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Abstract

The Locator/Identi�er Separation Protocol (LISP) is a novel routing architecture for

the Internet that is based on the locator/identi�er separation paradigm. The principle

is to split the current address space into the identi�er address space, which is com-

posed of locally routable addresses used for identi�cation; and the locator address

space, composed of globally routable addresses used to route tra�c in the network.

The main objective is to solve the current Internet’s routing scalability problems

threatening the network performance. Besides that, LISP also brings several new

interesting bene�ts, in particular for Tra�c Engineering (TE), and multi-homing.

Originally, LISP architecture had no support for node mobility. LISP Mobile Node
(LISP-MN) has thus been developed to introduce mobility extensions to LISP and

provide scalable and fast mobility. LISP-MN allows a node to roam from one site to

another (whether the site is a LISP site or not), while maintaining ongoing commu-

nications at the transport-level. However, there was still no support for sites using

Network Address Translation (NAT). Therefore, NAT extensions (LISP+NAT) have

been established to de�ne a NAT traversal mechanism for LISP mobile nodes. These

extensions enable a node to send and receive LISP tra�c, even though it is situated

behind a NAT.

So far, little is known about the performance of LISP-MN, and even less about

the impact of NAT traversal for LISP tra�c. Indeed, both propositions are mainly

limited to the theoretical level and lack any experimentation. We aim to provide a

�rst look at this aspect of LISP through simulations on the ns-3 Network Simulator.

To do so, we adapted the existing LISP implementation in ns-3 to add several

functionalities to the model. Our main contribution consisted into adding a NAT

model, proxy features (interworking mechanism used for communication between

LISP sites and non-LISP sites), as well as the NAT extensions (LISP+NAT) to the LISP

model. Additionally, we wrote a LISP-MN Helper, meant to help the script writer to

easily setup a simulation scenario with mobile nodes and handovers. Finally, several

unit tests have been integrated into the ns-3 testing framework for the NAT and LISP

models.

After investigation, we saw that all works on NAT traversal for LISP only focused

on static scenarios, i.e., scenarios with no roaming and no handover. As such, some

important aspects of mobility (the update of remote nodes’ state after a roaming

event) have been left completely unspeci�ed. We thus propose an extension of the

protocol to take handovers into account and de�ne a novel procedure for those cases.

Our results con�rm the intuition that NAT traversal has a negative impact on

path stretch and on the handover delay. Indeed, most of the time, the handover

delay when roaming into a non-LISP site behind a NAT is superior to the handover

delay when roaming into a non-LISP site with no NAT deployment.
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Chapter 1

Introduction

1 Context

For many years now, it has been recognized that the Internet routing architecture and addressing

system is facing challenges regarding scalability [1]. This scalability issue is re�ected by a con-

siderable growth of the default-free zone (DFZ) routing table (a.k.a Routing Information Base, or

RIB), resulting in a global negative impact on the network performance [1].

Multiple factors are driving the growth of the DFZ RIB, such as Tra�c Engineering (TE), multi-

homing, and Provider-Independent (PI) addresses. These factors result in the de-aggregation of

address pre�xes into more speci�c pre�xes, which in turn results in more entries in the RIB.

In order to cope with these scalability issues, a new type of network-level protocol arose,

based on the locator/identi�er separation paradigm [2]. The idea of this paradigm is to separate

the identi�er and locator roles of the IP address. Indeed, IP addresses currently have a dual

semantic: they represent at the same time the identi�cation aspect, as used by end-points for

communication; and the location aspect, as used by the routing system to deliver packets.

The loc/id separation paradigm thus introduces two distinct address spaces: the identi�er
address space, composed of addresses that are only locally routable. These addresses are used to

identify end-points and have no meaning in the core of the Internet. Then there is the locator
address space, composed of addresses that are globally routable, and used to route tra�c in the

network as usual.

Many implementations of the paradigm have been proposed. They can be classi�ed into two

categories: those that associate the locators directly to the host (HIP [3], shim6 [4]), and those that

associate the locators to routers (LISP [5]). Among the di�erent proposals, the Locator/Identi�er
Separation Protocol, a.k.a LISP [5], is the most widely deployed.

LISP introduces two address spaces, the EID (identi�er) address space, and the RLOC (locator)
address space. EIDs are deployed in stub networks, at the edge of the Internet, while RLOCs are

used in the DFZ. It is important to notice that EIDs and RLOCs are syntactically equivalent to

IP addresses, but that their semantics have changed. For this reason, few changes are required

to deploy LISP. Neither end-points nor routers in the core of the Internet will see any change.

Indeed, end-systems will be using EIDs to communicate, as they were using classic IP addresses.

And core routers will be using RLOCs to forward packets in the network, as they used to do with

IP addresses.

With two di�erent address spaces, a mapping between EIDs and RLOCs is necessary to bind

the two together. This mechanism is called the Mapping Distribution System (MDS) and will

provide the bindings between a given EID and a set of RLOCs.
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LISP uses encapsulation to tunnel packets from one border router to the other. In practice, an

end-point that wishes to communicate will form a regular IP packet, with EIDs as source and des-

tination addresses. This packet will be forwarded to the border router, which has been upgraded

to support LISP encapsulation. These border routers are called Ingress Tunneling Routers (ITR)

and are in charge of resolving the mapping of the destination EID by asking the MDS. Once the

remote RLOC is obtained, the ITR will encapsulate the packet in a new IP header, with RLOCs

as source and destination. This packet will then be forwarded in the core of the Internet, until

reaching the remote border router. This router has been upgraded as well to support LISP func-

tionality, and is called an Egress Tunneling Router (ETR). The packet will then be decapsulated by

the ETR and forwarded to the remote end-point.

The encapsulation part of LISP is commonly called the Data Plane and the mapping part is called

the Control Plane.

With the separation of the address space, LISP solves the scalability issues faced by the cur-

rent Internet architecture. Indeed, as EIDs are only locally routable, they do not need to be

advertised in the core of the Internet. Only routes towards the RLOCs of the edge routers need

to be maintained. As a result, the size of the DFZ RIB is strongly decreased [6]. Moreover, the

BGP churn (i.e., the number of pre�xes changed, added, and withdrawn as a function of time)

will also be reduced, because the core of the Internet is not exposed to the dynamicity of the

edges anymore.

Besides solving the scalability issues, LISP also brings new interesting capabilities regarding Traf-

�c Engineering, multi-homing, and mobility [5].

2 Problem Description

In this master thesis, we consider LISP’s approach to mobility, in conjunction with Network

Address Translation, or NAT.

LISP Mobile Node (LISP-MN) [7] introduces mobility extensions to LISP and provides scalable

and fast mobility. It de�nes a new network element, the LISP-MN, which implements a light-

weight LISP router and allows the node to roam from one site to another, while being reachable

under the same EID. In turn, this allows transport-level communications to survive roaming

events.

LISP, that divides the address space into EIDs and RLOCs, works on the assumption that

LISP routers will always be reachable through their globally routable RLOCs on port 4341 (LISP

data port). However, when a LISP device (either a LISP router or a LISP-MN) is situated behind

a NAT, this assumption does not hold anymore, as nodes behind a NAT are only given private

addresses. The draft (LISP+NAT) [8] introduces LISP extensions for NAT traversal. With it, a

LISP device is able to detect if it is located behind a NAT, and take the necessary measures to

send and receive tra�c nevertheless. The NATed device initialises state on the NAT, and then

uses a new network element, the Re-encapsulating Tunnel Router (RTR) to forward tra�c to and

from other LISP devices through the NAT.

Both LISP-MN [7] and its NAT extensions (LISP+NAT) [8] are at the early development stage,

and little is known about how they behave in the �eld. However, with the increase of mobile

devices in today’s Internet, as well as the desire to have continuous network connectivity at any

moment, it is important to evaluate this kind of tra�c. In particular, evaluating the impact of

NAT traversal on LISP tra�c is also crucial, as it corresponds to a majority of situations where a

user is browsing the Internet at home, behind an operator box.
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3 Contributions

Up to now, no investigation of the impact of NAT traversal for LISP tra�c has been conducted,

to the best of our knowledge. In this master thesis, we aim to provide a �rst look at this aspect of

LISP through simulations on the ns-3 Network Simulator [9]. More precisely, we evaluate several

handover scenarios between di�erent types of site (LISP, non-LISP, non-LISP behind NAT) and

provide a comparison of the handover delay, as well as the handover overhead.

To perform these simulations, the ns-3 Network Simulator has been adapted to support the

di�erent aspects of the scenarios. Our contribution to the LISP implementation in ns-3 consisted

into adding a NAT model, proxy functionalities, and NAT extensions to the existing LISP model.

Additionally, we also wrote a LISP-MN Helper to help the script writer deal with the setup of

a mobile node, without having to worry about the low-level implementation details. Finally,

various unit tests for di�erent scenarios (both NAT- and LISP-related) have been added into the

ns-3 testing framework.

The di�erent works on NAT traversal for LISP tra�c only cover static scenarios, i.e., scenarios

in which there is no roaming and no handover. In particular, a certain procedure, called the

SMR procedure, used to update the remote nodes’ state after a roaming event, is left completely

unspeci�ed. Therefore, we propose an extension to the protocol to allow a LISP-MN to update

the remote nodes’ state, even when it is situated behind a NAT.

Our implementation in ns-3 respects the NAT extensions (LISP+NAT) [8], with the addition

of this novel SMR procedure.

4 Results

The results of our simulations highlight the negative impact of NAT traversal on LISP tra�c,

compared to classic scenarios with no NAT deployment. From a theoretical point of view, the

control message overhead is higher for NAT traversal, with at least 1172 bytes of control mes-

sages, compared to 612 bytes with no NAT deployment. From the simulation itself, we also

observe a larger handover delay most of the time, as expected, due to the complexity introduced

by NAT traversal mechanisms.

Having compared handovers towards NATed sites with handovers towards non-LISP sites,

we also conduct a simulation with a handover towards a LISP site, in order to have a reference

for the negative impact introduced by NAT traversal. The results show that most of the time, the

handover delay is higher for LISP sites than for NATed sites. This is a surprising result, as we

expected NAT traversal to have more impact on the handover delay. However, we explain this

by the fact that simulations are inherently limited, compared the real experimentation, and that

even though we took great care to setup a realistic scenario, some e�ects could not be taken into

account with the available data we used for the simulations.

5 Roadmap

This master thesis is organized as follow. In Chapter 2, we present the scalability issues the cur-

rent Internet architecture and addressing system is facing. We review the reasons behind this

scalability problem as well as the implications for the network performance.

In Chapter 3, we introduce the Locator/Identi�er Separation Protocol, or LISP [5], and explain its

design. We also present the bene�ts of LISP: how it solves the scalability problem encountered in

3



today’s Internet, and what extra routing capabilities it brings to networks, especially for Tra�c

Engineering and mobility.

