2.7: Scheme of the Duffing oscillator with LTVA.

When the solution of this system is computed, one can see that the response is detuned.
It means that at least one of the two peaks is still nonlinear. This peak enters in resonance
and it is not a convenient solution, the issue is just displaced. Thus, the linear absorber is
ineffective for nonlinear system. This has been shown by Habib et al. (2015, [5]). Indeed,
this detuned effect is visible in Fig. 2.8 where the right figure corresponds to a nonlinear
system damped by a linear absorber. The different curves refer to different amplitudes in
the excitation force which show the violation of the invariance principle.

Figure 2.8: Damping of a nonlinear system using a) NLTVA; b) LTVA from [5]. q1 is the
dimensionless amplitude and γ the dimensionless frequency.

To create a nonlinear absorber, the equal peaks method has to be extended to the
nonlinear system. Habib et al (2015, [5]) proposed to change the classical spring by a
device which shows an arbitrary expression of its restoring force, expressed as g(x). This
device is called non linear vibration absorber (NLTVA) and can be schematized as in Fig.
2.9.
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Figure 2.9: Scheme of the Duffing oscillator with NLTVA.

The equations of motion of the system can be easily derived:

{
m1ẍ1 + k1x1 + knlx

3
1 + c2(ẋ1 − ẋ2) + g(x1 − x2) = F sinωt

m2ẍ2 + c2(ẋ2 − ẋ1) + g(x2 − x1) = 0
(2.12)

Some transformations are needed to get a solution. The study lead to an interesting
tuning rules. It states that "to choose the mathematical form of the NLTVA’s restoring
force so that it is a ’mirror’ of the primary system" (Habib et al, 2015, [5]). This means
that for the Duffing oscillator, the restoring force of the absorber g should be a cubic
spring. A linear spring should be also used to absorb vibrations at low regime where the
nonlinear part is not excited.

As for the LTVA in Eq. 2.11, the parameters that minimize the response have been
defined. It can be seen in Fig. 2.8 that the minimization is not unique. Indeed, for
different load values, the two peaks change slightly in value and position. Nevertheless,
the general form remains the same with two low peaks and seems to be a good solution.

2.4 Conclusion

Nonlinearities come from different sources but the most interesting for this work are the
geometrical nonlinearities. The overall process to identify the nonlinearities has been
presented. It is an important point since it allows to model any nonlinearities. To avoid
resonance peak, vibration absorbers can be used. Firstly, these devices were focused on
linear behaviour but Habib et al. managed to extend this theory to nonlinear case (2015,
[5]). The key principle resulting from this study is the tuning rule. Indeed, using this new
rule for model nonlinear absorber, topology optimization can be used to design nonlinear
spring.
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Chapter 3

Nonlinear topology optimization

3.1 Introduction

Topology optimization is a numerical method which allows to design the best material
distribution for a specific feature under some constraints in a given domain. This is an
interesting way to design anything. Indeed, it does not depend on predefined configura-
tion like in a computer aided design (CAD) approach where topology modifications are
impossible. The range of applications is very large because the type of optimization is
multidisciplinary. However, it is mostly used in the conceptual stage of a design process.
Indeed, exotic layouts are not always easy to manufacture. Recently, the additive man-
ufacturing with 3D printers takes a lot of development and should allow the engineer to
have much more freedom in the design as it is explained in many articles (T. Norton,
2013; S. Wasserman, [15], 2015, [16]). Another difficulty could be the intermediate den-
sity elements induced by some methods. These elements can have a big impact on the
behaviour of the piece. Furthermore, they have no physical meaning and are impossible to
manufacture. An example of topology optimization is the latest work of B. S. Lazarov et
al (2018, [6]) on the heat sink for LED light sources. It highlights the multidisciplinary of
the method because this is a thermal application. Moreover, it shows the new possibilities
provided by additive manufacturing. Otherwise it would have been impossible to test it
due to the complexity of the geometry shown in Fig. 3.1.

Figure 3.1: Example of thermal optimization and additive manufacturing from B.S.
Lazarov et al (2018, [6]). From left to right: the industrial design solution, Topology-
optimized LED heat sinks for horizontal orientations with 1/2 and 1/8 symmetries and
3D printed topology-optimized post-processed design with removed support.

The topology optimization method is based on the optimal material distribution. A
fixed mesh will be used and the local density is the design variable. In order to have
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an interpolation of the properties, the solid isotropic microstructure with penalization
(SIMP) for intermediate densities or power law model is used (Bendsoe, 1989, [17]). For
example in structural optimization, the property to interpolate is the Young modulus as
shown in Eq. 3.1.

Ee = xPe (E0 − Emin) + Emin (3.1)

where Ee is the Young modulus of one mesh element, xe its density, P the penalization
and E0 the reference Young modulus of a full density element.
The purpose of the penalization is to minimize the importance of the low density element
and avoid the intermediate density one.

As it has been mentioned before, the optimization objective is to fit a prescribed
force/displacement curve based on geometrical nonlinearities. Nonlinearities change a lot
the optimization because many applications are made for linear case and do not care
about large displacements. It has already been the topic of some studies by T. Buhl,
C.B.W. Pedersen, O. Sigmund (2000, [18]) and T. E. Bruns and D. A. Tortorelli (2001,
[19]). As a starting point, the open source code written by Sigmund et al (2010, [20]) is
used. This code is known as "Efficient topology optimization in MATLAB using 88 lines
of code" and has become a reference in topology optimization. The modified codes for
this nonlinear study are available in the annex C.

3.2 Nonlinear mechanics

First, the basics of nonlinear mechanics will be remembered. In this study, the exploited
feature is the geometrical nonlinearity. The basic expressions are derived from the con-
tinuum model and will be extended to the discretized model in section 3.4. Initially, the
elements are in position X as represented hereunder (Fig. 3.2).

Figure 3.2: Deformation of a body from Ω0 to Ωx. The point P has only one related point
in the converged shape (Q). Scheme from [1].

The global coordinates can be written as:

x = u + X (3.2)
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where u and x are the global displacement and coordinates. From this expression, one
can derive the displacement gradient ∇u:

∇u =
∂u

∂X
(3.3)

From this expression, the deformation gradient can be expressed as F = ∇u + I. The
strain is related to the displacement gradient. If the Lagrangian strain presented in Eq.
2.1 is called E, it comes:

E =
1

2

(
∂u

∂X
+
∂uT

∂X
+
∂uT

∂X

∂u

∂X

)
=

1

2
(∇u +∇uT +∇uT∇u) (3.4)

If the assumptions of the infinitesimal strains are verified:

ε =
1

2
(∇u +∇uT ) (3.5)

Then, the stresses have to be defined. In nonlinear analysis, the second Piola-Kirchhoff
stress tensor is often chosen:

S = JF−1σF−T (3.6)

where J = det(F) and σ is the Cauchy strain tensor.

Cauchy and Piola-Kirchhoff stresses are equivalent in linear assumptions.

3.3 Model

It is also important to choose the constitutive model that will be used to perform the
optimization. Since geometrical nonlinearities are the subject of this thesis, the model
should be able to take into account large deformations. The most common one is the
St-Venant Kirchhoff model. This one is used in this work and it takes form as Eq. 3.7.
Some other models are used in the literature as the Neo-Hookean model used by M. Wallin
et al (2018, [21]) which takes better care of compression. However the results are very
similar.

Φ =
1

2
λE2

k,k + µEi,jEi,j (3.7)

where Φ is the strain-energy density and λ and µ are the Lamé coefficient which depend
on the Young modulus E and the Poisson’s coefficient ν:

λ =
νE

(1 + ν)(1− 2ν)
(3.8)

µ =
E

2(1 + ν)
(3.9)

By differentiating the strain-energy density, it comes the second Piola-Kirchhoff:

S =
∂Φ

∂E
= λtr(E) + 2νE (3.10)
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3.4 Nonlinear Finite Element Method

In this work, the 2D case will be considered so the 4-nodes parametric element is used
to discretize the geometry. The positions and displacements are interpolated using para-
metric shape function Ni. Thus, the nonlinear finite element method (FEM) procedure
has to be explained. It is not as simple as the linear case where the equilibrium equation
Ku = F is direct. In the nonlinear case, the problem has to be solved iteratively passing
through several equilibrium states. Indeed, large displacements induce some geometrical
nonlinearities that will be exploited later but it complicates a the procedure. First, some
theories have to be remembered. Note that the complete explanation can be found in "In-
troduction to Nonlinear Finite Element Analysis" (2015, [1]). Thus, one has to discretize
the model. The displacements and coordinates are re-expressed using interpolation as
follows:

u =
N∑
I

NIuI (3.11)

x =
N∑
I

NIxI (3.12)

where uI are the displacements of the element’s nodes and xI its coordinates. With this
model, if NI are the shape functions, it comes:

∇u =
∂u

∂X
=

N∑
i

∂Ni

∂X
ui (3.13)

These discretized values allow to compute the Lagrangian strain E. Then, the variation
of Lagrangian strain can be found:

δE = Bδu (3.14)

where B is the nonlinear strain-displacement matrix that can be decomposed into two
parts:

B = BL + BN (3.15)

It allows to find the expression of the internal force as in Eq. 3.16.

fint =
∑∫

Ωe

B(u)S∂v (3.16)

The FEM analysis is based on a Newton-Raphson scheme, the internal force is com-
puted from the previous expression and a residual can be expressed:

r = fext − fint (3.17)

The purpose of the Newton-Raphson scheme is to set the residual to 0. To do this,
the tangent stiffness matrix has to be used:

KT = − ∂r
∂u

(3.18)
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Then thanks to the Taylor expansion, it can be linearized and the displacement increment
∆ui can be found easily:

KT∆ui = r (3.19)

where the stiffness tangent matrix is found by:

KT =
∑∫

Ωe

(BT
NDBN + BT

GYBG)∂v (3.20)

where BG contains the shape functions’ gradients, D is the constitutive matrix and Y
contains the second Piola-Kirchhoff stresses. This allows to iteratively approach the equi-
librium by updating the displacement vector as in Eq. 3.21. The internal force can be
updated and afterwards the new residual. The procedure will run until the convergence
is reached.

ui+1 = ui + ∆ui (3.21)

The main problem of the Newton-Raphson scheme is its convergence. This one de-
pends a lot of the initial conditions which have to be near the solution. This way, the
scheme presents a quadratic convergence. To control the convergence, two options are
available either by controlling the load or the displacement.

Load control
In load controlled procedure, the applied force on the system is gradually incremented
until the wanted value. For each increment, the Newton-Raphson procedure is performed
to find the intermediate equilibrium. Then, the intermediate displacement is used has a
guess for the next increment. The load step can be either linear or not but by simplicity,
it has been chosen linear in this work. The procedure scheme is shown in Fig.3.3. Between
each load increment, the Newton-Raphson method is used to find the related displacement.

Figure 3.3: Example of load-controlled nonlinear FEM procedure from [1]. f is the
external force and P (u) the internal one.

Displacement control
As it was the case for the load, the displacement can also be controlled to find the internal
force related. Since there is a relation between the displacement and the force, the result
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should be the same. Practically, the displacement controlled procedure could be more
stable (N.H. Kim, 2015, [1]).

Figure 3.4: Example of complex force/displacement curve (2015, [7]). λ corresponds to
the force and a the displacement.

Nevertheless, for each method, some behaviours are impossible to design with such
procedure. As it is shown in Fig.3.4, snap-through is impossible to perform under load
control. The same conclusion is available for the snap-back under displacement control.
According to the nature of the problem one should be preferred to the other. In a first
instance, the purpose is to fit simple curve, thus any of these behaviours will be studied
in this work.

3.4.1 Validation

To verify the validity of the implemented code, the result of an analysis are compared to
theoretical result. Since it will be the domain use after, the cantilever beam is chosen.
The simplified deflection expression (2007, [22]) of a cantilever beam writes:

f =
PL3

3EI
(3.22)

where P is the load, L the length of the beam, E its Young modulus and I the inertia of
the section. A simple rectangle is thus considered:

I =
bh3

12
(3.23)

where h is the high of the section and b its base.

For the numerical solution a 20 × 80 mesh is used. The Young modulus E is set to
1[Pa] and the force applied goes until 1e− 4[N]. The resulting force/displacement curves
are plotted in Fig. 3.5. It shows that the FEM analysis seems to fit the theoretical
approximation. Indeed, the mean error is about 2.6%, this allows to validate the model.
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Figure 3.5: Comparison of theoretical and numerical deflection of a cantilever beam.

3.4.2 Stop criteria

The relative error is taken as a convergence criterion. While the maximum absolute value
of the normalized residual vector is bigger than an error threshold, the Newton-Raphson
scheme will continue to update the variables:

max(Ri,j)

Fi
≥ elimit (3.24)

where Ri,j is the residual at the jth iteration of the Newton-Raphson scheme and the ith
of the control iteration, Fi is the load related and elimit is the threshold error.

Some threshold limits have been tried in order to find the best compromise between
time and accuracy. To do this, the previous example of the cantilever beam loaded until
1e− 4[N] is chosen. As a reference, a threshold error about 1e− 10 is taken. To compare
the threshold errors, the displacement at the tip of the beam, the time and the mean
number of iterations are measured. The results are shown in Tab. 3.1. According to these
values, the most interesting threshold error is about 1e− 3. Indeed, it does not take more
time to compute compare to the bigger and give the same solution than the smaller. One
can note that the values of the displacement were the same in this simple case and the
error compare to the reference is very small.

elimit Time [s] utip Iterations
1e-2 15.311 0.2532950078 3
1e-3 15.818 0.2532950078 3
1e-4 20.952 0.2532950078 3.2
1e-10 31.748 0.25329500517 5

Table 3.1: Comparison of the iterative parameters for different threshold errors.
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3.4.3 Step size verification

The nonlinear FEM analysis is a slow process due to its iterative nature. Therefore it is
important to choose the right step for the incremental procedure. This is an important
parameter for the convergence and the speed of the code. Few have been tested for the
load incremental procedure. The benchmark is the same than previous and the cantilever
beam has a 20 × 80 mesh. The force is increased from 0 to 1e − 4[N] by ∆F and the
results are shown in Tab. 3.2.

∆F [N] Steps Time [s] Iterations
2e-5 5 8.6 4
1e-5 10 14.59 3

0.667e-5 15 22.99 3
0.5e-5 20 35.25 3

Table 3.2: Comparison of the iterative parameters for different step sizes.

In this table, the time has been taken into account but also the number of internal
iterations i.e., the number of iterations taken by the Newton-Raphson scheme to meet
the stop criteria from Eq. 3.24. This parameter is interesting because it quantify the
distance between the guess and the solution. It shows that even if the first time step is
faster, it takes more iterations to perform the analysis. It is not a problem here but for
more complex problems induced by topology optimization, it can be very important to be
close enough. For the three other steps, the number of iterations is the same. Thus the
time factor becomes more important and the choice is made on 1e− 5[N]. This step has
been used during all simulations and was not taken in default. One can note that for the
nonlinear analysis, parallel functions of MATLAB have been used such as parfor. On
my computer, it allows to use two workers. It obviously increases the speed. For example,
for the chosen time step, the time taken is reduced by 20%. The specifies of the computer
used for this study are referred on Appendix A.