Chapter 4 �rst presents how LISP has been extended to provide mobility features to the protocol,

and allow a mobile node to roam in and out of sites, while maintaining ongoing communications

at the transport-level. Then, we have a look at NAT considerations for LISP tra�c and review the

NAT extensions added to the protocol in order to enable a LISP device to send and receive tra�c,

despite being NATed. Finally, we present the novel SMR procedure we de�ned for handovers.

In Chapter 5, we brie�y present the ns-3 Network Simulator and its LISP model. Then we detail

our implementation of NAT, proxies, and LISP+NAT, as well as the unit tests and the Helper for

mobile nodes.

Finally, Chapter 6 studies several handover scenarios between di�erent types of site. We de-

tail our methodology for simulating a realistic network, the simulation setup itself, as well as

the limitations of the simulations. Then we show the results of our ns-3 simulations and draw

conclusions about NAT traversal for LISP tra�c.
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Chapter 2

Motivations for a new network-level
protocol

For many years now, it has been recognized that the Internet routing architecture and addressing

system is facing challenges regarding scalability [1]. In this chapter, we will review the di�erent

scalability problems with the Internet current implementation. More precisely, we will see that

the scalabilty issue we are currently facing in the network is re�ected by a considerable increase

in the size of the DFZ routing table (a.k.a the Routing Information Base, or RIB) [1]. We will

survey the di�erent factors having an e�ect on the RIB size, as well as the impact of such a

growth. Then we will talk about the underlying problem of this scalability issue.

1 Problem #1: Scalability of the routing system

The fast growth of the DFZ routing table is a major concern for the current routing architecture.

In 2005, the number of entries was approximately 150,000. In 2010, it was 300,000, and as of 2018,

it has now reached 700,000 entries, con�rming a more than linear growth of the table size [10].

There are multiple factors driving the growth of the RIB. There is of course the general

increase in the Internet size and its user population, but there are also other reasons, such as

multi-homing, Tra�c Engineering, business events (such as acquisitions), etc. The underlying

component to all these factors is the addition of more pre�xes to the table.

Some of these additions are "natural" and result only in the growth of the Internet. Indeed,

as new sites are connected to the network, new entries must necessarily appear as well.

However, a large portion of the growth comes from the de-aggregation of address pre�xes. By

de-aggregation, we mean that address pre�xes are split into more speci�c pre�xes, resulting in

more entries than initially. This is in fact contradictory to the principle of BGP, which is to

topologically aggregate pre�xes together in order to have fewer entries.

1.1 Reasons of the DFZ routing table size increase

Let us review in more details the reasons for this de-aggregation of address pre�xes. In fact, it

appears that the more speci�c entries found in the DFZ are the result of deliberate actions from

operators.

• Tra�c Engineering:
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Tra�c Engineering (TE) refers to a set of techniques for in�uencing where tra�c goes for

the sake of network performance and tra�c delivery optimization [11]. TE can be used to

balance the load over multiple links in order to adapt the tra�c to capacity or congestion

in the network. It can also be used to reduce the cost by re-orienting the tra�c towards

lower-cost paths. Additionally, TE can be employed to apply some policies, for example,

avoiding or privileging certain routes because of political reasons.

Tra�c Engineering is crucial for providers to guarantee good performances in their net-

work and if they want to stay competitive and increase their bene�t. However, TE is not

an easy feast, and network operators do not have a lot of means to achieve their routing

goals. One way to proceed is by crafting speci�c BGP advertisements to serve one’s pur-

pose: by advertising more-speci�c pre�xes, that is to say, by de-aggregating some address

range, they are able to discriminate between tra�c and adjust it on the di�erent links.

Obviously, applying TE in this way results in an increase of the DFZ routing table size.

• Avoiding renumbering and PI addresses:

Renumbering a network means that IP addresses of devices in the network will be changed.

This renumbering process can be quite cumbersome, as it may require a certain number

of actions. For example, it may be necessary to change host parameters and con�guration

�les, such as �les which contain addresses of DNS and other servers. In reality, renumber-

ing can become e�ectively impossible for an organization.

For this reason, customers usually choose to adopt PI (Provider-Independent) addresses

for their network, which helps them avoid the need to renumber and gives them extra

�exibility. PI addresses are globally unique addresses which are not assigned by a provider,

but rather by some other organization, such as a Regional Internet Registry (RIR). This

means that these blocks of addresses are not associated with any particular location in the

network and are thus not topologically aggregatable in the routing system.

Therefore, routing PI pre�xes means that non-aggregatable pre�xes will be injected in the

table. Consequently, many more entries will be added to the RIB, further increasing the

growth issue.

• Multi-homing:

A network that is multi-homed is a network that is connected to several providers. Multi-

homing is generally employed to increase connectivity reliability, as well as performance,

but it will have an impact on the DFZ routing table, as we will see.

Multi-homing can be achieved using either PI addresses, or PA (Provider-Aggregatable)

addresses. In a way, PA addresses are the opposite of PI addresses: they are assigned by

a provider and the block of addresses is a sub-block of the address range of the service

provider, resulting in addresses that can be aggregated into the larger block before being

advertised into the global Internet [12].

With PI pre�xes, the problem is the same as described earlier: non-aggregatable pre�xes

will be injected in the tables, and this will be the case for all of the providers of the multi-

homed site.

With PA pre�xes, even though these addresses are in theory aggregatable in the ’primary’

provider address space, the provider won’t be able to e�ectively aggregate them if it wants

its multi-homed site to still be reachable through itself. In other words, for a site to remain
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accessible through all of its providers, its address pre�xes must necessarily appear in the

global routing table.

Let’s look more precisely at the reasons for this phenomenon: we know that the customer’s

pre�xes will not be aggregatable for the other providers (as the pre�xes are not part of their

address space). Because of this, the other providers have to advertise these speci�c pre-

�xes.

As a result, because of the longest-matching pre�x forwarding rule, the customer’s tra�c

will be directed through the non-primary providers. To counter this, the ’primary’ provider

has no choice but to de-aggregate the customer’s pre�x in order to keep the customer’s traf-

�c �owing through itself, instead of the non-primary providers. If the ’primary’ provider

doesn’t de-aggregate, the site won’t be reachable anymore via the ’primary’ provider.

To cut a long story short, whether using PA or PI addresses, multi-homing will ruin topo-

logical aggregation and leads to a fast growth of the routing tables.

• IPv6:

We saw that the network is already facing serious scalability issues with the current IPv4

address space. It is easy to envision that the RIB and FIB size growth problem of today

will be further aggravated by IPv6 much larger address space, if we remain without a more

scalable approach to networking.

1.2 Implications of the DFZ routing table size increase

Now that we have reviewed the factors driving the growth of the RIB size, let us see the impli-

cations of such a growth. The problem is divided into two aspects: the growth of the Routing

Information Base, and the resulting growth of the Forwarding Information Base (FIB).

The RIB and the FIB are conceptually close to each other, but there are di�erences. The RIB

is the table used to store all routing information. It is also independent of the routing protocol:

each time that a routing protocol learns a new route, it is injected into the table.

The FIB however is used for forwarding exclusively. It contains the best route toward a desti-

nation pre�x, whereas the RIB cannot be used directly for forwarding, as it sometimes contains

entries with next hops that are not directly connected to the device. That way, the forwarding

plane is separated from the control plane.

• Implications of the RIB growth:

It goes without saying that the RIB growth will result in a larger amount of memory re-

quired to store it. But this is not the main concern. This pre�x de-aggregation used by

providers for Tra�c Engineering and multi-homing means that these addresses, situated

at the edge of the network, will end up having an impact on the core of the network. In

other words, the core of the network will be exposed to the dynamic nature of edges.

Injecting new routes into the DFZ routing table (with BGP UPDATE messages) often results

in a re-computation and redistribution of the FIB, which has a certain cost. The problem is

that this whole process will occur much more frequently, as the BGP UPDATE churn (that

is to say the number of pre�xes changed, added, and withdrawn as a function of time)

increases.

The size of the DFZ routing table is currently bounded by the address space, however, the

number of BGP UPDATE messages, used to propagate dynamic topology changes, is not.

7



As a consequence, the routing convergence will be impacted and become slower, because

of the frequent re-computations of the RIB.

• Implications of the FIB growth:

As new routes are injected into the system, the forwarding table necessarily grows along

with them. Thus, as the amount of routing information that needs to be handled becomes

more important, so does the hardware capacities for forwarding.

The concern is that the costs induced by a rapid technology renewal (in order to keep up

with the FIB size) won’t be constant, but will become more and more expensive as we go

[1].

Another element is that hardware capacities for forwarding are simply and bluntly limited,

and it may be possible that technology will not meet the expectations for routing in the

core of the Internet, in terms of heat, power consumption, and heat dissipation.

We now understand better the scalability issues faced by the current routing architecture and

how the resulting RIB and FIB growth can impact the performance of the network.

2 Problem #2: The underlying issue

In Section 1, we saw that the scalability problem in the current routing architecture is re�ected by

a considerable increase of the DFZ routing table size. There are several reasons to this, including,

but not limited to, Tra�c Engineering, multi-homing, and non-aggregatable address allocations.

The concerns about such a growth are numerous: more resources are needed for maintaining

state, for computations and for routing tra�c in the core of the Internet, resulting in higher

costs. The BGP convergence is also endangered with the BGP UPDATE churn increase, overall

threatening the performance of routing in the network.

Upon closer inspection, we can notice that there is a recurring problem to all the reasons for

the RIB growth: the overloading of the IP address semantic. By overloading, we mean that an IP

address has several roles. Indeed, if we look at the semantic of the IP address, we can �nd two

elements:

1. An identi�cation aspect. This is the semantic of the "Who", as used by end-points in the

transport layer.

2. A location aspect. This is the semantic of the "Where", as used by the routing system to

e�ectively deliver packets.

Because of this dual semantic, we are faced with two con�icting objectives. In the �rst place,

for routing to be e�cient and to have as few entries in the table as possible, addresses must be

assigned topologically, in order for them to be aggregatable.

But on the contrary, from an organization and management point of view, addresses shouldn’t

be bound to the topology, which is quite dynamic, because the desired property here is stability.

Indeed, organizations don’t want to be forced to renumber because of topological changes.

Therefore, this overloading of the IP address semantic is the underlying cause of the scal-

ability problem, because the same address space can not serve both purposes e�ciently. The

locator/identi�er overload problem thus naturally leads to a locator/identi�er separation protocol,
a.k.a LISP.
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Chapter 3

Locator/Identi�er Separation
Protocol

Because of the scalability issues faced by the Internet routing architecture and addressing system,

the need for a new network-level protocol arose, leading to the creation of the Locator/Identi�er

Separation Protocol, or LISP [5]. In this chapter, we will �rst present the principles and mech-

anisms of LISP. Then in a second time, we will see the bene�ts of LISP: how it solves each of

the problems presented in Chapter 2 Section 1, and what extra capabilities it brings to network

routing.