3.5 Compliance optimization

To validate the model, it is interesting to try it with the most common example of topology
optimization, i.e. the compliance minimization. This problem allows to find the stiffest
shape for the given design domain. This well known problem takes form as in Eq. 3.25.
It is important to notice that the load control has been chosen because of the form of the
problem where the force is fixed.

min f0(x) = fTextu
s.t. r = 0

vTx ≤ v∗

xmin ≤ x ≤ xmax

(3.25)

where u is the generalized displacement, fext the external force, r the residual and v∗ the
maximum volume accepted.

20



The best optimizer to use is the method of moving asymptote (MMA) proposed by
Svanberg (1998 [23]) which is a gradient-based algorithm. Thus, the sensitivities of the
cost function and the constraint are needed.

3.5.1 Parameters

The next step is to choose the right parameters of MMA. Indeed, an adequate selection of
parameters allows to run the optimization and validates this model. Given the classical
use of the solver (see Appendix B), the parameters are the usual ones as proposed by
Svanberg (1998, [23]):

aj = 0 j = 1...m

dj = 0 j = 1...m

cj = big j = 1...m

where m is the number of constraints.

After some verifications, the value of c has been set to 10000 which is a classical value
found in the literature (Svanberg, 1994, [23]). It should not be too big because it could
ill conditioned the problem. Some other techniques can be implemented in order to get
the best solution and avoid convergence problem. For this model, a filter, a move limit, a
continuation method and a projection have been chosen. This problem can be just seen
as a displacement minimization and then, in the expression of the problem Eq. 3.25, fext
can be replaced by sign(fext)l where l is the localization vector of the force.

3.5.2 Filter

To avoid checkerboard patterns, the use of filters is recommended. Many filters exist and
have been tested (O. Sigmund, 2007, [24]) but none of them is perfect. Even if it is not
the best, a density filter has been chosen, it takes form as in Eq. 3.26. From this paper,
it seems to make less iterations than other method which is a real issue in nonlinear
optimization considering the time taken by each iteration.

x̄e =
1∑

i∈Ne
Hei

∑
i∈Ne

Heixi (3.26)

where x̄e is known as the physical density. Ne is the set of elements for which the distance
with the element e is less than the filter radius rmin. Hei is a weight factor and can be
expressed as:

Hei = max(0, rmin −∆ei) (3.27)

This new variable is used to compute the sensitivities and thus it slightly changes their
expressions as shown below for the objective function:

∂c

∂xj
=
∑
e∈Nj

∂c

∂x̄e

∂x̄e
∂xj

=
1∑

i∈Ne
Hei

∑
e∈Nj

Hjexi
∂c

∂x̄e
(3.28)

The effect of the filter can be seen in the next figure. In Fig. 3.6a, the checkerboard
patter is obvious and one can understand that it has no physical sense in reality.
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(a) Without filter, checkerboard pattern. (b) With filter, rmin = 2.

Figure 3.6: Effect of the filter on a cantilever beam.

3.5.3 Move limit

Another defensive way to ensure convergence is the move limit. It sets a box limit to the
design variable in order to avoid large change and oscillating convergence. It will slightly
slow down the code since the limit is chosen between the box and the side constraints:

max(xmin,i, xi − α) ≤ xi ≤ min(xmax,i, xi + α) (3.29)

Usually the size of the box α is chosen between 0.15 and 0.3 according to the complexity
of the problem. After some trials, 0.2 seems to be the best solution. A variable strategy
can also be implemented but it does not work with a nonlinear analysis. Indeed, the
variable strategy works well for some monotone optimizations. In nonlinear optimization,
some elements are subject of sudden changes which are not well taken in charge by the
variable strategy.

3.5.4 Continuation method

If the penalty is directly set to its highest value, the solution can present some numerical
difficulties like being trapped in a local optima. In order to smooth the layout, a contin-
uation procedure is implemented as Wallin (2018, [21]). The penalty begins lower (at 2)
and is increased each 5 iterations by 0.1 until its maximum value (at 3).

3.5.5 Projection

One last useful part of the procedure is the projection. The purpose is to define a "0/1"
distribution of density. It means that the distribution will tend to a perfect void/solid and
intermediate densities will be avoided. Moreover, it allows to have more manufactarable
layout. To perform this, an Heaviside projection can be used. F. Wang, B.S. Lazarov and
O. Sigmund (2011, [25]) provide an efficient formulation for this projection:

x̃e =
tanh(βω) + tanh(β(x̄e − ω))

tanh(βω) + tanh(β(1− ω))
(3.30)

where x̄e are the filtered densities and β, ω are the projection parameters.
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When β tends to infinity, the projection gives a perfect distribution. A continuation
method is implemented for this parameter to go from smoothed to strict difference be-
tween empty and full elements. It increases by 1 after 10 iterations until 10. The other
parameter, ω, is set to 0.5 to have a mean projection has shown in Fig.3.7. The elements
above ω are projected towards 1 and the elements under towards 0. This projection is
not submitted to any constraints and little violation of the volume constraint are induced
when β changes. This change is often limited and solved by the optimizer itself. Thus,
the volume is an interesting convergence parameter and is inspected along the iterations.

x̄e
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x̃
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Figure 3.7: Effect of the Heaviside projection for different β with ω = 0.5.

As for the density filter, the Heaviside projection induces few changes in the expression
of the sensitivity:

∂c

∂x̃e
=

∂c

∂x̄e

∂x̄e
∂x̃e

(3.31)

where the new term is derived from Eq. 3.30 with sech(x) = 1
cosh(x)

∂x̄e
∂x̃e

=
βsech(β(x̄e − ω))2

tanh(βρ0) + tanh(β(1− ω))
(3.32)

The results obtained with the projection are better than without. Indeed, the full
elements are stronger than the intermediate one. For the same linear optimization of a
cantilever beam which is the subject of the next section, the compliance goes from 446.6
to 378.53.

3.5.6 Sensitivity computation

The cost function sensitivity can be computed, since the external force is constant, its
derivative is null and it can be written as:

∂f0

∂xe
= fText

∂u

∂xe
(3.33)

However, in this form, it will be computationally too expensive. Indeed, the displace-
ment has to be computed for a variation of each design variable. It means that n FEM
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analysis should be done, which is too costly. Instead, the Lagrangian augmented cost
function is introduced in order to use the adjoint method.

f0 = fTextu + λT r (3.34)

where λ is the Lagrangian multiplier and r the residual vector. This expression is obviously
the same than the initial since r = 0. If it is this expression that is derived, it comes:

∂f0

∂xe
= fText

∂u

∂xe
+ λT (

∂r

∂u

∂u

∂xe
+

∂r

∂xe
) (3.35)

which could be rewritten:

∂f0

∂xe
= (fText + λT

∂r

∂u
)
∂u

∂xe
+ λT

∂r

∂xe
(3.36)

Since the Lagrangian multiplier can be chosen arbitrarily, it should be taken in order
to eliminate the displacement sensitivity which is computationally very heavy. From Eq.
3.36 and if one remember the expression of the tangent matrix Kt = − ∂r

∂u
it comes:

λ = − ∂r
∂u

−1

fext = K−1
t fext (3.37)

Then, the sensitivity of the residual vector has to be computed, the residual is defined
as the difference between external and internal force r = fext − fint and as it has been
mentioned before, the external force is constant so the residual sensitivity becomes:

∂r

∂xe
= −∂fint

∂xe
(3.38)

This equation can be derived from the constitutive equation of the internal force (Eq.
3.16):

∂r

∂xe
= − ∂

∂xe

∫
V

BTS dV = − ∂

∂xe

∫
V

BTxpeDε dV =

∫
V

BTpxp−1
e Dε dV (3.39)

The complete procedure can be explicitly expressed in the form of a flow chart. This
allows a better understanding of the method, it is represented in Fig. 3.8. It clearly shows
that the process contains two parts: the nonlinear FEM and the topology optimization.
The FEM analysis is presented in blue while the green is the topology optimization step.
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Figure 3.8: Flowchart of the overall procedure.
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3.6 Cantilever beam

The cantilever beam is a usual problem in topology optimization, it is interesting to see
how the nonlinear optimization differs from the linear one. Physically, this problem takes
form as in Fig. 3.9 where the material and dimensional parameters have to be fixed. The
practice in topology optimization is to choose a material that presents a unite Young
modulus E0 = 1[Pa] and nu = 0.4. For nonlinear problem, some studies (O. Sigmund et
al., 2000, [18]; B.S. Lazarov et al., 2014, [26]) use Nylon (E0 = 3[GPa] and ν = 0.4) but
it does not change the layout. The left of the beam is totally clamped and a force F is
applied at the middle of its right side as shown in Fig. 3.9. Arbitrarily, the dimensions
are taken to have 4:1 ratio (a = 1[m] and b = 0.25[m]). This is discretized by a 80 × 20
elements beam. The volume fraction is taken to 0.5 and the radius filter taken is 3.

Figure 3.9: Load case of the cantilever beam.

The optimal layout is going to change for different values of the applied load. To
highlight this, the optimization will be run for two different loads F1 and F2.

F1 = 3e− 5[N]
F2 = 5e− 5[N]

3.6.1 Linear optimization

The first step to have a standard layout is to perform a linear optimization on the domain.
All the parameters and methods are the same than for the nonlinear optimization. The
resulting layout is shown in Fig. 3.10.

Figure 3.10: Optimal layout with linear analysis.

Unsurprisingly, this layout is symmetric and independent of the load intensity. A
nonlinear FEM analysis is performed to find the displacement for the two loads. It comes
that displacements are equal to 0.1192 [m] and 0.1963 [m] for F1 and F2 respectively.

26



3.6.2 Sensitivity validation

In order to validate the use of the adjoint method, the sensitivity should be computed in
another way. An easy but inefficient method is the central finite difference method that
could be written as Eq. 3.40. This method computes the objective function for a specific
perturbed element e.

∂f0(x)

∂xe
=
f0(x + ∆xe)− f0(x−∆xe)

2∆xe
(3.40)

where x is the vector of the optimised density, ∆xe is the perturbation imposed on the
element e and ∆xe the vector containing the perturbation at the right index.

Due to the truncation and the condition errors, the step size of the perturbation has
to be chosen carefully. The effect of the step size has been studied by J.Iott, R. Haftka,
H.M.Adelman (1985, [27]). It comes that the truncation error increases with ∆xe while
the condition error decreases and vice-versa. According to this, the value ∆xe equal to
0.001 proposed a good compromise and consequently is used in this work. To compare
the result of each method, four elements are arbitrarily chosen. Their sensitivities ∂f0(x)

∂xe
are computed according to each method. This procedure is done after the first iteration.
The results are available in Tab. 3.3.

Element Finite difference sensitivity Adjoint sensitivity Relative error [%]
150 -1.7051e-4 -1.7059e-4 0.045
460 -2.3635e-3 -2.3577e-3 0.2453
970 -1.3542e-4 -1.3523e-4 0.1403
1550 -3.8110e-4 -3.8161e-4 0.1331

Table 3.3: Comparison between finite difference and adjoint method sensitivies.

These results validate the method of adjoint sensitivities. Indeed, the relative error
does not exceed 0.25% on each element which is low enough.

3.6.3 Results

The first optimization is performed with the load F1 and it leads to the layout represented
in Fig. 3.11. It is quite similar to the linear one but the longitudinal symmetry does not
exist anymore. Indeed, it makes sense since it is made for one force direction. Thus the
solver tends to stiffen especially this side.

Figure 3.11: Optimal layout for F1 with nonlinear analysis.
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Furthermore, the optimized displacement (since C = FTU and the force is constant)
has a good convergence as it is shown in Fig. 3.12a. It begins very high for the uniformly
reparted beam but it drops very fast as soon as the optimization begins. Then, it alter-
nates some jumps when the penalty and/or the β parameter increase for the continuation
method with some slight decreases during the optimization. It is a classical shape for the
optimized variable. To verify the convergence, the volume ratio has been plotted in Fig.
3.12b. It can be seen that there is a jump when β changes but it is directly corrected
by the solver. The final value after 100 iterations is equal to 0.1192[m]. It means that
the nonlinear layout does not present an improvement compared to the linear case. A
FEM analysis can be done on the new design until F2. It shows that the behaviour is
quite linear and the final displacement is equal to 0.1957[m]. For this second load, a slight
decrease of the displacement is seen.
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Figure 3.12: Optimized displacement and volume as a function of the number of iterations
for F1 .

For the second test case, the load is increased to F2. This time, the layout has
completely changed compared to the linear reference and the previous shape. As shown
in Fig. 3.13, it is very asymmetric. At a first sight, this shape may seem to be non stiff
at all with the solo bar end. The optimized displacement after 100 iterations is about
0.1955[m] which is slightly smaller than the previous shape for the same load. A FEM
analysis can be performed on this geometry and the displacement at F1 can be found, it
comes that is is about 10% higher than previously with 0.133[m].

Figure 3.13: Optimal layout for F2 with nonlinear analysis.
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Then if one takes a closer look to the deformed shape in Fig. 3.15, the bar-end appears
to be vertical which is the best way to take a charge with minimum displacement. It makes
sense but it also means that the layout is optimized only for one precise load since the
bar-end will be in bending in other case. In this same figure, the mesh, also plotted,
seems to be distorted under the bar-end. Moreover, it is important to notice the presence
of a big jump in the evolution of the optimized variable in Fig. 3.14a around the 50th

iteration. It corresponds to the biggest jump in the volume ratio of the beam as Fig.3.14b
shows. With some inspections between each iteration, it comes that this jump occurs
when the mesh first crashes. This issue is common in nonlinear optimization and will be
investigated in section 3.7.
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Figure 3.14: Optimized displacement and volume as a function of the number of iterations
for F2 .

Figure 3.15: Deformed shape for F2.

3.7 Mesh distortion

For the compliance problem of a cantilever beam, it has been shown that some crashes
happen in the mesh. Obviously, this can be a problem for the convergence of the opti-
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mization. Thus it is important to implement some techniques to avoid crashes. Two of
them will be examined in the next section.

3.7.1 Energy interpolation

As mentioned before, a common problem that comes with nonlinear optimization is the
mesh distortion. This issue is due to low density elements which crash under large dis-
placements. It is a purely numerical problem since physically low density elements rep-
resent void. The problem causes by large displacements on these elements is that their
tangent stiffness can be zero or negative. Thus, it can induce the non-convergence of
the equilibrium iteration. The problem was already known and some solutions have been
investigated like the relaxation of the convergence criteria during the Newton-Raphson
scheme (Buhl et al., 2000, [18]; Pedersen et al., 2001, [28]). This method ignores the
instability but the number of iterations is still very high and the results can be inaccu-
rate. Another developed method was the element removal and reintroduction method of
the low density elements (Bruns and Tortorelli, 2003, [29]) which works quite well. More
recently F. Wang et al. (2014, [26]) found a better way to avoid this problem, it is the one
chosen for this work. The idea of their method is to interpolate the density energy stored
in any element between the nonlinear energy from Eq. 3.7 and the infinitesimal strain
energy: ΦL = 1

2
λε2

k,k + µεi,jεi,j. It can be noticed that for the best results, the Heaviside
projection is needed in order to avoid intermediate elements. The interpolation is written
as follows:

Φe(ue) = [Φ(γeue)− ΦL(γeue) + ΦL(ue)]Ee (3.41)

where γe is the threshold parameter of the SIMP density of the element e such as it is
equal to 1 when the element is solid an 0 if it is void. It is found using an Heaviside
projection:

γe =
tanh(β1ρ0) + tanh(β1(x̃pe − ρ0))

tanh(β1ρ0) + tanh(β1(1− ρ0))
(3.42)

where x̃e is the projected density. In the same paper ([26]) the two parameters β1 and ρ0

have been studied and it has been shown that the use of β1 = 500 and ρ0 = 0.01 seems
to provide good convergence and these values can be used for many applications.

30



x̃e

0 0.2 0.4 0.6 0.8 1

γ
e

0

0.2

0.4

0.6

0.8

1

P = 2

P = 3

Figure 3.16: Threshold parameter γe as a function of the element density x̃e for different
P .

The energy interpolation has been implemented in MATLAB. For load F1, the shape
changes compare to the previous optimization as shown in Fig. 3.17. Indeed, the load
has to be bigger to observe a solo bar shape. It can be assumed that the mesh is more
efficiently used with the interpolation. Indeed, when some mesh elements crash, they
become useless and the solver is not able to fill them. These structure is called "Structure
A".

Figure 3.17: Optimal layout for F2 with interpolation energy density. Structure A.

When the load is increased to 7e − 5[N], the shape in Fig. 3.18 presents the bar
end. This second structure is named "Structure B". The deformed mesh is completely
different since any element seems to crash even if these are still distorded. Consequently,
this method is not perfect and if the displacement is too large, uncontrolled distortions
or crashes will occur again. At the moment it seems to be the best solution for the SIMP
model. Indeed, this energy interpolation method allows to optimize shape for bigger load.
Even if it looks to made the optimization a slightly slower. The optimization is run for
100 iterations. A FEM analysis is performed on each layout and the results are shown in
Tab. 3.4.

Load 3e− 5[N] 5e− 5[N] 7e− 5[N]
Displacement [m] for Structure A. 0.1181 0.1917 0.2611
Displacement [m] for Structure B. 0.1328 0.1938 0.2524

Table 3.4: Comparison of the displacement for different design loads.
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Figure 3.18: Deformed shape for 7e-5 [N] with interpolation energy density.
Structure B.

One can notice that in addition of the crashed mesh, the displacement avoids big
jumps in Fig. 3.19a. Note that some small jumps appear but these ones are due to the
increment of β, like for the penalization. As expected, the volume ratio curve presents
some variations when β changes but it is fastly solved as shown in Fig. 3.19b
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Figure 3.19: Optimized displacement and volume as a function of the number of iterations
for 7e− 5[N] with interpolation energy density.

3.7.2 Element connectivity parametrization

Energy interpolation is one of the best way to avoid non-convergence issues for the SIMP
method. It is also possible to completely change the model and use the element connec-
tivity parameterization (ECP) introduced by Yoon et al. (2005, [30]). Indeed, the mesh
distorsion and instabilities that can induce non-convergence of the analysis are due to the
low density elements. Based on it, Yoon et al. proposed a new type of modeling. Instead
of using the density as a design variable, all the elements will be considered as solid. The
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new model is based on the connection between these elements. They introduced the zero-
length link between each element where the stiffness is variable. The new design variable
γ will act on the stiffness. It means that a low density element in SIMP is modeled by
a low stiffness link. Therefore, the tangent stiffness of the element does not lose its pos-
itive definiteness. Note that it can be done from two ways, either external (E-ECP) or
internal (I-ECP) connections. The I-ECP is more often used in the mentioned literature
and proposes interesting features as it is explained hereunder. In order to highlight the
differences between the SIMP model and the I-ECP one, both have been schematically
drawn in Fig. 3.20.

Figure 3.20: Comparison of the SIMP and I-ECP model (from [8]).

The drawback of the ECP method was the increase of variable and thus, the computa-
tional time. However, a few years later, Yoon et al. (2007, [31]) proposed a condensation
method that allows to reduce the number of variables for the I-ECP method. Whit this,
the size of the system is the same than for the SIMP method. This static condensation
has been study for the linear case by Yoon et al. (2008, [32]) and still used for other type
of nonlinear optimization by Yoon (2010, [8]). In addition of the computational gain, the
condensation provides an easy way to represent the solution since the parameter γ can be
used as the density to show the result.

3.8 Doubly clamped beam

Another common benchmark in topology optimization is the doubly clamped beam. This
domain is also interesting for developing a nonlinear absorber. Thus, the same compliance
test could be done for this design domain.
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Figure 3.21: Load case of the doubly clamped beam.

The same material is used (i.e. E = 1[Pa] and ν = 0.4) but the two sides of the beam
are completely clamped and the force is applied at the centre of the beam as shown in
Fig. 3.21. Arbitrarily, a 3:1 ratio is used for this case and is discretized by a 120 × 40
elements mesh. The volume fraction used is 0.1 which is really lower than for the cantilever
beam. The minimum radius is set to 3 and the two same loads are used (i.e. 3e − 5[N]
and 5e − 5[N]). To avoid mesh distortion, the interpolation scheme is adopted. Adjoint
sensitivities have already been successfully validated for the cantilever beam.

3.8.1 Linear optimization

As for the cantilever beam, a standard layout is needed. To this pupose, the linear
optimization is performed on the design domain. The related shape is found in Fig. 3.22.

Figure 3.22: Optimal layout for F1 [N] with linear analysis.

This structure allows a very small displacement for the design force, about 0.0137[m].
When the force increases, it seems to resist but when a nonlinear analysis is done, it shows
that this layout is subject to snap-through effect. Here, it happens for F2, the deformed
shape can be seen in Fig. 3.23b and the related displacement blows up. Indeed, for this
load, the displacement reaches 1.637[m].
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Figure 3.23: Snap-through effect under a load of F2 on the optimized beam for F1.

3.8.2 Results

Unlike the cantilever beam, for small loads, the nonlinear layout is the same than the
linear one as it is shown in Fig. 3.24. It is probably due to the fact that the force is
directed along the axis of symmetry.

Figure 3.24: Optimal layout for F1 [N] with nonlinear analysis.

Thus, the conclusion is the same than before. Then the second analysis can be done
with the load F2 which is critical for the linear result. As it has been mentioned, the
volume is very low, it has for effect to made some sparse matrices which could induce
non convergence at the early stages of the optimization for bigger loads. One way to
circumvent this problem is to make one iteration with a lower load and then change its
value. This could work because the first step tends to stiffen a lot the structure. With this,
a new design has been found for bigger loads which avoid snap-through. As an example,
for the critical load of the linear design, it presents a displacement about 0.04219[m]. For
the previous design load F1, it leads to a displacement of 0.02584[m] which is higher than
for the linear optimization (0.0137[m]).
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Figure 3.25: Optimal layout for F2 with nonlinear analysis.

It can be noticed that this problem is much more sensitive than the cantilever beam.
Indeed, if the convergence parameters are analyzed in Fig. 3.26a and Fig. 3.26b, one can
see that the convergence is less stable. This is probably due to the fact that the fraction
volume is lower. Thus, when the Heaviside projection changes its β value, the volume
proportionally changes more than for the cantilever. These changes in the volume have
an effect on the stiffness of the structure.
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Figure 3.26: Optimised displacement and volume as a function of the number of iterations
for F2 .

Surprisingly, even if the layout does not present snap-through for the previous critical
load, it undergoes the same effect for a higher load at 7e− 5 [N]. It shows the sensitivity
of the optimization and the need to be careful. Thus, some conditions of this benchmark
have to be modified. By changing the penalty continuation, going from 1 to 3 by an
increment of 0.1, each 2 iterations until the penalty reaches 2 and then, each 5 iterations
instead of the previous. It allows to increase the design load, it results in another resulting
shape. The layout is shown in Fig. 3.27.
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Figure 3.27: Optimal layout for 2 × F2 with nonlinear analysis and more progressive
continuation method.

This shape is quite similar to the previous one but it is tighter which provides more
stability. One can note that it is closer to the result obtained by different studies (M.
Wallin, 2018, [21]; Pedersen et al., 2001, [28]). The convergence parameters are plotted in
Fig. 3.28a and Fig. 3.28b. The displacement in Fig. 3.28a shows that after 20 iterations,
the structure suffers from buckling. Thus, from this point it optimizes the geometry for
this type of behaviour. The volume ratio still changes when the parameter β increases
but it seems more stable with this continuation procedure.
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Figure 3.28: Optimized displacement and volume as a function of the number of iterations
for 2× F2 .

Concerning the displacement, a FEM analysis can be done on the new shape, it results
that displacements are 0.0367[m] and 0.0576[m] for F1 and F2 respectively. These results
are not as good as the first nonlinear case for the same loads. The important point is
that for a load of 1e−4[N] it presents a displacement about only 0.1048[m] which is much
better. Indeed, if the force/displacement curves are plotted for this shape and the linear
one as in Fig. 3.29, it can be seen that it is not subjected to buckling.
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Figure 3.29: Force/Displacement curve for linear and nonlinear optimization.

3.8.3 Performance

It is often mentioned that the several simulations are quite slow. Indeed, the nonlinear
analysis takes more time as it has been explained in section 3.4.3. Topology optimization
needs a FEM analysis on every optimization step. As a consequence, it should be quite
long and it is interesting to see how long it takes for different cases. The benchmark
is the cantilever beam with 20 × 80 mesh (1600 elements) optimized for 5e − 5[N] with
interpolation scheme. The optimization is run for 100 iterations. The results are presented
in Fig. 3.30a and 3.30b.
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Figure 3.30: Performances of the code: time as a function of simulation parameters.

In Fig. 3.30a, the number of elements increases. As a result, the time increases as well.
The obtained layouts for each optimization have been verified and the general geometry
are the same. Thus, one can see that the classical optimization takes almost 15 minutes
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to compute on my computer (see Appendix A for details) which is already quite long. As
a comparison, a linear optimization in the same conditions takes 12.38 seconds to run. If
a most accurate layout is wanted, one can change the mesh to have a 30 × 120 one. In
this configuration, the simulation runs in 35 minutes. This increase in time is quite linear
compare to the increase in elements. For the compliance test, it is not very useful but
it can provide more freedom for more complex optimization. Fig. 3.30b shows how the
computational time changes with the load. Indeed, the FEM analysis takes more time to
reach the equilibrium value and thus increases the running time.

For each simulation, the time of each iteration has been saved. It allows to see how it
changes and what is the time distribution. Indeed, the time taken by the nonlinear FEM
tFEM and by the optimization tMMA have been measured. The time proportion is defined
for each part of the process as pFEM = tFEM

tFEM+tMMA
. The results are presented in Tab.

3.5. From these numbers, one can see that the nonlinear FEM is very time consuming
compare to the optimization step. Moreover, the proportion between the two remains
quite stable for all the meshes.

Mesh Element tFEM [s] pFEM [%] tMMA [s] pMMA [%]
16× 64 1024 7.17 98.9 0.0881 1.1
20× 80 1600 8.73 98.8 0.0972 1.2
24× 96 2304 13.52 98.9 0.1403 1.1
30× 120 3600 20.67 98.9 0.2410 1.1

Table 3.5: Time distribution for one iteration with different meshes.

In the same way, the computational times have been estimated for different load
values. The results are presented in Tab. 3.30b. The time taken by the FEM analysis
is increasing with the load but the optimization time remains almost constant all along.
Thus, the proportion of the optimization time decreases with the load.

Load [N] tFEM [s] pFEM [%] tMMA [s] pMMA [%]
3e− 5 5.72 98.2 0.1035 1.8
4e− 5 7.62 98.7 0.1009 1.3
5e− 5 8.73 98.8 0.0972 1.2
6e− 5 13.91 99.3 0.0995 0.7
7e− 5 15.75 99.49 0.0994 0.6

Table 3.6: Time distribution for one iteration with different loads.

3.8.4 Implementation

All the code used in this work are available in the appendices. I started these codes with
the "Topology Optimization Codes for Geometrical Nonlinearty" by Yu Li (Technical Uni-
versity of Denmark). Even if the global structure of the procedure was well implemented,
this code did not give convenient result. Thus, I needed to be familiar with it in order to
find what was necessary to modify. Since the code was already inspired from the famous
"Efficient topology optimization in MATLAB using 88 lines of code" (2010, [20]), it was
not too hard to see the ins and outs. Then the errors have to be corrected. After that,
some other parts were needed to be implemented, a move limit, continuation scheme,
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Heaviside projection, interpolation energy. It was also important to make it clearer and
add a benchmark case.

3.9 Conclusion

Most of the applications using optimization only focuses on linear case. Doing so, the
model is quite simple and the FEM analysis is direct. Since geometrical nonlinearities
involve large displacements, the linear assumptions are useless. The new model includes
a Newton-Raphson scheme to perform the FEM analysis. To validate the nonlinear op-
timization, a well-known problem is chosen, the end-compliance minimization. The main
issue of nonlinear modeling is the mesh distortion that appears in some low-density ele-
ments. To avoid that, several methods exist in the literature. The most convenient has
been chosen: the energy interpolation method. This method uses a linear model in the
sensitive elements. The layout of the cantilever beam and the doubly clamped one are
compared to existing results. These ones allow to validate the model. However, some
results on the doubly clamped beam show that the parameters choice is quite important
just as the verification. Indeed, a bad choice can lead to a structure that is still limited
(e.g. subject of buckling). Obviously, the computational time is bigger for the nonlinear
optimization. This is mostly due to the iterative FEM analysis. For example, the non-
linear model takes 15 minutes to solve the cantilever optimization against 12 seconds for
the linear one.
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Chapter 4

Prescribed curve

Given the nonlinear optimization model has just been built, it is thus possible to inves-
tigate the way to impose a prescribed curve. Compare to the compliance model, some
parameters could change in order to give more freedom on the optimization. Indeed, this
problem is not classical and there is no reference on the shape that could be obtained.
More freedom could lead to better results.

4.1 Reference curve

In order to evaluate this, it is important to have a reference on the chosen shape. For
this purpose, in one hand, the minimum compliance linear optimization is used and a
nonlinear FEM analysis is made. In the other hand, the displacement of the uniformly
distributed can be computed both numerically and theoretically in order to see the natural
behaviour of the domain.

4.1.1 Cantilever beam

The first domain studied is the cantilever beam. The result of the optimization is plot-
ted in Fig. 3.10. The theoretical expressions for the uniformly distributed domain are
expressed in Eq. 3.22 and Eq. 3.23.

For the theoretical value of the mid density beam, the Young modulus is taken as in
the SIMP method, i.e. multiplied by the density. As it is shown in Fig. 4.1 the behaviour
of the optimal cantilever beam is almost linear while the one of the uniform beam presents
a slight curvature.

Then, the characteristic numbers k for these behaviours as F = kx can be found.
These are computed for each model in Tab. 4.1, kopt and kuni represent the stiffness of
the optimized and the uniform beam respectively. It will be an important parameter for
the design of a nonlinear spring.
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Figure 4.1: Force/Displacement curve of the references for the cantilever beam.

Force [N] kopt [N/m] kuni [N/m] kth [N/m]
1e-5 2.644e-4 1.869e-4 1.953e-4
2e-5 2.650e-4 1.882e-4 1.953e-4
3e-5 2.660e-4 1.905e-4 1.953e-4
4e-5 2.674e-4 1.936e-4 1.953e-4
5e-5 2.692e-4 1.974e-4 1.953e-4
6e-5 2.713e-4 2.019e-4 1.953e-4
7e-5 2.736e-4 2.071e-4 1.953e-4

Table 4.1: Characteristic number table.