1 LISP Overview

In this section, we will see the functioning of the LISP protocol. We review the basic principles of

LISP by presenting a classic communication scenario between two end-points in the Internet. In

addition, we see the encapsulation format of LISP. We also introduce the LISP Mapping System, a

key component in the workings of the protocol. Finally, we present the interworking mechanism

used for communication between LISP sites and non-LISP sites.

1.1 Operating mode of LISP

As explained in Chapter 2 Section 2, the dual role of the IP address is the inherent problem regard-

ing the exponential growth of the routing tables. Therefore, to solve this underlying problem,

the de�ning characteristic of LISP, as the name indicates, is to separate the identi�er and locator
roles of the IP address. LISP thus introduces two di�erent address spaces:

• The End-point Identi�er (EID) address space, composed of IP addresses that are only locally

routable. These addresses are used to identify end-systems, and are assigned independently

from the network topology.

• The Routing Locator (RLOC) address space, composed of IP addresses that are globally

routable. These are used to localize the end-systems in the topology, and route tra�c

through the network.

An example of how LISP is deployed and where the di�erent address spaces are used can be

found in Figure 3.1.
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EIDs and RLOCs are syntactically equivalent to IP addresses, but the semantics behind them

has changed. For this reason, few changes will be required to deploy LISP. Neither end-systems

nor routers in the core of the Internet will see any change. Indeed, end-systems will be using

EIDs to communicate, as they were using classic IP addresses. And core routers will be using

RLOCs to forward packets in the network, as they used to do with IP addresses.

Now, having introduced two di�erent address spaces, a mapping between the two is nec-

essary to allow communication. Indeed, when two end-systems wish to communicate over the

network, they cannot directly use their EIDs, as they have no meaning in the core of the network.

A tunnel from the RLOC of the source EID to the RLOC of the destination EID is necessary. The

Mapping System, which is a key component of LISP, will provide the necessary binding between

a given EID and a set of RLOCs.

Figure 3.1: Lisp topology

[6]

To wrap all elements together, let us review the procedure when sending a packet from one

domain to another, as can be seen on Figure 3.1:

When EIDx wishes to establish a connection with EIDy , a standard IP packet, using both EIDs

as source and destination, is created. This packet will be forwarded according to ASx policy to

one of the edge routers (RLOC
1
eidx

for example), which are called Ingress Tunneling Routers (ITR),

where the encapsulation will occur. The ITR will perform a look-up of the Mapping System,

looking for a set of potential RLOCs associated with the destination EID. Notice that multiple

RLOCs (either RLOC
2
eidy

or RLOC
1
eidy

) can be associated to one EID (EIDy), opening the door to

TE capabilities, of which we will talk later.

Once a suitable RLOC (RLOC
1
eidy

for example) is found for EIDy , the packet is encapsulated and

forwarded as usual in the core of the network. This encapsulation mechanism simply consists in

adding a new IP header with RLOC
1
eidx

and RLOC
1
eidy

as source and destination. Once the packet

arrives at the edge router of the destination domain, also called the Egress Tunneling Router (ETR),

it is decapsulated and forwarded to the destination EID, i.e. EIDy . The encapsulation part of LISP

is commonly called the Data Plane, and the Mapping System is called the Control Plane.

We can have a look at Figure 3.2 to get a more precise view of the encapsulation and de-

capsulation occurring between two LISP sites. When the original packet arrives a the ITR, it is

encapsulated in a new IP header with the RLOCs of the xTRs as source and destination addresses.

Once it arrives at the ETR, it is decapsulated, and the original packet is forwarded towards its

destination.

With this system, only edge routers (xTRs), situated at the boundary between the EID and
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Figure 3.2: Communication between two LISP sites

[13]

the RLOC address space, will need to be upgraded to support LISP and be able to perform all

actions associated with encapsulation.

1.2 LISP encapsulation

LISP is an encapsulation protocol that tunnels packets from one xTR to the other in the core of

the Internet. To do so, the ITR prepends an IP header to the packet with the RLOCs of the xTRs

as source and destination. However, the ITR cannot just add an IP header, as a lot of middle boxes

will only forward packets with a classic structure, that is to say IP packets that contain either

UDP or TCP.

The format of a packet that has been encapsulated by an ITR towards an ETR can be found in

Figure 3.3. The original IP packet is composed of the inner IP header, that uses the EIDs of the two

end-points. Then, a LISP header is �rst appended to the original packet (to carry LISP speci�c

information). Then it is followed by the UDP header, that allows LISP packets to be processed

by middle boxes in the Internet. The destination port is set to 4341, which is de�ned as the LISP

data port. Finally we �nd the outer IP header, that uses the RLOC addresses. For further details

about each �eld, the reader can refer to the LISP RFC [5].

1.3 The EID-to-RLOCs Mapping System

The Mapping System of LISP is truly the core of the protocol. It will determine whether LISP is

performing e�ciently or not, whether it brings bene�ts or not. The Tra�c Engineering capabil-

ities of LISP will also be determined by the EID-to-RLOCs mappings available.

This Mapping System has voluntarily been designed as a separate module in order to facili-

tate experimentation with di�erent database designs. To hide the implementation details of the

Mapping System to xTRs, they will only be communicating with a service interface, composed of

Map Resolvers and Map Servers. Those two types of devices will be the front-end of the Mapping

System for xTRs.

• Service Interface:

LISP operates in a pull mode, that is to say that mappings are retrieved on demand by the

ITR. More precisely, when an ITR needs a mapping between an EID and a set of RLOCs, it

will send a MapRequest to a Map Resolver, whose responsibility is to resolve the mapping.
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Figure 3.3: Lisp Header format

[5]

Behind the curtains, the Map Resolver will actually query the LISP database to �nd the

authoritative ETR responsible for the requested EID. On the other hand, the Map Server
will learn di�erent mappings from ETRs and publish them in said database.

More precisely, when a Map Resolver receives a MapRequest, it will forward the request

towards the database, leaving the source address of the ITR unchanged. This means that

Map Resolvers will not respond to ITRs that sent MapRequests, but rather, they will only

forward the requests to a LISP device (either an ETR or a proxy Map Server). While the

request is being processed, packets for the requested EID are dropped. It is therefore of

prime importance for the Mapping System to have good performance.

• Implementation:

As of now, multiple architectures to implement such a distributed database of EID-to-

RLOCs mappings have been proposed, but only two have been deployed: LISP Alternative
Topology (LISP+ALT) [14] and LISP Delegated Database Tree (LISP-DDT) [15]. LISP+ALT

was the �rst Mapping System to be deployed, but it was quickly found to be unmanageable

and was replaced with LISP-DDT.

LISP-DDT has been designed with high scalability in mind and is organized as a hierar-

chical distributed database, mirroring a DNS-like architecture. Each node of the database

(called a DDT node) is responsible for a part of the EID address space, where the hierarchy

mirrors the hierarchy of the address space. In other words, a child node is only responsible

for a sub-part of its parent address space, and the parents maintain a list of all DDT nodes

to which they delegated some sub-pre�xes. The leaves of the database tree are made of

Map Servers, which contain the mapping information.
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Therefore, like for DNS, a Map Resolver seeking a particular binding will query this archi-

tecture by starting from the root, and will be redirected from one DDT node to another,

until �nally reaching the Map Server authoritative for the requested EID.

LISP mappings in an xTR can be found in two di�erent places: the LISP Cache, and the LISP

Database. The LISP Cache is populated with mappings retrieved from the LISP Mapping System

on demand, when a packet from a new �ow arrives at the ITR, and that no mapping is found

for the requested destination EID. These mappings are used by the ITR to encapsulate packets

towards the right ETR. They are removed from the Cache when not used after a certain timeout.

The LISP Database on the other hand is populated by con�guration and is mainly static, contrary

to the LISP Cache, which is dynamic. The LISP Database stores mappings for the EID pre�xes it

is authoritative for. This is used by the ETR to answer to MapRequests, and this is used by the

ITR to select the source RLOC when encapsulating packets.

The complete process when a packet is sent from one LISP site to another can be found on Figure

3.4.

Figure 3.4: Lisp architecture

[16]

1. A classic IP packet with EID source and destination addresses arrives at the ITR.

2. A MapRequest message is sent to a Map Resolver for EIDd.

3. The MapRequest message is forwarded towards the authoritative ETR for that EID, thanks

to the Mapping System.

4. A MapReply is sent back to the requesting ITR.

5. The IP packet is encapsulated with RLOC source and destination addresses.

6. The packet is decapsulated and forwarded towards its destination.
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1.4 Interworking with legacy Internet

LISP design is such that only border routers, at the boundary between the EID and the RLOC

address space, need to be upgraded to support LISP. However, it is unlikely that LISP will be

deployed uniformly and at the same time all over the world. Therefore, we need an interworking

mechanism to allow LISP sites to communicate with non-LISP sites and inversely. This mech-

anism introduces two new network elements: The Proxy Ingress Tunnel Router, or PITR, and

the Proxy Egress Tunnel Router, or PETR [17]. These new devices are situated outside the edge

domains, in the core of the Internet. Both are also known as PxTRs.

The PITR will act as an ITR for non-LISP sites, allowing packets to be encapsulated towards

LISP sites. The PETR will act as an ETR for non-LISP sites, allowing packets to be decapsulated

and forwarded natively (that is to say, without encapsulation) in the Internet. Both elements

allow interworking without any change required at the non-LISP site.

Proxy Ingress Tunnel Router

In order to encapsulate legacy Internet tra�c towards LISP sites, the PITR �rst needs to attract

that tra�c towards itself. To do so, the PITR will advertise in the core Internet portions of the

EID space with BGP, so that packets destined to a LISP site can be routed to the PITR. Once the

tra�c arrives at the PITR, it will perform the same processing as a classic ITR, i.e., query the

Mapping System with a MapRequest to �nd the associated RLOC of the destination EID and

encapsulate the packet towards the returned RLOC.

The announcements made into the DFZ must be highly aggregated in order not to lose the

�rst bene�t of LISP: the reduction of the DFZ routing table size. Indeed, the advantage of LISP is

that the EID space of a LISP site will not be advertised into the core network anymore. However,

PITRs will still advertise that same EID space in order to attract legacy tra�c. Therefore, the

EID spaces advertised must be highly aggregated in order not to inject too speci�c routes into

the DFZ table. The placement of PITRs in the network is also extremely important from a path

stretch point of view. PITRs should be positioned close to non-LISP sites in order to reduce as

much as possible the path stretch to reach the PITR [17].

Proxy Egress Tunnel Router

PETRs are used by LISP sites that send tra�c towards non-LISP sites in the case where the ITR

cannot natively forward packets in the core Internet for policy reasons. When an ITR realises

that the destination address is not part of a LISP site (with a negative MapReply), it can either

directly forward the original packet, or it can encapsulate it towards a con�gured PETR.