According to these results, it seems that the cantilever beam has a slight stiffening be-
haviour for both the linear optimized and the uniformly divided beams. For the reference,
the mean number is used that means k̄opt = 2.697e− 4[N/m] and k̄uni = 1.987e− 4[N/m].

4.1.2 Doubly clamped beam

The same procedure can be done for the doubly clamped beam. For this configuration,
the theoretical formula writes (C. Livemore, 2007, [22]):

f =
PL3

6× 32EI
(4.1)

with the same variables as for the cantilever beam. The section is also rectangular so its
inertia presents the same expression as Eq. 3.23.

The different curves are plotted in Fig. 4.2a. In this case, the analytic solution does
not fit very well the numerical result. This is probably due to the fact that there is a lot
of compression on some elements. Indeed, as it has been mentioned, the used model does
not perform well in compression. This can be seen in Fig. 4.2b, the element in red is
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completely crushed and the elements around also. One can also notice that the nonlinear
design (section 3.8) was much more stable and could made a better reference from this
point of view. As shown in Fig. 3.26a, the behaviour is almost linear but one can see a
slight stiffening tendency. If a characteristic number should be taken from that, it comes
k = 8.672e− 04[N/m].
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Figure 4.2: Force/displacement curve and half-mesh related of the doubly clamped beam.

4.2 Problem statement

The first step of a topology optimization process is to choose a cost function. The idea
is to force the force-displacement behaviour to have a precise shape. First, one will try
only some linear and simple polynomial functions (e.g. kxn) but the main purpose is to
impose any behaviour that could have been characterized. To do this, some target points
that come from the imposed law are chosen and the error between these points and the
one of the beam has to be minimized. It makes more sense to use the relative errors in
order to be dimensionless. Mathematically, the problem can be stated as:

min f0(x)

s.t. r = 0

vTx ≤ v∗

xmin ≤ x ≤ xmax

(4.2)

where f0 is the cost function to be determined. The other variables are the same as before.

It would be interesting to try different forms of errors, the most used is the euclidean
norm:

f0(x) =

p∑
i=1

wi
(ui − u∗i )2

u∗2i
(4.3)
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where u∗i the prescribed displacement, ui the computed displacement of the beam and wi
the weight of each point.

It is possible to use the maximum norm (or L∞ norm) with the same parameters:

f0(x) = max
∣∣∣∣ui − u∗iu∗i

∣∣∣∣ (4.4)

Lastly, the L1 norm could be used as well:

f0(x) =

p∑
i=1

wi

∣∣∣∣ui − u∗iui

∣∣∣∣ (4.5)

Like for the compliance, this problem is solved using MMA solver proposed by Svanberg
(1998, [23]). This means that the sensitivities of the objective function and the constraints
are required. The sensitivity of the constraint does not change from the compliance
problem since these are the same. The sensitivity of the cost function changes in the
standard use of MMA:

∂f0

∂x
=

p∑
i=1

2wi(ui − u∗i )
∂ui
∂x

(4.6)

This is the same method as used by F. Wang, O. Sigmund, JS. Jensen (2014, [33]).
Eq. 4.2 follows the same kind of procedure as for the compliance and the parameters
aj, dj, cj are identical but in this paper, Svanberg (1998, [23]) also proposed an alternative
formulation for the least squared problems solved by MMA:

min
p∑
i=1

(hi(x))2 (4.7)

If the objective can be rewritten as in Eq. 4.7, which is the case here, MMA can take a
new set of parameters to solve it:

m = 2p+ q aj = 0 j = 1...m

f0(x) = 0 dk = 2 k = 1...2p

fk(x) = hk(x) k = 1...p d2p+j = 0 j = 1...q

fp+k(x) = −hk(x) k = 1...p ck = 0 k = 1...2p

f2p+j(x) = gj(x) j = 1...q c2p+j = big j = 1...q

The problem to solve can be easily expressed in this form:

hi(x) = wi
(ui − u∗i )

u∗i
(4.8)

This formulation uses hi as a double constraint instead of a cost function and its
sensitivity will be needed. With some slight changes in these parameters, MMA can be
optimized for the p-norm or the maximum one.
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4.2.1 Sensitivity

For both methods, the sensitivities are based on the sensitivity of the displacement. It
means that it only needs to perform the adjoint method on ui = lTui:

∂ui
∂x

= lT
∂u

∂x
(4.9)

The procedure for finding the adjoint sensitivity is no other than for the compliance
presented from Eq. 3.34 to Eq. 3.38. Doing so, it comes:

∂ui
∂x

= λT
∂r

∂x
(4.10)

with

λ = K−1
t l (4.11)

∂r

∂xe
= −∂fint

∂xe
(4.12)

Then, for the cost function sensitivity of the classical use as in Eq. 4.2 the sum has
to be performed.

4.2.2 Sensitivity validation

Likewise the compliance problem, the adjoint sensitivity should be validated by the finite
difference as in Eq. 3.40. The same step size is used since it provides good results.
Because in each use of MMA, the sensitivity of the cost function (or replacement constraint
function) starts from the displacement sensitivity, the validation is made for the classical
use. For testing the method, two points from the linear optimization of the cantilever
beam are imposed. Four elements of the mesh are arbitrarily taken and their sensitivities
are computed at the first iteration. The results are shown in Tab. 4.2 below.

Element Finite difference sensitivity Adjoint sensitivity Relative error [%]
100 -0.30716 -0.30718 4.39e-3
401 -0.19752 -0.19751 5.26e-3
850 -0.004802 -0.004803 2.64e-3
1500 -7.6052e-4 -7.6036e-4 2.16e-2

Table 4.2: Comparison between finite difference and adjoint method sensitivies.

As for the compliance optimization, the adjoint method has been well implemented
and leads to accurate results. In this case, the error does not exceed 3e− 2%. This result
can be extended to each type error and each use of MMA.

4.3 Method assessment

First, to assess the method, one can try to impose some easy points. The simplest is to
try to get the behaviour of the stiffest beam. It means just trying to impose some values
with the stiffness number extract from Tab. 4.1, i.e. k̄opt = ktop = 2.697e − 4[N/m].
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The cantilever beam case is chosen, two imposed points are taken, since the beam should
always pass by the point (0, 0), two imposed points are enough to see a behaviour. The
euclidean norm is used for these simulations but this one will be compared to the other
norms in the next section. This will allow to compare the classical and the special least
square formulation of MMA and see if one is better than the other. All the parameters are
identical, the weight factors are set to 1, the continuation method has the same procedure
as for the compliance. The projection continuation on β is also the same. Arbitrarily, the
two displacements chosen are 0.05[m] and 0.1[m] and their related force 1.35e− 5[N] and
2.69e− 5[N].

4.3.1 Classical MMA

The classical use of MMA is the first tried. After 100 iterations, the relative error is equal
to 2.5% and the obtained layout is shown in Fig. 4.3.

Figure 4.3: Layout obtained with classic use of MMA for the optimal stiffness.

This shape is similar to the one resulting from the linear optimization (Fig. 3.10).
It just presents a little asymmetry compare to this one. As a convergence indicator, the
relative error can be plotted along the iterations as in Fig. 4.4.
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Figure 4.4: Relative error as a function of the number of iterations.

It shows that the formulation is stable in this case, the error decreases without too
many jumps. The small jumps still represent the change of P or β.
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4.3.2 Least square formulation of MMA

The same optimization is performed with the alternative formulation. The relative error
resulting is equal to 2.56% and the layout is presented in Fig. 4.5.

Figure 4.5: Layout obtained with alternative use of MMA for the optimal stiffness.

The evolution of the error along iterations is shown in Fig. 4.6. It proves the conver-
gence of the alternative formulation.
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Figure 4.6: Relative error as a function of the number of iterations.

After the two simulations, one can see that both formulations give close results in the
shapes. The resulting errors are also very close as shown in Fig. 4.4 and 4.6. As it can be
seen in Fig. 4.7, the new force/displacement curves pass by the imposed points and keep
this behaviour until 7e− 5[N]. Knowing that, the choice can not be made between these
two formulations. Thus, other simulations are needed to have a better differentiation.
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Figure 4.7: Force/Displacement curves for the optimal beam problem. F = ktopx in black
dotted line.

4.4 Other linear behaviour

For the next step, one can try to impose a behaviour a little more complex. Indeed, due
to the fact that the points were reachable for only one shape, the precedent example was
quite easy. Therefore, one will try to impose a linear behaviour by two points where the
stiffness coefficient is smaller than the optimal one k = 0.8×ktop. The two points imposed
are arbitrarily chosen and presented in Tab. 4.3. In all the simulations, the forces have
been chosen in such a way that the related displacements are equal to 0.05[m] or 0.1[m]
arbitrarily.

Point Force [N] Displacement [m]
A 1.08e− 5 0.05
B 2.16e− 5 0.1

Table 4.3: Imposed points.

The two formulations are tried to complete the comparison. Due to the more complex
problem, the solver had some difficulties to reach a well defined shape. Indeed, the classi-
cal formulation does not converge at all and the shape is too much undefined. The weight
of the points are increased in order to be more restrictive. Even with this restriction, the
classical formulation shows its limit, the result of this optimization is found in Fig. 4.8.
It is obvious that this layout is not good, the shape is not defined, it remains a lot of
intermediate elements.

The convergence parameters also show the unstable character of this optimization.
Indeed, one can see huge peaks either in the relative error and the volume ratio in Fig.
4.9a and Fig. 4.9b. The simulation has been stopped at 52 iterations because it took too
much time to solve only one iteration.
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Figure 4.8: Unconverged layout obtained with classical use of MMA.
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Figure 4.9: Optimized error and volume as a function of the number of iterations for
0.8× ktop.

The same optimization is made using the alternative formulation. In this formulation,
the solutions tend to more interesting layout. The issue of the non convergence of the
layout is also noted but only on small areas. Thus to avoid it, the Heaviside projection is
increased to force the void/solid distribution. Instead of an incremental increasing of the
β parameter, an exponential increasing is chosen with a factor of 1.5, i.e. β = 1.5 × β.
However, even with this improvement, the layout keeps some intermediate zones as seen
in Fig. 4.10.

Figure 4.10: Converged layout obtained with alternative use of MMA.
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The convergence parameters are more stable. The error in Fig. 4.11a shows an overall
decrease along the iterations even if a peak happens around 50 iterations. The volume
ratio in Fig. 4.11b remains stable and under the 0.5 limit plotted in dotted line. However,
it is probably on this parameter that the difference between the two formulations is.
Indeed, in order to get a less stiff structure, the most simple solution is to remove a little
bit of matter. In both cases, the solver tries to do it but in the classical it does not
stabilize, due to the fact that it is the only constraint. In the second formulation, one can
see that the final volume ratio is equal to 0.4566, the solver is able to stabilize this ratio
because of the presence of the objective function constraints. After this, it seems logical
to prefer the alternative formulation instead of the classical one.
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Figure 4.11: Optimized error and volume as a function of the number of iterations for
0.8× ktop.
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Figure 4.12: Force/Displacement curve for the sub-optimal beam problem. F = 0.8×ktopx
in black dotted line.
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The resulting force/displacement curve can be verified. This is done in Fig. 4.12, one
can see that the resulting curve passes through the imposed points. However, after a force
of 5e − 5[N], the structure breaks. To avoid this issue, a wider range of imposed points
can be tested or considered a predefined interval use of this structure.

As mentioned, some zones keep an intermediate character. In order to change that,
one can try to vary some of the optimization parameters. Nevertheless, some parameters
are sometimes very sensitive with the new Heaviside projection. As an example, the radius
filter, if it goes from 2 to 3, the layout will never converge. Thus, now that the formulation
is chosen, one can investigate its behaviour for this optimization. The relative error can
be compared to the classical one. Then, one can study the other errors presented in Eq.
4.4 and 4.5. At first, the mesh is changed (which increases the running time) to get a more
accurate result. A technique when the results are undefined could be a post processing
step. As an example, a threshold value can be chosen and a cut off can be performed.
Then, the new structure could be studied to see how its behaviour changes.

4.4.1 Mesh dependency

First, the size of the mesh is changed. It goes from 20× 80 to 30× 120. Thus the radius
filter is set to 3 now. It will obviously increase the computational time as it has been
shown in Tab. 3.5. However, for such optimization where the layout is not known in
advance, it offers more freedom. For the same points as before, it leads to the layout
in Fig. 4.13. This shape is a little bit different than the previous one and allows an
improvement in the error going to only 4.6e− 3%. The volume is quite similar and tends
to a ratio about 0.479.

Figure 4.13: Converged layout obtained with alternative use of MMA.

In addition of the error improvement, the breakdown of the structure occurs later.
It can be seen in Fig. 4.14, the behaviour remains quite linear until 4e − 5[N] but it
breaks at 6e− 5[N]. The values of some points are taken in Tab. 4.4 for illustration. The
displacements wanted are expressed as uTh and those of the computed beam uopt. One
can see that until 5e− 5[N], the error remains under 5% which seems still quite accurate.
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Force [N] uopt uTh Relative error [%]
1e-5 0.04635 0.04634 0.0245
2e-5 0.09265 0.09269 0.0395
3e-5 0.13967 0.13904 0.4514
4e-5 0.18834 0.18539 1.5920
5e-5 0.24013 0.23173 3.6232
6e-5 0.30053 0.27808 8.0709
7e-5 0.89012 0.32443 174.362

Table 4.4: Comparison between prescribed behaviour and obtained one.

Displacement [m]
0 0.1 0.2 0.3 0.4

F
o
rc
e
[N

]

×10
-5

0

1

2

3

4

5

6

7

Optimized curve

Imposed points

Figure 4.14: Force/Displacement curve for the sub-optimal beam problem with new mesh.
F = 0.8× ktopx in black dotted line.

4.4.2 Radius filter

After several trials, it seems that changing the radius filter can have an important impact.
Unlike the first mesh, with the new one, if the radius is increased, it converges and the
resulting layout is different. This one is drawn in Fig. 4.15.

Figure 4.15: Converged layout with rmin = 4.
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The error is equal to 3.3e − 3% which is the same order as with a smaller filter.
However, after a FEM analysis, the structure is more stable and does not brake until
1e − 4[N]. It is shown in its force displacement curve in Fig. 4.16. If the displacements
are compared to the one of the prescribed curve, it comes that the mean error is about
1.73% while the maximum one is equal to 4.5%. This model seems robust and it will
be interesting to deepen the study with. However, it shows how much the result can be
sensitive to a parameter.

Displacement [m]
0 0.1 0.2 0.3 0.4 0.5

F
o
rc
e
[N

]

×10
-4

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.16: Force/Displacement curve for the sub-optimal beam problem with rmin = 4.
F = 0.8× ktopx in black dotted line.

4.5 Error form

As mentioned, the error can take several forms. The first one chosen was the euclidean
norm since it is a widely used and because a special formulation is proposed. However,
MMA is also optimized for other errors. It is interesting to see if these errors have an impact
on the converged layout. Also, the comparison between the error and the relative error
has been made and leads to the same result thus, the relative errors are chosen here.

4.5.1 L1 norm

For this error, presented in Eq. 4.5, the parameters of MMA change compare to the euclidean
norm. The parameters become:

aj = 0 j = 1...m

dj = 0 j = 1...m

ck = 1 k = 1...2p

cj = big j = 1...q

Using this norm, the shape changes a little as it is shown below (Fig. 4.17). The
relative error is equal to 1.3e− 5% which represents an improvement. The relative error
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can be computed all along the force/displacement curve plotted in Fig. 4.18. Then, the
average of these values can be computed. It comes that the mean relative error is about
1.25% and no error exceeds 2.6%.

Figure 4.17: Converged layout with L1 norm.
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Figure 4.18: Force/Displacement curve for the sub-optimal beam problem with L1 norm.
F = 0.8× ktopx in black dotted line.

4.5.2 L∞ norm

For this error, presented in Eq. 4.4, the parameters of MMA change again compare to the
others. These parameters are:

ak = 1 j = 1...2p

a2p+j = 0 j = 1...q

dj = 0 j = 1...m

cj = big j = 1...m

The identical process is used for this error type. It leads to an error about 1.7e− 5%.
From the FEM analysis, the force/displacement curve is found and this one is represented
in Fig. 4.20. Using those points, the mean error comparing to the prescribed behaviour
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can be computed. It comes that the mean error is about 1.6% and the maximum one is
equal to 3.4%.

Figure 4.19: Converged layout with L∞ norm.
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Figure 4.20: Force/Displacement curve for the sub-optimal beam problem with L∞ norm.
F = 0.8× ktopx in black dotted line.

The exact values of the point A and B for each type of error have been saved and
are shown in Tab. 4.5. It allows to end the comparison between all the types. For each
error, the resulting error are very small. However, according to these values, the euclidean
norm seems to be the less accurate. The square norm decreases a lot with such a small
differences. Then, the two other norms are very close on these two points. Thus, from
the other points computed by a FEM analysis, the mean error and the max one were
smaller for the L1 norm. It leads to use this error type for the other simulations. From
a geometric point of view, the euclidean layout seems to be the smoothest but they are
all very similar. The main difference is about the wavy bar in the middle of the structure
that presents a more pronounced peak for the L1 and the L∞.
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Error type ua Relative error [%] ub Relative error [%]
Euclidean 0.050000085604 1.7e− 4 0.1000002822 2.8e− 4

L1 0.049999999618 7.6e− 7 0.0999999988 1.2e− 6
L∞ 0.049999999166 1.6e− 6 0.0999999994 6e− 7

Table 4.5: Comparison between different error types.

4.6 Extreme linear behaviour

After proving that the model can handle a slight decrease of the stiffness. It is possible
to try to reach the limit of the code by decreasing more the stiffness. It has been noticed
that this type of simulation takes more time to converge. As a solution, the Heaviside
continuation can be sped up, going from 1.5 to 2. As an example, 0.3 × ktop is chosen,
the two imposed points are presented in Tab. 4.6. The forces used for this optimization
are very small because these are chosen to give feasible displacements. The same mesh is
used and the filter radius is equal to 3.

Point Force [N] Displacement [m]
A 4.04e− 6 0.05
B 8.09e− 6 0.1

Table 4.6: Imposed points for 0.3× ktop.

The optimization leads to an error about 1.16e − 6% and the layout is presented in
Fig. 4.21. The volume ratio stabilizes near 0.48. The layout seems very weak but it is
the idea of such a design. Indeed, it is an envelop only, there is any bar that can stiffen
the structure inside.

Figure 4.21: Converged layout for 0.3× ktop.

One can see that the force/displacement curve remains in the right behaviour until
0.18[m]. After that, the structure breaks and the displacement increases fast.
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Figure 4.22: Force/Displacement curve for the linear limit problem. F = 0.3 × ktopx in
black dotted line.

It is the limit of this optimization, when one try to get a structure even weaker, the
convergence is hard to reach and the structure has no sense, presenting some separated
parts which is not the purpose of the optimization. As an example, the 0.2× ktop case is
shown in Fig. 4.23. A solution to reach this behaviour could be to iterate the objective
function. It means starting from an almost converged layout about 30% and then try the
20%.

Figure 4.23: Converged layout for 0.2× ktop.

4.7 Nonlinear behaviour

Since the linear cases performed well under a certain limit, some nonlinear functions can
be imposed. The first nonlinear behaviour are the polynomials function as F = kxn. The
choice of the points is important but there is no real reference for this kind of behaviour.
The only way to find the best point is by trials and errors method. As for the extreme
linear behaviour, the filter radius is set to 3 and the continuation methods are the same.

Since it is an often cited example (J.P. Noël and G. Kerschen, 2018 [3]), the cubic
behaviour is chosen. The problem when the exponent increases is that the slope at the
first points is tiny. The bigger the exponent, the smaller the slope. The induced problem
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is that the tangent matrix tends to be null which can lead to a convergence problem. To
avoid this problem, two ideas have been tried. First, the k factor can be increased. Then,
one can add a linear part to the behaviour as F = kLx + kNLx

n. The combination of
the two can be interesting as well. From the previous section, the optimization reaches a
limit around 0.3× ktop. Thus, this limit is used as the linear part.

4.7.1 Pure nonlinear behaviour

First, a pure nonlinear behaviour can be imposed. By pure, it means that there will not be
any linear part, i.e. F = kxn. With the formulation, the cubic exponent never converges
when the parameters change. However, to try this formulation, the exponent has been
decreased to a square case. The imposed points are (0.05, 0.337e−5) and (0.1, 1.349e−5).
Doing so, with the factor k equal to 5× ktop, the solver converges. It leads to the layout
plotted in Fig. 4.24 and the error is about 5.4e− 7%.

Figure 4.24: Converged layout for 5× ktopx2.
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Figure 4.25: Force/Displacement curve for the pure nonlinear problem. F = 5× ktopx2 in
black dotted line.

When the FEM analysis is done, the force displacement curve can be computed, it is
shown in Fig. 4.25. One can see that this resulting curve passes through the points by
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two lines. The first point acts like an flexion point. Obviously, after the second point, the
slope does not change and the curve moves away from its reference behaviour (in black
dotted line).

This optimization is possible from a factor equal to 3, i.e. k = 3 × ktop. Under, the
layout can converge but lead to bad results. If there is a lower limit, there is also an upper
one. Indeed, if the factor goes too high, one imposed point could present a better stiffness
than the optimal stiffness behaviour. In this condition, the point would be unreachable
and the solver will not converge. For the chosen points and behaviour, this limit arrives
at a factor 10.

4.7.2 Mixed behaviour

The pure nonlinear optimization has shown interesting results but it cannot optimize
the layout for a cubic form. Thus, another formulation can be tested to get a more
general program. A way to do that is to add a linear part on the expression, i.e. F =
kLx + kNLx

n. Since the purpose is to have a nonlinear behaviour, the linear proportion
has to be minimized. The first point is to use the less linear part as possible. From the
previous section, one knows that the code reaches its limit for 0.3 × ktop which seems
a good value. The other point is to increase the nonlinear part with kNL. Indeed, if
kNL = ktop, the nonlinear part will represent maximum 3.5% of the behaviour. From
the previous result, it seems that 5 × ktop is good. The optimized layout is plotted in
Fig. 4.26. In this configuration, the nonlinear part is about 14.5% on the last imposed
point. As mentioned, this type of optimization is not easy and it can be seen that some
intermediate elements are still remaining. In addition of that, some almost solid elements
are in void area which is a numerical error. In order to get a more machinable design,
a simple post processing is applied, i.e. a cut off. It means that the element under a
threshold density are decreased to 0. For this case, the threshold density is set to 0.9.
It has not been used before because the optimization made until here were well defined.
The new design is represented in Fig. 4.27.

Figure 4.26: Converged layout for 0.3× ktopx+ 5× ktopx3 without cut off.
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Figure 4.27: Converged layout for 0.3× ktopx+ 5× ktopx3 with cut off.

The final error on the two points is about 5e−8%, once again, it is very small. A FEM
analysis is performed on the resulting layout. Its force/displacement curve is illustrated
in Fig. 4.28. The general shape of this curve is interesting, it shows a real stiffening of
the structure. However, the prescribed curve separates from the prescribed behaviour (in
black dotted line) and at a force of 1e − 4[N]. It presents an error about 20%. It seems
big but it is far from the last prescribed point thus it is reasonable.
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Figure 4.28: Force/Displacement curve for the mixed behaviour problem. F = 0.3 ×
ktopx+ 5× ktopx3 in black dotted line.

After other simulations, it shows that these conditions are especially good. Indeed,
for the other simulations, the results are not that good. It leads to the conclusion that
the code gives interesting results in general. However, a good combination of parameters
allow the result to be even better. However, this set of parameters is not direct and need
some trials to be found.

As an example, for the factor kNL = 10× ktop, the layout and the force/displacement
curve related are represented in Fig. 4.29 and 4.30. These figures are more general
and reflect the majority of the obtained results. In particular, the two points matched
quite accurately but directly after the second one, the curve comes off the target behaviour
(black dotted line). After that, the behaviour seems quite linear like for the pure nonlinear
formulation.
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Figure 4.29: Converged layout for 0.3× ktopx+ 10× ktopx3.
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Figure 4.30: Force/Displacement curve for the mixed behaviour problem. F = 0.3 ×
ktopx+ 10× ktopx3 in black dotted line.

4.8 Adding a new point

Lastly, some fast attempts have been made with the addition of a new point. Indeed, two
points are enough to see the shape of a behaviour but the more points, the more accurate
the method is. Therefore for nonlinear case, it will be useful to add many points. The
first step is to try with only one added point for both method and see how it reacts. The
added point is related to a displacement about 0.15[m]

4.8.1 Pure nonlinear

In order to have a point of comparison, the same function as in the previous section is
taken, i.e. F = 5 × ktopx2. The results are illustrated in Fig. 4.31 and 4.32. The error
related is about 1.54% which is bigger compared to the errors obtained before. It may be
due to the fact that three points are harder to match that only two. On the layout, it seems
to add some bars but the general shape is similar. However, on the force/displacement
curve the last point is close but there is no matching. After this point, the curve directly
changes its curvature.
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Figure 4.31: Converged layout for 5× ktopx2 with 3 imposed points.
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Figure 4.32: Force/Displacement curve for the pure nonlinear behaviour problem with 3
points. F = 5× ktopx2 in black dotted line.

4.8.2 Mixed behaviour

The expression that gave general results is used, i.e. F = 0.3× ktopx + 10× ktopx3. The
layout is represented in Fig. 4.33 and as for the pure linear behaviour, the added point
seems to add some bars on the structure. Unlike the pure behaviour, the force/displace-
ment curve plotted in 4.34 is better and the behaviour keeps a close behaviour even with
the last point. The error related is about 0.43% which is also big. It can be noted that
the layout in Fig. 4.27 has not been found with the added point.
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Figure 4.33: Converged layout for 0.3× ktopx+ 10× ktopx3 with 3 imposed points.
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Figure 4.34: Force/Displacement curve for the mixed behaviour problem with 3 points.
F = 0.3× ktopx+ 10× ktopx3 in black dotted line.

4.9 Conclusion

The prescribed curve optimization has been investigated. First, the problem has been
stated in the form of an error minimization. To solve it, MMA can be used as usual. However,
some special formulations of this solver allow to optimize its use for error problems. To
assess the method, the linear optimized beam has been imposed by two points. The two
formulations lead to satisfactory result and validate the problem statement. The next step
was to impose a proportion of this behaviour. The first was 80%. In this condition, the
special formulation of MMA has proven its interest and converges unlike the classical one.
Then, the different types of norm have been studied on the same case, the results were
similar but the L1 norm shows small advantages. The linear behaviour has a limit for 30%
of the reference. Under this limit, the layout does not converge. After, the nonlinear case
is tested. The problem is that the polynomial functions tend to have a tiny slope on the
first point. This issue leads to a null matrix and thus unconvergence of the process. Two
methods have been tried to solve this issue. First, by increasing the stiffness number of
the behaviour, which works but leads to an approximation of the behaviour by lines. The
second idea is to add a minimum linear part to stabilize the problem. This method has
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shown interesting result for the cubic spring with a pronounced nonlinear behaviour even
after the imposed points. Nevertheless, the general result is not as good as this exception
and a linear behaviour is observed after the last imposed point. Finally, some tests have
been made with a third imposed point. It shows that the problem is more complex and
the error resulting is bigger. However, for the mixed behaviour, the curve fits more the
target behaviour even after the last point.
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Chapter 5

Conclusion

The first purpose of this thesis was to extend an existing topology optimization model
for prescribed force/displacement curve from 2D to 3D. Given the fact that any model
was directly available, it has been chosen to restart from the beginning. It means that
a new model of topology optimization has to be developed to impose force/displacement
curve. The main goal of such optimization is that the resulting device could be used as
a nonlinear spring in a vibration absorber. This goal could be achieved by two objective
steps. The first one is to build a nonlinear topology optimization model. The second is
to implement the prescribed problem to the model.

The first chapter has reviewed the types and modeling of the nonlinear vibrations. The
main theory about the absorbers has been explained for the nonlinear case. To design
this device, a nonlinear optimization model is needed. This is the objective of the second
chapter. The first attempts were good but a convergence issue remained, i.e. mesh dis-
tortion. To solve that, the energy interpolation has been used and has shown promising
results. However, the distortion is still present but controlled and if the displacement is
really too big, mesh intersections can still happen. The simulations on the cantilever and
the doubly clamped beams validate the model built. However, the doubly clamped beam
reminds that the user should be careful with the parameters choice and always verify the
converged layout. The performance of the code has shown that the nonlinear model is
almost 70 times slower than the linear one. This model is used to impose some prescribed
force/displacement curves. The linear case has been imposed with success but the opti-
mizer can not go under 30% of the stiffest beam. Finally, the nonlinear case is imposed.
A pure nonlinear behaviour does not give convenient results above the square. However,
with the addition of a linear part, the problem is more stable and gives interesting re-
sults. A third point is imposed to see the behaviour. The resulting errors are bigger but
especially for the mixed behaviour, the curve is better fitted.

In general, the results are promising, indeed, linear behaviour can be imposed until
the limit. For the nonlinear behaviour, a linear part is needed but some stiffening devices
have been designed. In each simulation, the user has to be careful with the parameters.
There is no miracle formulation, a trial and error process will always be needed. Even if
these results are interesting, it can be improved by several ways.

During all the prescribed curve optimization, the cantilever beam has been investi-
gated. Due to the high computational requirements of these simulations, it was decided
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to focus on one case. Bad results are obtained when testing the doubly clamped beam.
This case is more sensitive and could highlight some weak points of the formulation. In-
deed, during all the simulation, the load controlled procedure has been used and does not
present an issue for the cantilever. The displacement controlled procedure has not been
investigated and could be a first improvement of this thesis since it could be more stable
(N.-H. Kim, [1], 2015). The Arc-length method is also mentioned sometimes and could
solve this problem and take advantage of the doubly clamped domain.

The problem of the doubly clamped beam can be due to the used model. Indeed, there
is a lot of compression in the center of the beam and the St-Venant Kirchhoff model is
known to misbehave in compression. It does not seem a priority since the end-compliance
problem was well solved with this model but the prescribed curve problem is more com-
plex. Maybe a modified St-Venant Kirchhoff model or a Neo-Hookean one could solve
this problem.

The error formulation has given all these results but the formulation can be asked.
As an example, instead of some passage points, one can impose the slopes between the
points or a combination of the two.

For the future, some ideas could be investigated. Obviously, the 3D generalization is
still one and could allow to test in reality the obtained design.

Vibrations are always symmetric but in this work, a special focus was made on a single
prescribed curve. Enforcing a symmetry condition could be another step in the realiza-
tion of a real absorber. This could be done by applying a counter force but the problem
formulation may not be optimized.