If the original packet is directly forwarded without encapsulation, it would �nd its destination

because the destination address is not part of a LISP site, hence it is globally routable. In some

cases however, the provider AS doesn’t allow the original packet to be directly forwarded because

the source is part of the EID space, and therefore not globally routable. This is a source address

�ltering meant to avoid IP spoo�ng and that is usually implemented by a unicast Reverse Path

Forwarding (uRPF) [18] check in the provider Edge Routers. And because the EID source address

is not part of the address range of the provider AS, the packet would be dropped. In those cases,

the packet must be encapsulated towards a PETR that will act as an ETR for the non-LISP site

and decapsulate the packet. Again, to avoid path stretch, the ITR should be con�gured with a

PETR close to it.
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Let us review on Figure 3.5 the packet �ow for communication between a LISP site and a non-

LISP site. When the packet towards IP address 11.13.12.5 arrives at the ITR, it issues a MapRe-

quest for that address and receives a negative MapReply because address 11.13.12.5 is not part of

a LISP site. Therefore, it encapsulates the packet towards the PETR with RLOCs A and E in outer

header. When the PETR receives the packet, its role is to decapsulate it and forward it natively

to the non-LISP site.

In the opposite direction now, the packet towards IP address EID1 will be routed towards the

PITR thanks to the advertisements made by the PITR in the DFZ for that EID space. The PITR

will then issue a MapRequest, as an ITR would do, and encapsulate the packet with RLOCs A

and I in outer header. The packet then arrives at the ETR and is decapsulated and forwarded

towards node SN.

Figure 3.5: Communication between LISP and non-LISP sites

[13]

2 LISP Bene�ts

Besides the fact that LISP already solves the scalability problems in the current Internet archi-

tecture, it also o�ers new interesting capabilities regarding Tra�c Engineering, multi-homing,

and mobility [5]. Another key component of LISP is that it is an IP-over-IP tunnelling protocol,

meaning that it can be incrementally deployed, without the need to modify end-systems or core

routers, as already explained in Section 1.

It is commonly agreed ([6], [2]) in the Internet community that this separation of identi�er and

locator roles will be essential in the future of the Internet, and LISP appears to be the more

promising solution.

2.1 Reduction of the DFZ routing table size

The �rst bene�t of LISP is a decrease of the DFZ routing table size. Indeed, as EIDs are only

locally routable, core routers don’t need to maintain any route towards them, but only towards

the edge routers of those domains, already decreasing the number of entries. The BGP UPDATE

churn will also be reduced since fewer routes need to be advertised, and since the core is not

exposed to the dynamicity of the edges anymore.

Moreover, by dividing the address space into distinct parts, one for identi�cation (EID), and

another one for localization (RLOC), it is now possible to organize addresses e�ciently in both

of them.

15



• EID addresses are only locally routable, meaning that they can be assigned independently

from the network topology. In other words, the sites are now decoupled from the core

topology. This allows to solve numerous problems, such as renumbering and PI addresses.

Indeed, because these addresses are not bound to the topology anymore, EIDs can be as-

signed in any manner �tting the requirements of the network operators: they can be as-

signed hierarchically, to facilitate organization and management from an administration

point of view. Or they can also be structured in a manner suitable for local routing within

the site.

As a result, network mobility is facilitated because sites can change provider without the

need to renumber, which also means that using PI addresses is not a concern anymore.

• Furthermore, the use of a separate address space for RLOCs allows these addresses to be

assigned topologically, meaning that they will be highly aggregatable. In turn, the num-

ber of entries in the routing tables will be strongly reduced, resulting in a routing that is

more e�cient. At the same time though, the customer’s freedom to change their provider

remains unrestrained.

All in all, dividing the address space into two distinct parts enables for management to be

easier on one side, and for routing to be more e�cient on the other side, thanks to the reduction of

the RIB size in core routers. Studies have shown that, when using only aggregatable addresses,

the number of entries has an order of magnitude less than the number of ASes, while in the

current Internet the number of entries has an order of magnitude larger than the number of

ASes [6].

2.2 New routing capabilities

Tra�c Engineering

Tra�c Engineering is a major concern for ASes because of economic reasons. Network operators

must take care to optimize their tra�c to make the largest possible pro�t. Currently, inter-domain

Tra�c Engineering is not simple to achieve with the means that are available. It can be performed

with MPLS, with segment routing, or with BGP attributes, among other techniques. In Section

1, we also saw that TE can be achieved with BGP and de-aggregation, resulting in an arti�cial

growth of the DFZ routing tables.

Fortunately, the tunneling capabilities of LISP will o�er more �exible Tra�c Engineering

capabilities and allow to take advantage of path diversity, without adding state into the routing

system. Indeed, due to the Mapping System of LISP, which can associate multiple RLOCs to a

single EID, a source can now choose among several paths to reach its destination.

Indeed, LISP o�ers the possibility for a site to control incoming tra�c by manipulating its

mappings. In fact, each RLOC in a mapping is associated with a priority and a weight. This

information can thus be used by the ITR to decide which RLOC to send packets to: the RLOC

with the highest priority will be selected, and in case of equal priorities, tra�c will be balanced

among the di�erent RLOCs according to the weights speci�ed.

Therefore, it is possible to use LISP to route di�erent types of tra�c on di�erent paths having

di�erent capacities, by tuning the list of RLOCs, along with their weights and priorities [19].

Moreover, a mapping-owner can even di�erentiate its answers to MapRequests depending on

the author of said requests, as the EID source is present in the request.

With this newly acquired freedom, alternative paths can be selected based on whatever cri-

teria, such as delays for example. Obviously, not all paths are of the same quality, and choosing
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one RLOC over another can have an impact on the tra�c performance. For example, studies [6]

show that there can be large variations in the delays depending on the chosen path, with di�er-

ences between the worst and best case larger than 100ms. Even though delays are not the only

metric that can be optimized, LISP already shows the possible bene�ts that can be achieved.

Mobility

End-point mobility occurs when an end-point moves relatively rapidly, therefore changing its

IP-layer network attachment point. During such an event, maintenance of ongoing communi-

cations at the transport-layer is a primary goal, but requires special mechanism to handle the

change of IP address. Indeed, as transport-level communications are de�ned by the IP addresses

of the two end-points communicating, the connection cannot survive a change of IP address.

Special mechanisms to deal with mobility already exist, such as Mobile IP [20]. However, these

techniques often come at the cost of additional complexity, as well as triangular routing, which

is not desirable.

However, with LISP address space separation and Mapping System, mobility capabilities will

come naturally with the protocol. We will review this aspect in more details in Chapter 4.
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Chapter 4

LISP Mobility and NAT

With the increase of mobile devices in today’s Internet, it is important to ensure the ability for

nodes to move from one IP subnet to another (a.k.a roaming), while being able to maintain on-

going communications at the transport layer. In this chapter, we will review how mobility is

achieved with LISP, thanks to the introduction of a new network element, the LISP-MN. Fur-

thermore, we review the particular case where a mobile node roams behind a NAT. This scenario

is important as it corresponds to a majority of situations where a user is browsing the Internet at

home, behind an operator box. Additionally, we present a re�nement of the protocol considering

the SMR procedure when a LISP device is NATed.

1 Mobility

To handle mobility in IP, special mechanisms are required. Indeed, when a node roams into a

new network, it changes its attachment point to the Internet, and thus receives a new IP address.

As such, transport-level connections cannot be maintained, because they are de�ned by the IP

addresses of the two end-points that are communicating.

Special mechanisms already exist to deal with mobility. Mobile IP [20], for example, de�nes

a mechanism which enables nodes to change their point of attachment to the Internet without

changing their IP address, therefore allowing transport-level connections to survive. Mobile IP

de�nes new elements, such as the home agent, the foreign agent, the permanent address, the

care-of-address, etc; all of which allow the mobile node to exchange packets while being away

from home. However, this mobility mechanism comes at the cost of additional complexity in

the IPv4 protocol. Moreover, a major downside is the indirect triangular routing that it causes,

where packets are routed through the home agent while the mobile node is roaming, resulting

in a path stretch that is often non negligible [21].

Generally, the following requirements are desirable when designing a mobility protocol [7]:

• Allowing TCP connections to stay alive while roaming.

• Allowing the mobile node to communicate with other mobile nodes while either or both

are roaming.

• Allowing the mobile node to multi-home (i.e., use multiple interfaces concurrently).

• Allowing the mobile node to be a server. That is, any mobile node or stationary node can

�nd and connect to a mobile node as a server.
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• Providing shortest path bidirectional data paths between a mobile node and any other

stationary or mobile node.

• Not requiring �ne-grained routes in the core network to support mobility.

• Not requiring a home agent, foreign agent or other data plane network elements to sup-

port mobility. Note since the LISP mobile node design does not require these data plane

elements, there is no triangle routing of data packets as is found in Mobile IP [20].

1.1 LISP-MN

LISP Mobile Node (LISP-MN) [7] introduces mobility extensions to LISP, providing scalable and

fast mobility. It de�nes a new network element, the LISP-MN, which implements a light-weight

xTR and allows the node to roam in and out of LISP sites. LISP-MN answers all of the require-

ments presented above. Indeed, with LISP address space separation and encapsulation, these

capabilities come naturally with the protocol: the EID address is permanent, and allows trans-

port connections to survive roaming events, while the RLOC changes when the device roams

into another network and receives a new IP address.

LISP-MN leverages on three existing components: a classic LISP implementation running on the

mobile node, Map Servers, and interworking mechanisms (PxTRs).

The Mobile Node will act and look like a complete LISP site. Each time it receives a new

RLOC for roaming into another network, it will issue a MapRegister to its assigned Map Server
to register it, since it is the authoritative ITR for its EID. The packets originating from the LISP-

MN will already be encapsulated, with the inner header containing the EID, and the outer header

containing the received RLOC. It will also issue MapRequests for tra�c it needs to encapsulate.

Additionally, LISP-MN doesn’t su�er from triangular routing, as in Mobile-IP.

LISP-MN EIDs are provisioned from speci�c blocks reserved for mobiles nodes, so that they

don’t overlap with other EID spaces. Things are envisioned to work much like a subscription to

a telephony company: users receive their EID for the whole subscription period (along with a

designated Map Server), meaning that these EIDs will change very infrequently. This property

allows transport communications to survive roaming events, since the EID isn’t changed.

When a LISP-MN roams into a new network, there are two possible cases: either the network

is a LISP site, or it is a regular site.

LISP-MN in a non-LISP site

In this case, the LISP-MN will act as a complete LISP site, and operations will �ow as usual. The

LISP-MN receives a new RLOC (assigned through DHCP) which is globally routable and registers

it to its Map Server. Packets exit the LISP-MN already encapsulated, arrive at the border router,

that won’t modify them, and simply forwards them natively into the Internet. Packet �ow and

encapsulation can be seen in Figure 4.1.

LISP-MN in a LISP site

In this case however, things are a little bit more complex, as a LISP-MN behind an xTR is exactly

equivalent to a LISP site within another LISP site. The RLOC that is assigned to the LISP-MN

comes from the EID pre�x of the LISP site, which means that it is not globally routable. These

RLOCs are sometimes called Local RLOCs (LRLOCs) to make the distinction with classic RLOCs.
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Figure 4.1: LISP-MN in LISP site and in non-LISP site

[16]

Looking at Figure 4.1, we can see that packets leave the LISP-MN already encapsulated, with

the outer header source address as LRLOC1. This address is in fact an EID, which means that

returning packets cannot simply use that address as destination in the outer header: another

level of encapsulation is needed.

The ITR will therefore encapsulate the LISP-MN packet again before forwarding it to the Internet.

Returning packets also need to be encapsulated twice.

1.2 Handover procedure

Let us now review the general handover procedure when a LISP-MN roams between two sites.

When a LISP-MN arrives in a new subnet, it receives a new IP address that will serve as its

(L)RLOC. The �rst step is thus to register this new (MNEID, (L)RLOC) mapping to the Mapping

System, through its designated Map Server. This procedure allows to update the Mapping System

with the new location of the LISP-MN, so that new connections can reach the LISP-MN. However,

ongoing connections �owing through remote (P)ITRs also need to be updated, otherwise, the

returning packets will be encapsulated towards the previous location of the LISP-MN. To do so,

the LISP-MN has at its disposal several mechanisms to update the remote caches. The one that

is used for a roaming event is the SMR procedure [5]. SMR stands for Solicit Map Request and is a

way for a LISP device to tell a remote LISP device that it should refresh the mappings it has cached.

Upon receiving an SMR for a certain EID, the LISP device will send a MapRequest for that EID,

in order to refresh its mappings. Therefore, to allow packets to be encapsulated towards the new

location of the LISP-MN, the LISP-MN sends SMRs to all sites it has been receiving encapsulated

packets from.

Scalability of the Mapping System

With frequent roaming events that modify the mappings of the mobile EID and its corresponding

RLOCs, one can ask oneself if the performance of the Mapping System will remain good.

In fact, Map Servers are assigned a range of EID pre�xes they are responsible for, meaning that
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roaming events (i.e., assignment of new RLOCs) will be con�ned to the Map Server, as well as

to the (P)ITRs that have cached the mapping because they have been communicating with the

LISP-MN. With such an architecture, the Mapping System scalability remains good, as it doesn’t

require additional state in the rest of the Mapping System.

On the other hand, LISP-MN has an important shortcoming: it requires (P)xTRs to perform

a double mapping lookup for all tra�c, even if that tra�c is not concerned with mobile nodes.

The double encapsulation that is sometimes needed when a LISP-MN is in a LISP site is already a

drawback, but at least it is only limited to mobile nodes. However, double lookup will concern all

tra�c. Let us take back the example from Figure 4.1, when a LISP-MN is behind an xTR, to better

understand why. When the returning packet arrives at xTR3, the xTR needs to perform a �rst

lookup for destination EID EIDMN1. The returned RLOC, LRLOC1, is itself an EID that is not

routable. The xTR thus needs to perform a second lookup for LRLOC1 to �nally get RLOC3, and

perform a double encapsulation of the packet. The problem is that the xTR has no way of knowing

when a returned RLOC is globally routable or not. This means that even if a conventional RLOC

is returned, the xTR must still check that with a second lookup.

For the interested reader, Menth et al. [13] present the di�erent shortcomings of LISP-MN and

introduce some improvements to remedy these issues, including the problem of double lookup.

2 NAT extensions

LISP, that divides the address space into EIDs and RLOCs, works on the assumption that xTRs

will always be reachable through their globally routable RLOCs on port 4341. However, when a

LISP device (either an xTR or a LISP-MN) is situated behind a NAT, this assumption does not hold

anymore, as nodes behind a NAT are only accessible through the NAT public address. The draft

[8] introduces LISP extensions for NAT traversal. With it, a LISP device is able to detect if it is

located behind a NAT, and take the necessary measures to send and receive tra�c nevertheless.

The NATed device initialises state on the NAT, and then uses a new network element, the Re-
encapsulating Tunnel Router (RTR) to forward tra�c to and from other LISP devices through the

NAT.

2.1 NAT Traversal Overview

When a LISP device is situated behind a NAT, its RLOC(s) are typically private addresses that

are neither unique nor globally routable. Moreover, a NAT usually requires to �rst initialize

state with outgoing packets before it is possible to receive incoming packets. Additionally, LISP

requires xTRs to encapsulate data with destination UDP port 4341, which is not possible anymore

with the NAT translated address and port. Finally, depending on the type of NAT that is used,

the mapping state of the NAT can be more or less restrictive. The more restrictive NATs use

the full 5 tuples (IP src, IP dst, UDP/TCP src, UDP/TCP dst, protocol), meaning that even when

an outgoing mapping is established for the NATed xTR, tra�c from various other xTRs may be

blocked because it doesn’t match the entire tuple.

For all these reasons, a LISP-speci�c NAT traversal mechanism needs to be introduced. Firstly,

a LISP device that just received an RLOC has to discover if it is situated behind a NAT or not.

To do so, the device will query its Map Server with the help of two new LISP control messages,

the InfoRequest and InfoReply, in order to discover its global address. If the device discovers it

is behind a NAT, it will use the RTR to proxy its registration process. Additionally, state will be

initialised in the NAT during this registration process, so that data packets can �ow through the
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NAT in the future. Once the registration process is done, inbound and outbound packets for the

NATed device will �ow through the RTR, whose main function is to serve as a proxy to relay

control and data tra�c through the NAT.

We will now review in more details the di�erent adaptations that need to be made to LISP in

order to allow for NAT traversal. LISP processing in the case of a NATed device is composed of

three main steps: NAT discovery, Registration Process, and Data Forwarding.

2.2 NAT discovery

Each time that a LISP device (in particular a LISP-MN) receives a new RLOC, it must check

whether it is behind a NAT or not. For this, two new control messages have been created: the

InfoRequest and the InfoReply. When a Map Server receives an InfoRequest, it answers it with

an InfoReply with the global address and port as seen by the Map Server, as well as a list of RTRs

if the requesting device ever needs relaying. That way, the LISP device can compare the returned

global address and port with its address and port and determine whether it is NATed or not.

2.3 Registration Process

The registration process, that is used by xTRs to publish their EID-to-RLOCs mappings, must be

adapted, as the RLOC(s) of a NATed device are not globally routable and can thus not be published

in the database. The NATed device will therefore use the RTR to proxy its MapRegister messages,

and establish state into the NAT at the same time.

The registration process is carried out in four steps, also presented in Figure 4.2:

• The LISP device crafts a MapRegister message that contains the RTR RLOC(s), in order

to register those RLOC(s) as the RLOC(s) where the LISP device EID pre�x is reachable.

As a result, all packets destined to this EID will be encapsulated towards the RTR. This

MapRegister message is encapsulated into a LISP ECM header destined to the RTR’s RLOC.

It is important that the the outer header source port is set to 4341 in this step, as it will

initialise state on the NAT so that the NATed LISP device can receive tra�c on port 4341.

• Upon reception of the ECM’ed MapRegister, the RTR strips the ECM header and re-originates

the message towards the Map Server.
Additionally, it must also record some information about the EID pre�x and LISP device

that just registered to it, so that it can later forward LISP data tra�c towards the NATed

LISP device. A new entry in the cache will be created that contains the following informa-

tion: The outer header source RLOC and source port, that correspond to the address and

port modi�ed by the NAT. The inner header source RLOC will also be recorded as it corre-

sponds to the LISP device local NATed RLOC. Finally, the outer header destination RLOC

(i.e., the RTR’s own RLOC) will be recorded as well to use the same address in returning

packets and be consistent.

• When the Map Server receives an ECM’ed MapRegister, it stores the mapping, and issues

an ECM’ed MapNotify towards the RTR. When MapRequests will come to the Map Server
to ask for the EID, they will usually be forwarded towards the RTR (see 2.4).

• Finally, the RTR that receives an ECM’ed MapNotify message destined towards one of its

registered EID pre�xes, will encapsulate the MapNotify in a LISP data header and sends it

to the associated LISP device. This MapNotify inside a LISP data header is referred to as a

Data-Map-Notify message.
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Figure 4.2: NATed Registration Process

2.4 Data Forwarding

Now that the registration process has been carried out, the RTR can serve as a relay for LISP data

packets between a NATed LISP device and other LISP devices.

Data Forwarding

When a LISP packet encapsulated towards the RTR’s RLOC arrives at the RTR, the RTR �rst

checks whether the source or destination is a previously registered EID.

If the source is a previously registered EID, this means that the packet comes from a NATed

LISP device. In that case, the RTR will act as a PETR, i.e., the RTR will strip the outer header and

process the packet based only on the inner header. The packet will either be forwarded natively

in the Internet, or it will be LISP encapsulated towards an xTR. NATed LISP devices will always

encapsulate all outbound tra�c towards the RTR, and don’t need to issue MapRequests for the

purpose of �nding EID-to-RLOC mappings anymore. Therefore, it is the responsibility of the

RTR to issue MapRequests if necessary.

If the destination is a previously registered EID, this means that the packet is destined to a NATed

LISP device. In that case, the RTR will strip the LISP data header and re-encapsulate the packet

in a new LISP data header. The outer header destination address and port are �lled based on the

cache entry created during the registration process (see 2.3) in order for the packet to go through

the NAT. The outer header source RLOC is �lled with the RTR RLOC from the cache entry as

well, and the source port is set to 4342.

The entire process is illustrated in Figure 4.3.

Handling MapRequests/MapReplies

Handling MapRequests for a NATed EID space can be done in several ways.
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Figure 4.3: NATed Data Forwarding

• If the proxy bit in the ECM’ed MapRegister is set, the MS will answer itself with a MapRe-

ply.

• If the proxy bit is not set in the ECM’ed MapRegister, the MS forwards MapRequests to

the registered RLOC(s) (i.e., the RTR RLOCs). Note that it is also possible for a NATed LISP

device to receive directly MapRequests from the Map Server by registering the NATed xTR

translated RLOC, but it requires to maintain state in the NAT. Moreover, if an ETR behind

a NAT chooses to receive MapRequests from the Map Server, it must also send MapReplies

to the requesting ITRs. Therefore, this con�guration is not recommended as it will result in

excessive state in the NAT. The LISP device (either the Map Server, the RTR, or the NATed

xTR) must include the RTR RLOC(s) as the locator set in the MapReply in order for tra�c

to be encapsulated towards the RTR.