The main issue of nonlinear optimization has been well taken in charge by the energy
interpolation method. As mentioned, this method is not perfect and the distortion is more
controlled than avoided. Another way to solve this problem is the ECP method (Yoon et
al., 2005, [30]). It can be an interesting way to change the model. The basic code was
based on the SIMP method and the ECP method has been tested too late to give results.
However, an ECP process could be derived from the SIMP version.

Another important aspect could be more related to the code itself. Indeed, the com-
putational time is a huge problem and would become even more important in 3D. To
improve this, the parallel implementation could be more explored, even if MATLAB is
not the best environment for that. Another way to reduce the time could be the imple-
mentation of a reduction method for nonlinear FEM.
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Appendix A

Computer

All the simulations have been computed on my personal computer. Thus it is important
to specify its important features. This is the Acer Aspire V 15 Nitro.

Operating system Windows 10
Intel Core i5-6200UProcessor 2.3GHz
DDR4Memory 8 GB
1 TB HDDStorage 128 GB SSD

Table A.1: Features of the computer used for simulations.
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Appendix B

MMA

The classical optimization problem described by Svanberg (1998, [23]) for the MMA, in its
more general expression takes form as:

min f0(x) + a0z +
m∑
i=1

(ciyi +
1

2
diy

2
i )

s.t. fi(x)− aiz − yi ≤ 0 i = 1, ...,m

xj,min ≤ xj ≤ xj,max j = 1, ..., n

yi ≥ 0 i = 1, ...,m

z ≥ 0

where fi are real functions, continuous and differentiable, xj,min and xj,max are real num-
bers and ai, ci, di are real non negative numbers.
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Appendix C

MATLAB codes

C.1 Compliance optimization

1 %%%% Topology Optimization Codes for Geometrical Non-linearty %%%%
2 %%%% Liege 2018 %%%%
3 clear;clc;
4

5 %% Input parameters
6 beam = 2;
7

8 if beam ==1
9 nelx = 80;

10 nely = 20;%element numbers 80/20
11 a = 1;
12 b = 0.25;
13 h = 0.1; % long beam size (m)
14 volfrac = 0.5;
15 elseif beam == 2
16 %nelx = 120;
17 nelx = 60;
18 nely = 40;
19 %a = 3;
20 a = 1.5;
21 b = 1;
22 h = 0.1; % long beam size (m)
23 volfrac = 0.10;
24 elseif beam == 3
25 nelx = 50;
26 nely = 50;%element numbers
27 a = 1;
28 b = 1;
29 h = 0.1; % long beam size (m)
30 volfrac = 0.4;
31 end
32

33

34 penal = 3.;
35 if beam == 1
36 P = 2.;
37 detaP = 0.1;
38 else
39 P = 1.;
40 detaP = 0.1;
41 end
42 % contuation method
43 if beam == 1
44 rmin = round(nely*3/20); %radius: numbers of elements surround
45 else
46 rmin = round(nely*4/40);
47 end
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48 ft = 3; % filter
49 plane = 2; % plane stress condition
50

51 Total_elem = nely*nelx;
52 Total_node = (nely+1)*(nelx+1);
53 Total_dofs = 2*Total_node;
54

55 lambda = 5;
56 load = -lambda*1e-5; % Load(N)
57 stepsIni = round(lambda); % Load step
58 stop = 1e-3; % Convergence criterion
59

60 %% Young Modulus (Pa)
61 E0 = 1; %3e9;
62 Emin = 1e-9*E0;
63 nu = 0.4;
64

65 %% PREPARE FINITE ELEMENT ANALYSIS
66 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
67 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
68 edofMat = repmat(edofVec,1,8)+...
69 repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
70 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
71 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
72

73 %% node coordinates
74 detaxx = linspace(0,a,nelx+1); % x>0
75 detayy = -linspace(0,b,nely+1); % y<0
76

77 [coordinates, nodes,nel,nnode] = MeshBeam2D(a,b,nelx,nely);
78 xx = coordinates(:,1);
79 yy = coordinates(:,2); %% OFFSET y>0 %%
80

81 %% element size
82 aa = detaxx(2);
83 bb = detayy(2);
84

85 %% DEFINE LOADS AND SUPPORTS (LONG BEAM)
86 if beam ==1
87 F = sparse(2*(nely+1)*(nelx)+nely+2,1,load,2*(nely+1)*(nelx+1),1);
88 fixeddofs =[1:2*(nely+1)];
89 xinit = volfrac;
90 posF = 2*(nely+1)*nelx+nely+2;
91 elseif beam == 2
92 % F = sparse(2*(nely+1)*(nelx/2)+2,1,load,2*(nely+1)*(nelx+1),1);
93 % fixeddofs = union([1:2*(nely+1)], 2*(nelx)*(nely+1)+1:2*(nelx+1)*(nely+1));
94 % xinit = min(1., volfrac);
95 % posF = 2*(nely+1)*(nelx/2)+2;
96 F = sparse(2*(nely+1)*(nelx)+2,1,load,2*(nely+1)*(nelx+1),1);
97 fixeddofs = union([1:2*(nely+1)],...
98 2*(nelx)*(nely+1)+1:2:2*(nelx+1)*(nely+1)-1);
99 xinit = min(1., volfrac);

100 posF = 2*(nely+1)*(nelx)+2;
101 elseif beam == 3
102 posF1 = nelx+1;
103 F = sparse(posF1,1,-load,2*(nely+1)*(nelx+1),1);
104 posF = 2*(nely+1)*(nelx+1)-nelx-1;
105 %F(posF) = load;
106 fixeddofs = union(1:1:4, 2*(nely+1):-1:2*(nely+1)-3);
107 xinit = volfrac;
108 Kspring = sparse(Total_dofs,Total_dofs);
109 Kspring(posF, posF) = Kspring(posF, posF) +0.1;
110 Kspring(posF1, posF1) = Kspring(posF1, posF1) + 0.1;
111 elseif beam ==4
112 posF = 2*(nely+1)*nelx+nely+1;
113 F = sparse(posF,1,load,2*(nely+1)*(nelx+1),1);
114 fixeddofs =[1:2*(nely+1)];
115 xinit = volfrac;
116 PerimLimit = 1;
117 end
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118

119 U = zeros(2*(nely+1)*(nelx+1),min(size(F)));
120 alldofs = [1:2*(nely+1)*(nelx+1)];
121 freedofs = setdiff(alldofs,fixeddofs);
122

123 %% PREPARE FILTER
124 [dy,dx] = meshgrid(-ceil(rmin)+1:ceil(rmin)-1,-ceil(rmin)+1:ceil(rmin)-1);
125 H = max(0,rmin-sqrt(dx.^2+dy.^2));
126 Hs = conv2(ones(nely,nelx),H,'same');
127 beta1 = 500;
128 rho0 = 0.01;
129

130 %% INITIALIZE ITERATION
131

132 x = repmat(xinit,nely,nelx); %volfrac or 1. to stiffen
133

134 if beam == 1
135 beta = 1;
136 else
137 beta = 1;
138 end
139 omega = 0.5;
140 if ft == 1 || ft == 2
141 xPhys = x;
142 elseif ft == 3
143 xTilde = x;
144 xPhys = (tanh(beta*omega) + tanh(beta*(xTilde - omega)))...
145 /(tanh(beta*omega) + tanh(beta*(1 - omega)));
146 end
147

148 loop = 0;
149 loopbeta = 0;
150 change = 1;
151

152 %% Iinitiation of MMA
153 % m = The number of general constraints.
154 % n = The number of variables x_j.
155 m = 1;
156 if beam == 4
157 m = 2;
158 end
159 n = nelx*nely;
160

161 onen = ones(n,1);
162 onem = ones(m,1);
163 zeron = zeros(n,1);
164 zerom = zeros(m,1);
165 % a = Column vector with the constants a_i in the terms a_i*z.
166 % c = Column vector with the constants c_i in the terms c_i*y_i.
167 % d = Column vector with the constants d_i in the terms
168 a_mma = zerom;
169 c_mma = 10000*onem;
170 d_mma = zerom;
171 a0 = 1;
172

173 xval = x(:);
174 xold1 = xval;
175 xold2 = xold1;
176

177 iCont = 1;
178 ifint = edofMat';
179 ifint = ifint(:);
180

181 %bounds for design variables
182 move = 0.2;
183 alpha = move*onen; % For move limits
184

185 l = zeros(2*(nelx+1)*(nely+1),1);
186 l(posF) = 1;
187 %% START ITERATION
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188 if beam == 1
189 maxloop = 100;
190 addBeta = 1;
191 else
192 maxloop = 100;
193 addBeta = 2;
194 end
195 while change > 0.01 && loop < maxloop
196 tic % time start
197 loop = loop + 1;
198 loopbeta = loopbeta+1;
199 xe = reshape(xPhys,nely*nelx,1);
200 f = F/stepsIni; % step load
201

202 %%%%%%%%%%%%% Preallocation %%%%%%%%%%%%%
203 ue = zeros(8,1);
204 ke = cell(Total_elem,1);% cell
205 fint = cell(Total_elem,1);
206 detaU = zeros(2*(nely+1)*(nelx+1),1);
207 sK = zeros(64*Total_elem,1);
208 sfint = zeros(8*Total_elem,1);
209

210 %%%%%%%%%% Continuation scheme %%%%%%%%%%
211 if(iCont>5 && P<penal)
212 P = P + detaP;
213 iCont = 1;
214 fprintf('Penalty increased to %7.3f ', P);
215 elseif(iCont>2 && P<2)
216 P = P + detaP;
217 iCont = 1;
218 fprintf('Penalty increased to %7.3f ', P);
219 end
220 iCont = iCont+1;
221

222 gamma_e = (tanh(beta1*rho0) + tanh(beta1*(xe.^P - rho0)))...
223 /(tanh(beta1*rho0) + tanh(beta1*(1 - rho0)));
224 %gamma_e = onen;
225

226 if beam==2 && loop<2
227 steps = 2;
228 else
229 steps = stepsIni;
230 end
231

232 %% Geometrica Nonlinearity FE-ANALYSIS
233 for step=1:steps % Incremental step
234 Fext = f*step;% external nodal force
235 Rmax=abs(load);
236 iter=0;
237

238 while (Rmax/abs(load)>stop)
239 iter=iter+1;
240 % Start Parpool:
241 poolobj = gcp('nocreate'); % If no pool, do not create new one.
242 if isempty(poolobj)
243 parpool
244 end
245 % Using Parfor
246 parfor ele=1:Total_elem%element number
247 [ke{ele},fint{ele}] = CalKFint(ele,edofMat,xx,yy,aa,bb,...
248 h,U(:,1),nely,nu,gamma_e(ele), xe(ele));
249 end
250

251 for ele=1:Total_elem
252 edof = edofMat(ele,:); % Element dofs
253 % SIMP
254 sK((ele-1)*64+1:(ele)*64) = ke{ele}*...
255 (Emin+xe(ele)^P*(E0-Emin));
256 sfint((ele-1)*8+1:(ele)*8) = fint{ele}*...
257 (Emin+xe(ele)^P*(E0-Emin));
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258 end
259

260 K = sparse(iK,jK,sK); % global stiffness matrix
261 Fint = sparse(ifint,ones(8*Total_elem,1),sfint);
262 R = Fext(:,1)-Fint;
263 if beam == 3
264 %R = R + Kspring * U;
265 K = K + Kspring;
266 end
267 %% Newton Raphson Algorithm
268 detaU(freedofs) = K(freedofs,freedofs)\R(freedofs);
269 U(:,1) = U(:,1)+detaU;
270 Rmax = max(abs(R(freedofs)));
271 blabla(iter) = Rmax;
272 end
273

274 end
275 Residu(loop) = Rmax;
276

277

278 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
279 c = abs(l'*U);% end-compliance
280 cVec(loop) = c;
281

282 %% Ajoint method
283 L = zeros(2*(nely+1)*(nelx+1),1);
284 L(freedofs) = K(freedofs,freedofs)\(sign(load)*l(freedofs));
285 dc = zeros(nely*nelx,1);
286

287 for ele=1:Total_elem
288 edof = edofMat(ele,:);
289 le = L(edof);
290 dc(ele) = -P*(E0-Emin)*xe(ele)^(P-1)*le'*fint{ele};
291 end
292

293 if beam == 3
294 dc = -dc;
295 end
296 dc = reshape(dc,nely,nelx);
297 dv = ones(nely,nelx);
298

299 %% FILTERING/MODIFICATION OF SENSITIVITIES
300 if ft == 1
301 dc = conv2(dc.*xPhys,H,'same')./Hs./max(1e-3,xPhys);
302 elseif ft == 2
303 dc(:) = conv2(dc./Hs,H,'same');
304 dv(:) = conv2(dv./Hs,H,'same');
305 elseif ft == 3
306 dx = beta * (sech(beta*(xTilde - omega))).^2/...
307 (tanh(beta*omega) + tanh(beta*(1 - omega)));
308 dc(:) = conv2(dc.*dx./Hs,H,'same');
309 dv(:) = conv2(dv.*dx./Hs,H,'same');
310 end
311

312 %% MMA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
313

314 % Move limit strategy
315

316 xmin = max(zeron, xval-alpha);
317 xmax = min(onen, xval+alpha);
318 low = xmin;
319 upp = xmax;
320

321 % Objectif
322 f0val = c;
323 df0dx = dc(:);
324 df0dx2 = 0*df0dx;
325 % Constraint
326 fval = (sum(xPhys(:)))/ volfrac/(nelx*nely)-1; % column vector
327 dfdx = dv(:)'/ volfrac/(nelx*nely) ;
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328 dfdx2 = 0*dfdx;
329

330 %%%% The MMA subproblem is solved at the point xval:
331 [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ...
332 mmasub(m,n,loop,xval,xmin,xmax,xold1,xold2, ...
333 f0val,df0dx,df0dx2,fval,dfdx,dfdx2,low,upp,a0,a_mma,c_mma,d_mma);
334 %%%% Some vectors are updated:
335 xold2 = xold1;
336 xold1 = xval;
337 xval = xmma;
338 xnew = reshape(xval, nely, nelx);
339

340 if ft == 1
341 xPhys = xnew;
342 elseif ft == 2
343 xPhys(:) = conv2(xnew,H,'same')./Hs;
344 elseif ft == 3
345 xTilde(:) = conv2(xnew,H,'same')./Hs;
346 xPhys = (tanh(beta*omega) + tanh(beta*(xTilde - omega)))...
347 /(tanh(beta*omega) + tanh(beta*(1 - omega)));
348 end
349

350 change = max(abs(xnew(:)-x(:)));
351 x = xnew;
352 t = toc;% time finish
353

354 %% PRINT RESULTS
355 fprintf('It.:%4i Obj.:%8.4f Vol.:%1.3f ch.:%1.3f sec.:%3.3f\n',loop,c,...
356 (sum(xPhys(:)))/(nelx*nely),change,t);
357 VolVec(loop) = mean(xPhys(:));
358 %% PLOT DENSITIES
359 %[map] = brewermap(9,'*Blues');
360 colormap(gray); imagesc(1-xPhys); caxis([0 1]);
361 axis equal; axis off; drawnow;
362 Ulast(loop,:) = U;
363 if ft == 3 && beta < 100 && (loopbeta >= 10)
364 if beam == 1 && beta < 6
365 beta = beta+1;
366 else
367 beta = beta+2;
368 end
369 loopbeta = 0;
370 change = 1;
371 fprintf('Parameter beta increased to %g.\n',beta);
372 end
373