3 SMR procedure for a NATed LISP device

After investigation, we saw that the di�erent works on NAT Traversal for LISP (LISP+NAT [8],

among others) only cover static scenarios, i.e., scenarios in which there is no roaming and no

handover. In particular, the SMR procedure to update remote caches after a roaming event is left

completely unspeci�ed. Therefore, we propose an extension to the protocol to allow a LISP-MN

to update remote caches, even when NAT is implicated.

As we already explained in Section 1.2, upon a roaming event, the LISP-MN must update the

remote caches of the LISP devices it has been communicating with. This is crucial for packets

of ongoing communications to be encapsulated towards the new (L)RLOC of the LISP-MN. To

update the caches upon a roaming event, the SMR procedure [5] is used. As a quick reminder, the

LISP-MN will send an SMR to the remote LISP device, in turn this device will send a MapRequest

for the LISP-MN EID, causing its cache to be refreshed.

We will review two aspects of the SMR procedure when a LISP device is NATed: the procedure in

itself, to send SMRs through the RTR and get remote caches to be updated. And the mechanism
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that is used to put state into the NATed LISP device, in order for it to know which (P)ITRs to

send SMRs to.

3.1 Message exchange speci�cation

In this section, we will de�ne the message exchange for the complete SMR procedure when a

LISP device is NATed. Here, we make the assumption that the LISP-MN already knows exactly

all the LISP devices that are encapsulating towards itself, thus all the LISP devices that need to

have their caches updated. However, we will see in the next section (Section 3.2) that this is not

automatically the case, and we will de�ne a mechanism to remedy this issue.

When a LISP device is NATed, it sends SMRs encapsulated in an ECM header towards its

RTR, in exactly the same way that its MapRegisters are encapsulated towards the RTR. More

precisely, the inner header source and destination are the LRLOC of LISP-MN and the RLOC of

the remote device respectively. Then this packet is encapsulated in an ECM header. The outer

header source and destination are the LRLOC of LISP-MN once more, and the RTR RLOC this

time.

The RTR, upon receiving an ECM encapsulated SMR, will remove the outer header and the

ECM header, and re-originate the message to send it to the remote ITR. The ITR RLOC �eld in

the SMR is set to the RTR RLOC, so that the SMR-invoked MapRequest is sent directly to the

RTR.

The remote ITR receives the SMR, and sends back an SMR-invoked MapRequest to the RTR,

which directly answers with a MapReply. Notice that the SMR-invoked MapRequest is not for-

warded towards the NATed LISP device. Indeed, it would only add overhead to the communi-

cation, while the RTR is perfectly able to answer directly, on behalf of the NATed device. The

entire process can be found in Figure 4.4.

Figure 4.4: NATed SMR Procedure

3.2 NATed LISP device awareness

Earlier, we made the assumption that the LISP-MN already knew all the RLOCs that are encap-

sulating towards itself. Actually, when situated behind a NAT, this is not true anymore, and the

LISP-MN is not necessarily aware of all the remote (P)ITRs. We will �rst review why the LISP-

MN may not be aware of all the remote (P)ITRs, then we will see the mechanism to give the

LISP-MN that information, so that the SMR procedure can be started.
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NATed LISP-MN’s empty LISP Cache

When a LISP-MN is not NATed, tra�c �ows between both ends uninterrupted. In particular,

tra�c from the LISP-MN towards the remote (P)ITR is encapsulated based on a mapping stored in

the LISP Cache at the LISP-MN. The normal SMR procedure is based on that cache, and speci�es

that an SMR is to be sent to each RLOC stored in the cache.

When a LISP-MN is NATed however, the situation is di�erent. The problem comes from

the connections that are established while the LISP-MN is behind the NAT. While it is behind

the NAT, the LISP-MN has no state about the (P)ITRs with which it is communicating. Indeed,

the entire load is put on the RTR, who is in charge of forwarding tra�c for the LISP-MN. The

LISP-MN doesn’t send any MapRequests anymore, as all the tra�c is automatically encapsu-

lated towards the RTR. Therefore, its LISP Cache will never be populated with remote ITRs.

Furthermore, the LISP-MN doesn’t receive any MapRequests either, as the RTR is in charge of

delivering MapReplies on behalf of the NATed LISP device. As such, the LISP-MN is not aware

of the communications that are occurring.

As long as the LISP-MN stays behind the NAT, and communicates through the RTR, all is

well. But this is problematic when the LISP-MN roams in another site with no NAT, and must

thus send SMRs to remote (P)ITRs: it has no state in its LISP Cache about the di�erent remote

(P)ITRs, and thus can not start the SMR procedure.

Solution and message exchange speci�cation

Therefore, the solution that we propose de�nes a mechanism to make the NATed LISP-MN aware

of the various communications it is having with remote LISP devices.

To make the NATed LISP-MN aware of the remote (P)ITRs, the solution is for the RTR to forward

the MapRequests for the LISP-MN EID to the LISP-MN. That way, the LISP-MN knows about all

the (P)ITRs that ever requested its mapping and can record their RLOCs in a list, that we will call

the RemoteItr Cache. Therefore, when the LISP-MN roams into another site, it can send SMRs

to each RLOC in this list.

Figure 4.5: NATed LISP-MN: state establishement

This mechanism can be found in Figure 4.5. Upon connection establishment, the LISP-MN

doesn’t send any MapRequests and automatically encapsulates all data towards the RTR. The
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RTR is in charge of resolving the mapping for the requested EID and sends a MapRequest to the

Mapping System. After receiving a MapReply, data can �ow towards the xTR. For the returning

�ow, the xTR will also query the Mapping System to resolve the LISP-MN EID. As the RTR RLOC

is registered for the LISP-MN EID, the MapRequest arrives at the RTR.

Previously, the RTR would only send a MapReply back to the xTR, and that would be su�cient

for the �ow to be established in both directions. However, the LISP-MN would not be aware

of the remote xTR. Therefore, the RTR will also forward the MapRequest to the LISP-MN, en-

capsulated in a LISP Data header in order to cross the NAT. Upon reception of the MapRequest,

the NATed LISP-MN will record the RLOC in the RemoteItr Cache. As the RTR is already in

charge of sending back MapReplies, the LISP-MN doesn’t answer the MapRequest. Indeed, this

mechanism is not used to resolve mappings, but only to make the NATed LISP-MN aware of its

correspondents.

The SMR procedure in itself (i.e., the message exchange) is unchanged, except that it is now

based on the RemoteItr Cache, and not on the LISP Cache anymore (as currently de�ned in LISP

RFC). The RemoteItr Cache is populated based on the MapRequests received by the LISP-MN,

whether the device is NATed or not.

3.3 RTR processing

All in all, the RTR performs the same operations as a classic xTR, with some speci�cities for being

used as a relay (among others, the novel SMR procedure we just reviewed). The state transition

diagram of the RTR can be found in Figure 4.6, where we have a look at the additional functions

of the RTR in the Control Plane.

Figure 4.6: State transition diagram of RTR

There are three triggers, each starting a di�erent procedure.

The reception of an ECM encapsulated MapRegister means that a NATed device wishes to use the

RTR as a relay. The NATed Registration Procedure is thus started, and the necessary information

is recorded at the RTR.
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The reception of an ECM encapsulated SMR means that a NATed device wishes to update its

correspondents remote caches through the RTR. The novel SMR procedure is henceforth started:

the RTR reoriginates the SMR, sends it, waits for the corresponding SMR-invoked MapRequest,

and sends a MapReply.

The reception of a MapRequest for a registered NATed EID triggers what we call the NATed

device Awareness Procedure, which consists into forwarding the MapRequest, encapsulated in

a data header, back to the NATed device, for it to be aware of its correspondents.
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Chapter 5

NS-3 Implementation

LISP-MN [7], as well as the NAT extensions [8], are still at the early development stage. LISP-MN

has already been the object of several studies ([13], [16]). But to the best of our knowledge, no

investigation of the NAT extensions has been conducted. This proposal is only limited to the

theoretical level, and lack any implementation and experimentation, as well as results. For this

reason, we decided to implement the NAT extensions in the ns-3 Network Simulator [9], in order

to evaluate it. Using simulation and ns-3 suits our purpose, as it would have been di�cult to

perform studies with real systems. Moreover, simulation has become more and more important

to evaluate new technologies, or as a proof of concept of new protocols.

This chapter presents brie�y the ns-3 Network Simulator, as well as the LISP implemen-

tation in it. Then we describe our extension of that implementation, namely, NAT, PxTRs, and

LISP+NAT. Our implementation is freely available at https://github.com/Emeline-1/ns-3_LISP_NAT

1 The ns-3 Network Simulator

The ns-3 Network Simulator is a discrete-event network simulator targeted primarily for research

and educational use. The simulator provides models of how packet data networks work and

perform, and provides a simulation engine for users to conduct simulation experiments [9]. ns-3

is open-source and allows researchers to develop their own model, extend the ns-3 libraries, and

bring their contribution to the project, as we did with LISP and its NAT extensions. The project

is very well documented, and has an active community, which encourages people to contribute

to the project by adapting existing code or by writing new models.

ns-3 developers wanted to put the focus on realism, and therefore designed an architecture

that is close to a real Linux machine, with channels, net devices, a TCP/IP protocol stack, socket

programming, and applications. The project is entirely written in C++ (although some bindings

to python exist) for ease of use, maintainability, and performance. The simulation scripts written

by the user to conduct experiments are also written in C++, unlike other simulators that use a

pseudo-language for that purpose.

2 LISP implementation in ns-3

The �rst LISP model in ns-3 has been written by L. Agbodjan [22] under ns-3.24, and implements

basic LISP functionalities: the Data Plane and the Control Plane, and the Map Server and Map
Resolver, as well as the LispHelper. Then this work has been further re�ned by Y. Li [16], who
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adapted it to ns-3.27, and implemented the LISP-MN extensions. Additionally, she covered some

shortcomings of the original code. The implementation respects LISP RFC 6830 [5] and LISP

mobility standards [7].

We will now review the basis of the architecture of the LISP implementation in ns-3. LISP

has been implemented in the internet module of ns-3, as it is heavily dependent on IP. The model

is two-fold: the Data Plane (i.e., packet forwarding), and the Control Plane (i.e., mappings reso-

lution). A communication mechanism between the two is also necessary for the Data Plane and

the Control Plane to interact with each other.

2.1 LISP Mapping Socket

Because the LISP implementation is divided into two distinct parts, the Data Pane, and the Con-

trol Plane, communication between both is required. This is necessary for example when a cache

miss occurs during the encapsulation of a packet in the Data Plane. In that case, the Control Plane

must be triggered to send a MapRequest and retrieve the requested mappings. Conversely, when

a MapReply arrives at the xTR in Control Plane, the Data Plane must be noti�ed to insert the

new mapping information into the LISP Cache. Other types of events can also happen and need

to be transmitted between the two Planes.

For this communication to be possible, the example of OpenLisp [23] has been followed. To

allow the Data Plane and the Control Plane to interact, OpenLisp provides a Mapping Socket

API. Formatted messages can thus be exchanged between the Data Plane and the Control Plane

to notify each other that a particular event occurred. The implementation of a Mapping Socket is

convenient because it allows the two Planes to be developed completely independently of each

other.