374 end
375

376 %%
377

378 if beam == 2
379 xPhys2 = fliplr(xPhys);
380 colormap(gray); imagesc(1-[xPhys, xPhys2]); caxis([0 1]);
381 axis equal; axis off; drawnow;
382 end
383

384 for ely=1:nely
385 for elx=1:nelx
386 nn1=(nely+1)*(elx-1)+ely;
387 nn2=(nely+1)*elx+ely;
388 Ue= U([2*nn1-1;2*nn1;2*nn2-1;2*nn2;2*nn2+1;2*nn2+2;2*nn1+1;2*nn1+2],1);
389 xxx=[Ue(1)+xx(nn1),Ue(3)+xx(nn2),Ue(5)+xx(nn2+1),Ue(7)+xx(nn1+1)]';
390 yyy=[Ue(2)+yy(nn1),Ue(4)+yy(nn2),Ue(6)+yy(nn2+1),Ue(8)+yy(nn1+1)]';
391 patch(xxx,yyy,[1-xPhys(ely,elx) 1-xPhys(ely,elx) 1-xPhys(ely,elx)])
392 end
393 end
394 axis equal;
395 drawnow;

76



C.2 Prescribed curve

1 %%%% Topology Optimization Codes Prescribed Force/Displacement Curves %%%%
2 %%%% In Liege 2018 %%%%
3 clear;
4 clc;
5

6 %% Input parameters
7 beam = 1;
8

9 if beam ==1 % Cantilever beam
10 nelx = 120; % Element numbers
11 nely = 30;
12 a = 1; % Length of the beam (m)
13 b = 0.25; % Width
14 h = 0.1;
15 volfrac = 0.5; % Volume ratio
16 elseif beam == 2 % Doubly clamped beam
17 %nelx = 120;
18 nelx = 60; % Element numbers
19 nely = 40;
20 a = 3;
21 a = 1.5; % Length of the beam (m)
22 b = 1; % Width
23 h = 0.1;
24 volfrac = 0.10; % Volume ratio
25 end
26

27 penal = 3.; % Maximum penalty
28 if beam == 1
29 P = 2.; % Starting penalty
30 detaP = 0.1; % Penalty increment
31 else
32 P = 1.;
33 detaP = 0.1;
34 end
35

36 rmin = 4; % Radius filter
37 % Type of filter (1 = sensitivity, 2 = density, 3 = density + Heaviside)
38 ft = 3;
39 plane = 2;
40

41 Total_elem = nely*nelx;
42 Total_node = (nely+1)*(nelx+1);
43 Total_dofs = 2*Total_node;
44

45 if beam == 1
46 ktop = 2.697e-04; % Optimal stiffness number
47 else
48 ktop = 4.7619e-04;
49 end
50

51 % Exponent of the prescribed behaviour
52 poly = 3;
53 % Prescribed displacements and forces
54

55 uPresc = [-0.05 -0.075 -0.1];
56 numImp = length(uPresc); %Number of passage points
57 load = 0.3*ktop*uPresc + 5.*ktop*sign(min(uPresc))^(poly+1)*uPresc.^poly;
58

59 maxStep = 4; % Load step number
60 steps = sort([1:maxStep, load(1:end-1)/load(end)*maxStep]);% Add prescribed points
61 stop = 1e-3; % Convergence threshold
62

63 %% Young Modulus (Pa)
64 E0 = 1;
65 Emin = 1e-9*E0;
66 nu = 0.4;
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67

68 %% PREPARE FINITE ELEMENT ANALYSIS
69 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
70 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
71 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
72 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
73 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
74

75 %% NODE COORDINATES
76 detaxx = linspace(0,a,nelx+1); % x>0
77 detayy = -linspace(0,b,nely+1); % y<0
78

79 [coordinates, nodes,nel,nnode] = MeshBeam2D(a,b,nelx,nely);
80 xx = coordinates(:,1);
81 yy = coordinates(:,2);
82

83 %% ELEMENT SIZE
84 aa = detaxx(2);
85 bb = detayy(2);
86

87 %% DEFINE LOADS AND SUPPORTS (LONG BEAM)
88 if beam ==1
89 posF = 2*(nely+1)*nelx+nely+2;
90 F = sparse(posF,1,sign(load(1))*max(abs(load)),2*(nely+1)*(nelx+1),1);
91 fixeddofs =[1:2*(nely+1)];
92 elseif beam == 2
93 % posF = 2*(nely+1)*(nelx/2)+2;
94 % F = sparse(posF,1,sign(load(1))*max(abs(load)),2*(nely+1)*(nelx+1),1);
95 % fixeddofs = union([1:2*(nely+1)], 2*(nelx)*(nely+1)+1:2*(nelx+1)*(nely+1));
96 F = sparse(2*(nely+1)*(nelx)+2,1,sign(load(1))*max(abs(load)),2*(nely+1)*(nelx+1),1);
97 fixeddofs = union([1:2*(nely+1)], 2*(nelx)*(nely+1)+1:2:2*(nelx+1)*(nely+1)-1);
98 xinit = min(1., volfrac);
99 posF = 2*(nely+1)*(nelx)+2;

100 end
101

102 U = zeros(2*(nely+1)*(nelx+1),1);
103 alldofs = [1:2*(nely+1)*(nelx+1)];
104 freedofs = setdiff(alldofs,fixeddofs);
105

106 %% PREPARE FILTER
107 [dy,dx] = meshgrid(-ceil(rmin)+1:ceil(rmin)-1,-ceil(rmin)+1:ceil(rmin)-1);
108 H = max(0,rmin-sqrt(dx.^2+dy.^2));
109 Hs = conv2(ones(nely,nelx),H,'same');
110

111 % Parameters for interpolation energy method
112 beta1 = 500;
113 rho0 = 0.01;
114

115 %% INITIALIZE ITERATION
116 x = repmat(volfrac,nely,nelx);
117 % Parameters for Heaviside projection
118 beta = 1;
119 omega = 0.5;
120

121 if ft == 1 || ft == 2
122 xPhys = x;
123 elseif ft == 3
124 xTilde = x;
125 xPhys = (tanh(beta*omega) + tanh(beta*(xTilde - omega)))...
126 /(tanh(beta*omega) + tanh(beta*(1 - omega)));
127 end
128

129 loop = 0;
130 change = 1;
131

132 %% Position of prescribed displacement
133 l = zeros(2*(nelx+1)*(nely+1),1);
134 l(posF) = 1;
135 fImp = zeros(maxStep,1);
136
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137 %% Iinitiation of MMA
138 % m = The number of general constraints.
139 % n = The number of variables x_j.
140

141 m = 2*numImp+1;
142 n = nelx*nely;
143

144 onen = ones(n,1);
145 onem = ones(m,1);
146 zeron = zeros(n,1);
147 zerom = zeros(m,1);
148 % a = Column vector with the constants a_i
149 % c = Column vector with the constants c_i
150 % d = Column vector with the constants d_i
151 normType = 2; % Norm type (1 = Euclidean, 2 = L1, 3 = Min max)
152

153 if normType == 1
154 a_mma = zerom;
155 c_mma = zerom;
156 c_mma(m:end) = 10000;
157 d_mma = 2*onem;
158 d_mma(m:end) = 0;
159 a0 = 1;
160 elseif normType == 2
161 a_mma = zerom;
162 c_mma = onem;
163 c_mma(m:end) = 10000;
164 d_mma = zerom;
165 a0 = 1;
166 elseif normType == 3
167 a_mma = onem;
168 a_mma(m:end) = 0;
169 c_mma = onem*10000;
170 d_mma = zerom;
171 a0 = 1;
172 end
173

174 xval = x(:);
175 xold1 = xval;
176 xold2 = xold1;
177

178 iCont = 1;
179 ifint = edofMat';
180 ifint = ifint(:);
181

182 % Bounds for move limit
183 move = 0.2;
184 alpha = move*onen;
185

186 loopbeta = 0;
187

188 %% START ITERATION
189 while loop < 150
190 tic % Time start
191 loop = loop + 1;
192 loopbeta = loopbeta + 1;
193

194 xe = reshape(xPhys,nely*nelx,1);
195 f = F/maxStep; % Step load
196

197 % Preallocation
198 ue = zeros(8,1);
199 ke = cell(Total_elem,1); % Cell
200 fint = cell(Total_elem,1);
201 fintImp = cell(Total_elem,maxStep);
202 detaU = zeros(2*(nely+1)*(nelx+1),1);
203 sK = zeros(64*Total_elem,1);
204 sfint = zeros(8*Total_elem,1);
205

206 % Continuation scheme
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207 if(iCont>5 && P<penal)
208 P = P + detaP;
209 iCont = 1;
210 fprintf('Penalty increased to %7.3f ', P);
211 elseif(iCont>3 && P<2)
212 P = P + detaP;
213 iCont = 1;
214 fprintf('Penalty increased to %7.3f ', P);
215 end
216 iCont = iCont+1;
217

218 % Energy interpolation variable
219 gamma_e = (tanh(beta1*rho0) + tanh(beta1*(xe.^P - rho0)))...
220 /(tanh(beta1*rho0) + tanh(beta1*(1 - rho0)));
221

222 %% Ajoint method part 1
223 L1 = zeros(2*(nely+1)*(nelx+1),1);
224 L2 = zeros(2*(nely+1)*(nelx+1),1);
225 L3 = zeros(2*(nely+1)*(nelx+1),1);
226 dc = zeron;
227

228 %% Geometrica Nonlinearity FE-ANALYSIS
229 for iStep=1:length(steps) % Incremental step
230 Fext = f*steps(iStep); % External nodal force
231 Rmax=1;
232 iter=0;
233 while (Rmax/min(abs(load))>stop)
234 iter=iter+1;
235 % Start Parpool
236 poolobj = gcp('nocreate'); % Create new one if none.
237 if isempty(poolobj)
238 parpool
239 end
240 % Using Parfor
241 parfor ele=1:Total_elem % Element number
242 [ke{ele},fint{ele}] = CalKFint(ele,edofMat,xx,yy,aa,...
243 bb,h,U,nely,nu,gamma_e(ele),x(ele));
244 end
245

246 for ele=1:Total_elem
247 edof = edofMat(ele,:); % Element dofs
248 % SIMP
249 sK((ele-1)*64+1:(ele)*64) = ke{ele}*...
250 (Emin+xe(ele)^P*(E0-Emin));
251 sfint((ele-1)*8+1:(ele)*8) = fint{ele}*...
252 (Emin+xe(ele)^P*(E0-Emin));
253 end
254

255 K = sparse(iK,jK,sK); % Global stiffness matrix
256 Fint = sparse(ifint,ones(8*Total_elem,1),sfint);
257 R = Fext-Fint;
258 %% Newton Raphson Algorithm
259 detaU(freedofs) = K(freedofs,freedofs)\R(freedofs);
260 U = U+detaU;
261 Rmax = max(abs(R(freedofs)));
262 end
263 if steps(iStep)/steps(end) == load(1)/load(end)
264 U1 = U;
265 fint1 = fint;
266 K1 = K;
267 end
268 if steps(iStep)/steps(end) == load(2)/load(end)
269 U2 = U;
270 fint2 = fint;
271 K2 = K;
272 end
273 end
274 U3 = U;
275 fint3 = fint;
276 K3 = K;
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277

278 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
279

280 uResult(1) = l'*U1;
281 uResult(2) = l'*U2;
282 uResult(3) = l'*U3;
283

284 weight = 100;
285 hi = weight*(uResult - uPresc)./abs(uPresc);
286 % Compute the objective function unused in this formulation of MMA
287 c = sum(hi.^2);
288 cVec(loop) = c;
289

290 L1(freedofs) = K1(freedofs,freedofs)\l(freedofs);
291 L2(freedofs) = K2(freedofs,freedofs)\l(freedofs);
292 L3(freedofs) = K3(freedofs,freedofs)\l(freedofs);
293

294 %% Adjoint method
295 for ele=1:Total_elem
296 edof = edofMat(ele,:);
297 le1 = L1(edof,:);
298 le2 = L2(edof,:);
299 le3 = L3(edof,:);
300 dh(1,ele) = -weight/abs(uPresc(1))*P*(E0-Emin)*xe(ele)^(P-1)...
301 * (le1'*fint1{ele});
302 dh(2,ele) = -weight/abs(uPresc(2))*P*(E0-Emin)*xe(ele)^(P-1)...
303 * (le2'*fint2{ele});
304 dh(3,ele) = -weight/abs(uPresc(3))*P*(E0-Emin)*xe(ele)^(P-1)...
305 * (le3'*fint3{ele});
306

307 end
308

309 dv = ones(nely,nelx);
310

311 %% FILTERING/MODIFICATION OF SENSITIVITIES
312 if ft == 1
313 dc = conv2(dc.*xPhys,H,'same')./Hs./max(1e-3,xPhys);
314 elseif ft == 2
315 dv(:) = conv2(dv./Hs,H,'same');
316

317 elseif ft == 3
318 dx = beta * (sech(beta*(xTilde - omega))).^2/...
319 (tanh(beta*omega) + tanh(beta*(1 - omega)));
320 dh(1,:) = reshape(conv2(reshape(dh(1,:),nely,nelx).*dx...
321 ./Hs,H,'same'),1,nel);
322 dh(2,:) = reshape(conv2(reshape(dh(2,:),nely,nelx).*dx...
323 ./Hs,H,'same'),1,nel);
324 dh(3,:) = reshape(conv2(reshape(dh(3,:),nely,nelx).*dx...
325 ./Hs,H,'same'),1,nel);
326 dv(:) = conv2(dv.*dx./Hs,H,'same');
327 end
328

329 %% MMA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
330

331 % column vector
332 % Move limit strategy
333 xmin = max(zeron, xval-alpha);
334 xmax = min(onen, xval+alpha);
335 low = xmin;
336 upp = xmax;
337

338 % Objection
339 f0val = 0;
340 df0dx = dc(:)*0;
341 df0dx2 = 0*df0dx;
342

343 % Constraints
344 fval = [hi'; -hi'; (sum(xPhys(:)))/ volfrac/(nelx*nely)- 1];
345 dfdx = [dh; -dh; dv(:)'/ volfrac/(nelx*nely)];
346 dfdx2 = 0*dfdx;
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347

348 %%%% The MMA subproblem is solved at the point xval:
349 [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ...
350 mmasub(m,n,loop,xval,xmin,xmax,xold1,xold2, ...
351 f0val,df0dx,df0dx2,fval,dfdx,dfdx2,low,upp,a0,a_mma,c_mma,d_mma);
352 %%%% Some vectors are updated:
353 xold2 = xold1;
354 xold1 = xval;
355 xval = xmma;
356 xnew = reshape(xval, nely, nelx);
357

358 if ft == 1
359 xPhys = xnew;
360 elseif ft == 2
361 xPhys(:) = conv2(xnew,H,'same')./Hs;
362 elseif ft == 3
363 xTilde(:) = conv2(xnew,H,'same')./Hs;
364 xPhys = (tanh(beta*omega) + tanh(beta*(xTilde - omega)))...
365 /(tanh(beta*omega) + tanh(beta*(1 - omega)));
366 end
367