2.2 Data Plane

The role of the Data Plane of LISP is to encapsulate/decapsulate packets.

LISP Database and LISP Cache

A LISP device maintains a LISP Cache and a LISP Database where EID-to-RLOCs mappings are

stored. The Cache is populated on demand, when the �rst packet of a new �ow arrives and that

no mapping for the destination EID is found in the Cache. The LISP Database is populated by

con�guration and holds the mappings for which the LISP device is authoritative. The Cache is

used by ITRs to encapsulate tra�c, and by ETRs to perform basic anti-spoof checks. The Database

is used by ITRs to choose the source RLOC of the encapsulated packet, and by ETRs to answer

MapRequests.

In ns-3, both the Cache and the Database are implemented by the class MapTables, which pro-

vides an interface that must be implemented in subclasses. The various operations of MapTables

(create, update, search, delete mappings) are implemented in SimpleMapTables, with a simple

list of mappings that can be iterated.

LISP operations

LISP operations consist in encapsulating and decapsulating packets. To do so, a �rst class,

LispOverIp, and its extended classes, have been implemented to perform LISP speci�c tasks. This
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class is in charge of determining if a packet must be processed by LISP (NeedEncapsulation(),

NeedDecapsulation()), and if so, to encapsulate/decapsulate the packet, with the methods LispOut-

put() and LispInput(). This class also holds a pointer to MapTables to have access to the di�erent

mappings. The architecture of the Data Plane can be found in Figure 5.1. Colored classes cor-

respond to already existing classes in ns-3. Blank classes are new classes added for the LISP

implementation.

Figure 5.1: Data Plane UML diagram

Next, the most di�cult part was to integrate LISP functionalities into a classic IP stack. As we

already explained in Section 1, the IP protocol stack of an ns-3 node is very close to the protocol

stack of a real Linux machine. As such, the following functions to process a packet at the IP level

are in use:

• Receive: This method is called by lower layers (typically a net device) upon reception of a

packet.

• IpForward: As the name indicates, this function is called after Receive when the packet is

not destined to the current node, but must be forwarded through an outgoing device.

• Send: This method is called by higher layers (typically a socket of an application) to send

a packet down the IP stack.

• LocalDeliver: When the packet is destined to the local node, it will be delivered to one of

the applications, or an ICMP unreachable message will be sent back.

These functions are implemented in the class Ipv4L3Protocol (see Figure 5.1) and each of those

methods has been adapted to add LISP processing to it. To better understand the encapsulation

and decapsulation work�ow, let us review a classic example of a packet exiting a subnet through

an ITR; and of a that same packet arriving at the destination ETR (see Figure 5.2).

In Figure 5.2a, we review the encapsulation work�ow at an ITR. When the packet arrives

at the ITR, the Receive method of Ipv4L3Protocol is called by the net device. As the packet is

not destined to the ITR (but to a remote EID), control is passed to the IpForward method. This

method has been slightly modi�ed to perform basic checks and determine if the packet needs

LISP encapsulation or not. If it does, control is passed to the Send method of Ipv4L3Protocol. The

Send method has been adapted to retrieve the di�erent mappings needed for the encapsulation,

as well as to perform additional checks. Once the mappings are retrieved, they are passed to
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(a) Encapsulation work�ow (b) Decapsulation work�ow

Figure 5.2: Data Plane work�ow

LispOutput, whose role is to perform the actual encapsulation of the packet, i.e., adding the LISP

header, followed by the UDP header, followed by the outer IP header. Finally, when the packet is

fully formed, it is passed to SendRealOut that will forward it down the stack to the second layer.

This is during the encapsulation of a packet that a cache miss can occur if the mapping for the

destination EID is not found in the cache. This is the place where the LISP Control Plane will be

triggered through the LISP Mapping Socket (see Section 2.1) to retrieve the requested mapping.

In Figure 5.2b, we review the decapsulation work�ow when a LISP packet arrives at the

ETR. Once again, the Receive method of Ipv4L3Protocol is called by the lower layers. This time

however, the packet is destined to the ETR itself, as it is encapsulated with the ETR RLOC address.

As such, control is passed to the LocalDeliver method of Ipv4L3Protocol. This method has been

partially rewritten to check if the packet is a LISP encapsulated packet and should be decapsulated

or not. If so, control is passed to LispInput, whose job is to decapsulate LISP packets. Note that

control packets addressed to the ETR are delivered to the xTR application, of which we will talk

later. LispInput performs consistency checks (regarding mappings for example) on the packet

and control if it is well formed or not. Once it is decapsulated, the inner packet is passed to the

Receive method again. This time however, it is destined to the remote EID, meaning that control

will be passed to IpForward. As the packet doesn’t need encapsulation, it will directly be passed

to SendRealOut and exit the ETR.

2.3 Control Plane

The main role of the Control Plane is to retrieve mappings from the Mapping System upon the

event of a cache miss. More generally, the Control Plane implements all functions related to set-

ting the Mapping System up and the operations that allow to retrieve mapping information from

this MDS. This includes xTRs and MR/MS operations, as well as the di�erent control messages

exchanged between them. The diagram of the Control Plane can be found in Figure 5.3.
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Figure 5.3: Control Plane UML diagram

xTR operations

The functionalities of an xTR have been implemented in the class LispEtrItrApplication, which

extends the ns-3 class Application. A LispEtrItrApplication is meant to be installed on a node with

a LispOverIp Data Plane installed. An ns-3 node with a LispOverIp Data Plane and a LispEtrI-

trApplication is a fully functional xTR.

The xTR operations are quite straightforward: upon starting the application, the xTR sends

MapRegister messages to its assigned Map Server based on the content of its LISP Database. The

xTR is also able to handle the di�erent LispControlMsg and respond accordingly.

Upon reception of a MapRequest, the LispEtrItrApplication executes as LISP database lookup to

answer with a MapReply.

Upon reception of a MapReply, the LispEtrItrApplication noti�es the Data Plane through the

LISP Mapping Socket of the new mapping information, so that it can be inserted into the Cache.

Upon a roaming event, the Control Plane is noti�ed by the Data Plane through the LISP Map-

ping Socket that it must register its newly assigned (L)RLOC, and send SMR messages to its

correspondents.

MR/MS operations

The entire LISP Mapping System is implemented with two classes: MapServer and MapResolver.

In particular, MapServerDdt extends class MapServer to implement the workings of the LISP
Delegated Database Tree (LISP-DDT) [15].

The role of the MapResolver is simply to receive MapRequests from the di�erent xTRs and

to forward them to the MapServer.

The Map Server operations are also quite simple. This application always listens on port 4342

(LISP control port) for control messages. Upon reception of a MapRegister, the MapServer up-

dates its database to store the corresponding mapping information, and answers with a Map-

Notify if necessary. This information will allow the MapServer to forward MapRequests to the

correct authoritative ETR. Upon reception of a MapRequest (forwarded by the MapResolver),

the MapServer will lookup its database to see if any xTR has registered for the required pre�x,

and if so, forwards the MapRequest to the registered xTR.
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Note that this implementation doesn’t form a complete LISP Mapping System with a DNS-

like architecture. Indeed, it is only composed of two nodes that simulate the entire Mapping

System. We will see in Chapter 6 how to remedy this issue.

2.4 LISP Helpers

In ns-3, when developing a model, it is good practice to also develop a Helper for it. A Helper can

be seen as a "wrapper" class to make the implemented features more user-friendly. Its goal is to

deal with the low-level details, so that the script writer doesn’t need to know the implementation

details of the model, and can very quickly and easily con�gure an entire network.

There are many Helpers in ns-3. For example, there is the InternetStackHelper, that al-

lows one to install the entire IP stack (TCP, UDP, IP, etc) on a node without knowing anything

about the implementation of this stack. Another example is the PointToPointHelper, which

does the low-level work required to put a link between two nodes together. There is also the

Ipv4AddressHelper, that manages the allocation of IP addresses on nodes; and many others that

are here to make the life of the script writer easier.

Various Helpers have also been written for the LISP model, to install the LISP Data Plane on

a node, to install the LISP Control Plane on a node, and to install the MR/MS applications.

3 LISP extensions in ns-3

Our contribution to the LISP implementation in ns-3 consisted into adding a NAT module, PxTRs

functionalities, and NAT extensions to the existing LISP model. Our implementation respects

the NAT extensions (LISP+NAT) [8], with some extensions to the protocol for a particular case

that had not been covered by the draft, as explained in Chapter 4 Section 3. Additionally, we also

wrote a LISP-MN Helper to help the script writer deal with the set up of a mobile node. Moreover,

various unit tests for di�erent scenarios (both NAT- and LISP-related) have been added into the

ns-3 testing framework.

3.1 NAT model

As our work focuses on NAT traversal for LISP tra�c, we needed some NAT model in ns-3. Un-

fortunately, ns-3 is quite bare-bones regarding the di�erent models implemented in the internet

module. As a matter of fact, no implementation of NAT was available in ns-3. Therefore, we had

to write our own to provide basic NAT functionalities in our simulations.

We found an implementation of the NAT model for ns-3 written by V. Sindhuja [24] as part of

the Google Summer of Code. We therefore took his implementation under ns-3.14 and adapted

to ns-3.27 in order to integrate it with our implementation. The goal of this project was to in-

troduce a NAT model into the ns-3 framework, but they also worked on building the basis for

a larger framework that supports connection tracking and other �rewall features. The work is

thus divided into two main parts: the Net�lter framework, and the NAT model.

Net�lter Framework

This implementation is modeled on the Net�lter framework in Linux. Net�lter consists in a set

of hooks placed in the IP stack to intercept packets �owing through a node. A hook is a place in
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the networking stack where a packet will be handed over to the Net�lter framework. Di�erent

modules can thus register callbacks in the networking stack at these hooks, allowing for vari-

ous functions and operations for packet �ltering, network address translation, port translation,

�rewalling, etc.

There are �ve places in the IP stack where hooks have been placed:

• In Ipv4L3Protocol::Receive, with the NF_INET_PRE_ROUTING hook.

• In Ipv4L3Protocol::LocalDeliver, with the NF_INET_LOCAL_IN hook.

• In Ipv4L3Protocol::Send, with the NF_INET_LOCAL_OUT hook.

• In Ipv4L3Protocol::IpForward, with the NF_INET_FORWARD hook.

• In Ipv4L3Protocol::SendRealOut, with the NF_INET_POST_ROUTING hook.

A model such as NAT can thus register various callbacks at the appropriate hooks in order to

perform its address translation.