368 change = max(abs(xnew(:)-x(:)));
369 changeVec(loop) = change;
370

371 x = xnew;
372 t = toc; % Time finish
373 %% PRINT RESULTS
374 fprintf('It.:%4i Obj.:%8.4f Vol.:%1.3f ch.:%1.3f sec.:%3.3f\n',loop,c,...
375 (sum(xPhys(:)))/(nelx*nely),change,t);
376 VolVec(loop) = mean(xPhys(:));
377 %% PLOT DENSITIES
378

379 colormap(gray); imagesc(1-xPhys);
380 caxis([0 1]); axis equal; axis off; drawnow;
381 Ulast(loop,:) = U;
382

383 if loop <60
384 maxLoopBeta = 10;
385 else
386 maxLoopBeta = 10;
387 end
388 if ft == 3 && beta < 200 && (loopbeta >= maxLoopBeta)
389 if beta < 6
390 beta = beta+1;
391 elseif beam == 1 && beta > 5
392 beta = round(beta*2);
393 elseif beam == 2 && beta > 5
394 beta = beta +2;
395 end
396 loopbeta = 0;
397 change = 1;
398 fprintf('Parameter beta increased to %g.\n',beta);
399 end
400 end

C.3 Nonlinear FEM analysis

1 function [Uresult, Fresult, time, itInt, Ulast] = ...
2 Analysis(xPhys, a, b, h , nelx, nely, beam, P)
3 tic
4 nu = 0.4;
5 E0 = 1;
6 Emin = 1e-9;
7 Total_elem = nely*nelx;
8 Total_node = (nely+1)*(nelx+1);
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9 Total_dofs = 2*Total_node;
10

11 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
12 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
13 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
14 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
15 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
16

17 detaxx = linspace(0,a,nelx+1); % x>0
18 detayy = -linspace(0,b,nely+1); % y<0
19

20 [coordinates, nodes,nel,nnode] = MeshBeam2D(a,b,nelx,nely);
21 xx = coordinates(:,1);
22 yy = coordinates(:,2); %% OFFSET y>0 %%
23

24 %% element size
25 aa = detaxx(2);
26 bb = detayy(2);
27

28 lambda = 10;
29 load = -lambda*1e-5; %load (N)
30 steps = lambda*4; % load step numbers
31 stop = 1e-2; % convergence criterion
32

33 Total_elem = nely*nelx;
34 Total_node = (nely+1)*(nelx+1);
35 Total_dofs = 2*Total_node;
36

37 xe = reshape(xPhys,nely*nelx,1);
38

39 detaxx = linspace(0,a,nelx+1); % x>0
40 detayy = -linspace(0,b,nely+1); % y<0
41

42 [coordinates, nodes,nel,nnode] = MeshBeam2D(a,b,nelx,nely);
43 xx = coordinates(:,1);
44 yy = coordinates(:,2); %% OFFSET y>0 %%
45

46 %% element size
47 aa = detaxx(2);
48 bb = detayy(2);
49

50 %% DEFINE LOADS AND SUPPORTS (LONG BEAM)
51 if beam ==1
52 F = sparse(2*(nely+1)*(nelx)+nely+2,1,load,2*(nely+1)*(nelx+1),1);
53 fixeddofs =[1:2*(nely+1)];
54 posF = 2*(nely+1)*nelx+nely+2;
55 elseif beam == 2
56 % F = sparse(2*(nely+1)*(nelx/2)+2,1,load,2*(nely+1)*(nelx+1),1);
57 % fixeddofs = union([1:2*(nely+1)], 2*(nelx)*(nely+1)+1:2*(nelx+1)*(nely+1));
58 % posF = 2*(nely+1)*(nelx/2)+2;
59 F = sparse(2*(nely+1)*(nelx)+2,1,load,2*(nely+1)*(nelx+1),1);
60 fixeddofs = union([1:2*(nely+1)], 2*(nelx)*(nely+1)+1:2:2*(nelx+1)*(nely+1)-1);
61 posF = 2*(nely+1)*(nelx)+2;
62 end
63 f = F/steps; % step load
64 l = zeros(2*(nelx+1)*(nely+1),1);
65 l(posF) = 1;
66

67 U = zeros(2*(nely+1)*(nelx+1),min(size(F)));
68 alldofs = [1:2*(nely+1)*(nelx+1)];
69 freedofs = setdiff(alldofs,fixeddofs);
70

71 % Preallocation
72 ue = zeros(8,1);
73 ke = cell(Total_elem,1);% cell
74 fint = cell(Total_elem,1);
75 detaU = zeros(2*(nely+1)*(nelx+1),1);
76 sK = zeros(64*Total_elem,1);
77 sfint = zeros(8*Total_elem,1);
78
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79 ifint = edofMat';
80 ifint = ifint(:);
81

82 beta1 = 500;
83 rho0 = 0.01;
84 gamma_e = (tanh(beta1*rho0) + tanh(beta1*(xe.^P - rho0)))...
85 /(tanh(beta1*rho0) + tanh(beta1*(1 - rho0)));
86 %gamma_e = gamma_e*0;
87

88 U = zeros(Total_dofs,1);
89 Uresult = zeros(steps,1);
90 for step=1:steps % Incremental step
91 Fext = f*step;% external nodal force
92 Rmax=1;
93 iter=0;
94 itInt(step) = 0;
95 while (Rmax/abs(step/steps*load)>stop)
96 itInt(step) = itInt(step)+1;
97 iter=iter+1;
98 % Start Parpool:
99 poolobj = gcp('nocreate'); % If no pool, do not create new one.

100 if isempty(poolobj)
101 parpool
102 end
103 % Using Parfor
104 parfor ele=1:Total_elem %element number
105 [ke{ele},fint{ele}] = CalKFint(ele,edofMat,xx,yy,aa,...
106 bb,h,U,nely,nu,gamma_e(ele),xe(ele));
107 end
108

109 for ele=1:Total_elem
110 edof = edofMat(ele,:);% element dofs
111 % SIMP
112 sK((ele-1)*64+1:(ele)*64) = ke{ele}*(Emin+xe(ele)^P*(E0-Emin));
113 sfint((ele-1)*8+1:(ele)*8) = fint{ele}*(Emin+xe(ele)^P*(E0-Emin));
114 end
115

116 K = sparse(iK,jK,sK); % global stiffness matrix
117 Fint = sparse(ifint,ones(8*Total_elem,1),sfint);
118 R = Fext-Fint;
119 %% Newton Raphson Algorithm
120 detaU(freedofs) = K(freedofs,freedofs)\R(freedofs);
121 U = U+detaU;
122 Rmax = max(abs(R(freedofs)));
123 end
124 Uresult(step+1) = (l'*U);
125 Ulast(step,:) = U;
126 end
127 time = toc;
128 Uresult(1) = 0;
129 Fresult = 0:load/steps:load;
130 %%
131 figure
132 hold on
133 grid on;
134 ax = gca;
135 ax.GridLineStyle = '--';
136 plot(-Uresult, -Fresult, 'linewidth', 2)
137 %scatter(-Uresult(1:steps/10:end), -Fresult(1:steps/10:end)/1000,'filled')
138 xlabel('Displacement [m]','Interpreter','latex')
139 ylabel('Force [N]','Interpreter','latex')
140 set(gca,'fontsize',28,'fontname','Times','LineWidth',1.5);
141

142 % le=legend('Linear optimization','Uniform repartition');
143 % set(le,'Fontsize',24,'Location','Best');
144

145 %%
146

147 PlotMesh([xx, yy]+ [U(1:2:end), U(2:2:end)], nodes)
148 figure
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149 for ely=1:nely
150 for elx=1:nelx
151 nn1=(nely+1)*(elx-1)+ely;
152 nn2=(nely+1)*elx+ely;
153 Ue= U([2*nn1-1;2*nn1;2*nn2-1;2*nn2;2*nn2+1;2*nn2+2;2*nn1+1;2*nn1+2],1);
154 xxx=[Ue(1)+xx(nn1),Ue(3)+xx(nn2),Ue(5)+xx(nn2+1),Ue(7)+xx(nn1+1)]';
155 yyy=[Ue(2)+yy(nn1),Ue(4)+yy(nn2),Ue(6)+yy(nn2+1),Ue(8)+yy(nn1+1)]';
156 patch(xxx,yyy,[1-xPhys(ely,elx) 1-xPhys(ely,elx) 1-xPhys(ely,elx)])
157 end
158 end
159 axis equal;
160 drawnow;

C.4 Constitutive model

1 %% MATERIAL PROPERTIES
2 function [D]=C(nu)
3 % nu=0.4;
4 % if plane==1 % plane strain
5 % d=(Emin+xe(ele)^penal*(E0-Emin))/((1+nu)*(1-2*nu));
6 % D=d*[1-nu nu 0
7 % nu 1-nu 0
8 % 0 0 (1-2*nu)/2];
9 % elseif plane==2 % plane stress

10 d=1/(1-nu*nu); % unit elastic matrix
11 D=d*[ 1 nu 0
12 nu 1 0
13 0 0 (1-nu)/2];
14 % end
15 end

C.5 Computation stiffness element

1 function [ke,Int]=knonlinear(ele,xx,yy,D,aa,bb,h,ue,nely,gamma_e, x_e)
2 ke = zeros(8,8);
3 M = zeros(4,4);
4 ele_stress = zeros(3,1);
5 Int = zeros(8,1);
6 gauss_point = 1/sqrt(3);
7 Id2 = eye(2);
8

9 % point1
10 s = -gauss_point;
11 t = -gauss_point;
12 [B,~,ele_strain,G] = shape(s,t,ele,xx,yy,aa,bb,ue,nely,gamma_e);
13 ele_stress = D*ele_strain;
14 M = [ele_stress(1)*Id2 ele_stress(3)*Id2
15 ele_stress(3)*Id2 ele_stress(2)*Id2];
16 ke1 = B'*D*B + gamma_e * G'*M*G;
17 Int1 = B'*ele_stress;
18

19 % point2
20 s = gauss_point;
21 t = -gauss_point;
22 [B,~,ele_strain,G] = shape(s,t,ele,xx,yy,aa,bb,ue,nely,gamma_e);
23 ele_stress = D*ele_strain;
24 M = [ele_stress(1)*Id2 ele_stress(3)*Id2
25 ele_stress(3)*Id2 ele_stress(2)*Id2];
26 ke2 = B'*D*B + gamma_e * G'*M*G;
27 Int2 = B'*ele_stress;
28
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29 % point3
30 s = gauss_point;
31 t = gauss_point;
32 [B,~,ele_strain,G] = shape(s,t,ele,xx,yy,aa,bb,ue,nely,gamma_e);
33 ele_stress = D*ele_strain;
34 M = [ele_stress(1)*Id2 ele_stress(3)*Id2
35 ele_stress(3)*Id2 ele_stress(2)*Id2];
36 ke3 = B'*D*B + gamma_e * G'*M*G;
37 Int3 = B'*ele_stress;
38

39 % point4
40 s = -gauss_point;
41 t = gauss_point;
42 [B,detJ,ele_strain,G] = shape(s,t,ele,xx,yy,aa,bb,ue,nely,gamma_e);
43 ele_stress = D*ele_strain;
44 M = [ele_stress(1)*Id2 ele_stress(3)*Id2
45 ele_stress(3)*Id2 ele_stress(2)*Id2];
46 ke4 = B'*D*B + gamma_e * G'*M*G;
47 Int4 = B'*ele_stress;
48

49 % Integration
50 ke = h*detJ*(ke1+ke2+ke3+ke4);
51 Int = h*detJ*(Int1+Int2+Int3+Int4);
52 end

C.6 Computation stiffness matrix

1 %% element stiffness matrix and internal nodal force
2 function [ke,fint] = CalKFint(ele,edofMat,xx,yy,aa,bb,h,U,nely,nu,gamma_e, x_e)
3 edof = edofMat(ele,:);% element dofs
4 ue = U(edof);
5 [D] = C(nu);% unit elastic matrix
6 [ke, fint] = knonlinear(ele,xx,yy,D,aa,bb,h,ue,nely,gamma_e, x_e);
7 end

C.7 Shape function

1 %% shape function (Iso-parametric Q-4 element)
2 function [B,detJ,ele_strain,G,B0]=shape(s,t,ele,xx,yy,aa,bb,ue,nely,gamma_e)
3 B0 = zeros(3,8);
4 Bl = zeros(3,8);
5 B = zeros(3,8);
6 G = zeros(4,8);
7 A = zeros(3,4);
8 ele_strain = zeros(3,1);
9 Theta = zeros(4,1);

10 %% Interpolation function
11 % N=[(1-s)*(1-t),(1+s)*(1-t),(1+s)*(1+t),(1-s)*(1+t)]/4;
12 dNds = [t-1,1-t,1+t,-1-t]/4;
13 dNdt = [s-1,-1-s,1+s,1-s]/4;
14 %% element nodes coordinates
15 xxyy = zeros(4,2);
16 %%%%%%%%%%%%%%%%%%%%%%%%%%
17 node = ele+ceil(ele/nely)-1;
18 %%%%%%%%%%%%%%%%%%%%%%%%%%
19 xxyy(4,1) = xx(node);
20 xxyy(3,1) = xxyy(4,1)+aa;
21 xxyy(2,1) = xxyy(3,1);
22 xxyy(1,1) = xxyy(4,1);
23 xxyy(4,2) = yy(node);
24 xxyy(3,2) = xxyy(4,2);
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25 xxyy(2,2) = xxyy(3,2)+bb;
26 xxyy(1,2) = xxyy(2,2);
27 %% Jacobi matrix
28 % J=zeros(2,2);
29 J11 = dNds*xxyy(:,1);
30 J12 = dNds*xxyy(:,2);
31 J21 = dNdt*xxyy(:,1);
32 J22 = dNdt*xxyy(:,2);
33 % J=[J11 J12
34 % J21 J22];
35 detJ = J11*J22-J12*J21;
36 % inv(J)=[J22 -J12
37 % -J21 J11]/detJ;
38 % [dNdx;dNdy]=inv(J)*[dNds;dNdt];
39

40 dNdx = (J22*dNds-J12*dNdt)/detJ;
41 dNdy = (J11*dNdt-J21*dNds)/detJ;
42

43 B0=[dNdx(1) 0 dNdx(2) 0 dNdx(3) 0 dNdx(4) 0
44 0 dNdy(1) 0 dNdy(2) 0 dNdy(3) 0 dNdy(4)
45 dNdy(1) dNdx(1) dNdy(2) dNdx(2) dNdy(3) dNdx(3) dNdy(4) dNdx(4)];
46

47 G=[dNdx(1) 0 dNdx(2) 0 dNdx(3) 0 dNdx(4) 0
48 0 dNdx(1) 0 dNdx(2) 0 dNdx(3) 0 dNdx(4)
49 dNdy(1) 0 dNdy(2) 0 dNdy(3) 0 dNdy(4) 0
50 0 dNdy(1) 0 dNdy(2) 0 dNdy(3) 0 dNdy(4)];
51

52 Theta = G*ue;
53 Thetax = [Theta(1);Theta(2)];
54 Thetay = [Theta(3);Theta(4)];
55 A = [Thetax' 0 0;0 0 Thetay';Thetay' Thetax'];
56 Bl = A*G;
57

58 B = Bl .* gamma_e + B0; %(B0+Bl)* gamma_e - gamma_e * B0 + B0;
59

60 ele_strain_0 = B0*ue;
61 ele_strain = ele_strain_0 + 0.5 * Bl * ue * gamma_e;
62

63 end
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