Integrating the NetFilter framework into our version of ns-3 required the addition of 23 �les,

as well as the modi�cation of the InternetStackHelper (to aggregate the Net�lter object with the

networking stack), and of the Ipv4L3Protocol class, where the hooks have been placed, as can

be seen in Figure 5.4. Orange classes correspond to classes already present in ns-3, blue classes

correspond to additions made to integrate the Net�lter framework into ns-3. This Figure only

shows the hooks and callbacks aspect, not the connection tracking aspect.

The �rst step was to e�ectively place the di�erent hooks at the correct places into the IP stack

functions (Receive, Send, LocalDeliver, IpForward, and SendRealOut) in the Ipv4L3Protocol class.

In terms of code, placing a hook consists into calling ProcessHook on the Ipv4Netfilter object with

the right hook number. Then, we realised that the implementation of the Ipv4L3Protocol class

changed a lot in its structure from version 3.14 to 3.27. More precisely, the processing of a packet

was still the same, but regarding the code itself, the arguments to the functions had been changed.

Therefore, we rewrote the adaptation for Net�lter in the networking stack, mostly playing with

adding and removing headers from packets, in order to respect the new structure of the code.

We can have a quick look at the implementation of the Net�lter framework (see Figure 5.4).

The class Ipv4NetFilter contains a NetfilterCallbackChain object for each hook. The Netfilter-

CallbackChain class contains a list of the di�erent Callbacks (Ipv4NetfilterHook) that have been

registered for the hook by other modules. By calling ProcessHook in the networking stack, It-

erateAndCallHooks is called on the corresponding NetFilterCallBackChain, resulting in each

Ipv4NetfilterHook being called.

This implementation was not fully functional, in particular, the decision made about a packet by

hooks (drop or accept) was not transmitted back to the IP stack, who thus accepted all packets

by default. This issue has been identi�ed and �xed.

Network Address Translation

The NAT model proposed by V. Sindhuja implements both static NAT and dynamic NAT fea-

tures. The methods DoNatPreRouting() and DoNatPostRouting() are registered at the hooks
NF_INET_PRE_ROUTING and NF_INET_POST_ROUTING respectively, allowing for packets

to be processed by the NAT model. This is done by calling the RegisterHook method on the
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Figure 5.4: Net�lter integration into ns-3

Ipv4NetFilter object.

Integrating the NAT model into our version of ns-3 required the addition of 4 �les. More-

over, the implementation su�ered some errors, in particular, with regards to the dynamic NAT

implementation.

First, the matching-rule logic was wrong: the implementation of the dynamic rule itself was erro-

neous. Indeed, the local and global (i.e., translated) ports were not taken into account, therefore

preventing the possibility to set the correct local port upon arrival of a packet into the NATed

subnet. On the other hand, even when a packet was matched to a rule, the address and port were

not set correctly, resulting in inconsistencies.

Additionally, the dropping of a packet trying to cross the NAT with no match to a rule was not

implemented: every packet was accepted by default, even those without a match to a rule.

All these issues have been identi�ed and �xed, providing a consistent NAT model into the

ns-3 simulator as a result. To guarantee the correctness of the NAT implementation, we wrote

some unit tests for the NAT model, that we review in Section 3.5. The UML diagram of the NAT

module can be found in Figure 5.5.

Figure 5.5: NAT module
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3.2 PxTRs

Proxy xTRs perform essentially the same operations as classic xTRs, except that the PITR will

encapsulate all
1

tra�c coming to it (while the ITR only encapsulate tra�c for the EID space it is

responsible for), and that the PETR will decapsulate all tra�c coming to it (while the ETR will

only accept tra�c for the EID space it is responsible for).

Therefore, our implementation doesn’t create any dedicated class for PxTRs, such as LispOverIp-

Proxy, but rather works o� of the existing LispOverIp. A LISP device is made aware that it is either

a PETR or a PITR with a boolean variable. The LispHelper has been rewritten to allow a script

writer to specify which devices are supposed to be proxies, and set the corresponding variable

in the devices. The main of the implementation consists into bypassing checks made on the LISP

Database in the case where the device is a proxy.

More precisely, the Ipv4L3Protocol class has been slightly modi�ed to bypass the check of

a non-empty LISP Database in the case of a PITR. Indeed, a PITR encapsulates tra�c from all

destinations, and is not responsible for any EID space in particular, its LISP Database is thus

empty. However, for a classic ITR, a check of a non-empty LISP Database is always performed,

because an empty Database means that the device is not responsible for any address space, and

should therefore not encapsulate anything.

Additionally, the LispOverIpv4Impl class has also been slightly adapted to bypass the check

performed at the ETR to only decapsulate tra�c destined for an EID registered into the Database.

The class SimpleMapTables has also been modi�ed for the same purpose.

Last but not least, the negative MapReply has been implemented on the Map Server. Indeed,

up until now, the Map Server did not answer with a negative MapReply in the case of a non-LISP

site. As a result, because the xTR never received any kind of reply for its requests, all packets for

the non-LISP site were dropped. Moreover, at the xTR itself, the case of a negative mapping in

the cache was considered as having no mapping at all, causing all packets to be dropped.

Now, with the reception of a negative MapReply, the LISP device can store in its cache a negative

mapping. When having to encapsulate packets towards the non-LISP site, and upon seeing that

the mapping is negative, packets are not dropped anymore. Rather, the process of encapsulating

the packet towards the con�gured PETR can begin. Indeed, each LISP device is con�gured with

the address of a PETR (speci�ed by the script writer) to which it must encapsulate all tra�c for

non-LISP sites.

All in all, it is quite easy for a script writer to set up a scenario with PxTRs, as can be seen

in Listing 5.1. After creating the topology and the di�erent nodes of the simulation, all that is

needed to set up the proxies is to specify to the LispHelper which devices should be made PETR

or PITR (lines 10 and 12 respectively). Additionally, the address of the PETR must be con�gured

in the same way with the LispHelper (line 7). As a side note, it is interesting to know for the

script writer that the static routes for routing in the nodes must be modi�ed in order to redirect

all tra�c for a LISP EID towards the PITR, in order for legacy tra�c to be encapsulated towards

LISP sites.

1 [ . . . ]

2

3 / ∗ −−− LISP Data P lane −−− ∗ /

4 L i s p H e l p e r l i s p H e l p e r ;

5

1

Rather, all tra�c destined to the EID space it has been advertising, on behalf of ITRs
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6 / / C o n f i g u r e PETR a d d r e s s f o r a l l xTRs

7 l i s p H e l p e r . S e t P e t r A d d r e s s ( iR1_iPETR . GetAddress ( 1 ) ) ;

8

9 / / S e t PETRs

10 l i s p H e l p e r . S e t P e t r s ( NodeConta iner ( nodes . Get ( 9 ) ) ) ;

11 / / S e t PITRs

12 l i s p H e l p e r . S e t P i t r s ( NodeConta iner ( nodes . Get ( 1 0 ) ) ) ;

13 / / S e t RTRs

14 l i s p H e l p e r . S e t R t r s ( NodeConta iner ( nodes . Get ( 8 ) ) ) ;

15

16 / / C l a s s i c LISP s e t u p

17 l i s p H e l p e r . B u i l d R l o c s S e t ( " . / l i s p _ r l o c s . t x t " ) ;

18 l i s p H e l p e r . I n s t a l l ( l i s p R o u t e r s ) ;

19 l i s p H e l p e r . Bu i ldMapTab les2 ( " . / l i s p _ r l o c s _ c o n f i g _ x m l . t x t " ) ;

20 l i s p H e l p e r . I n s t a l l M a p T a b l e s ( l i s p R o u t e r s ) ;

21

22 [ . . . ]

Listing 5.1: Simulation script with PxTRs and RTR

3.3 NAT extensions

Our implementation of the NAT extensions respects the draft LISP+NAT [8], that has been thor-

oughly explained in Chapter 4 Section 2, with the addition of the novel SMR procedure.

As a reminder, NAT traversal is carried out in three steps: NAT discovery, NATed Registration

Process, and Data Forwarding, all of which have been implemented in ns-3. Once again, the

di�erent operations of an RTR stay roughly the same than for a classic xTR. Therefore, our

implementation focuses on adapting the existing classes and methods to those cases, instead

of creating dedicated classes for the RTR.

Control Plane adaptation

The �rst step was to implement the two new control messages: the InfoRequest and the InfoRe-

ply, that allow a LISP device to discover if it is NATed or not. Two new classes, InfoRequestMsg,

and InfoReplyMsg have been implemented in the Control Plane, as can be seen in Figure 5.6.

The orange classes are classes that were already a part of ns-3, the white ones are classes added

for the LISP implementation of L. Agbodjan and Y. Li, and the blue ones are the classes added in

our implementation to support LISP+NAT. The work�ow of the xTR application has also been

modi�ed: instead of sending its MapRegister messages upon starting the application, or upon a

roaming event, it �rst sends an InfoRequest to its Map Server. Upon reception of the InfoReply,

the LISP Data Plane is noti�ed through the LISP Mapping Socket. Additionally, if the device is

NATed, a new mapping is inserted into the LISP Cache for all tra�c to be encapsulated towards

the RTR. As a result, the LISP-MN will never issue a MapRequest again. For the purpose of no-

tifying the Data Plane, a new type of message has also been added to the LISP Mapping Socket

implementation. Lastly, to respect the novel SMR procedure de�ned in Chapter 4 Section 3, a

NATed LISP device doesn’t answer anymore to MapRequests. Moreover, the SMR sending is not

based on the LISP Cache anymore, but on the RemoteItr Cache.

Then, the second step was to implement the LISP ECM header, which is used for the NATed

registration procedure. A new class, LispEncapsulatedControlMsgHeader has been implemented,

as can be seen in Figure 5.6. This class extends the ns-3 class Header, and inherits its methods,

which allows to add and remove the header to/from a packet very easily.
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The methods for creating the MapRegister messages have also been adapted to cover the case

where the LISP device is NATed, and where the RLOC advertised in the message should be the

RTR RLOC, and not the LRLOC of the device.

The rest of the Control Plane of the xTR hasn’t been modi�ed. The main of the implementa-

tion concerns the NATed Registration Procedure, as well as the novel SMR procedure, which are

implemented in the Data Plane.

Figure 5.6: Addition to the LISP Control Plane

Data Plane Adaptation

As we just said, the Control Plane work�ow of an RTR or of a LISP NATed device is not much

di�erent than that of a classic xTR. Indeed, the LISP control messages exchanged between them

stay the same. The main of the implementation concerns the various encapsulations of packets,

which is the concern of the Data Plane.

First of all, in the same way that a LISP device is made aware that it is a PETR or a PITR,

a LISP device is made aware that it is an RTR or a NATed device with a boolean variable. The

LispHelper has been rewritten to allow a script writer to specify which devices are supposed to be

RTRs, and set the corresponding variable in the devices. The NATed variable is set dynamically

after the exchange of InfoRequest/Reply.

We will now review in detail the most important modi�cations of the work�ow of the LISP

Data Plane, both in the NATed case, and in the RTR case. More precisely, we will survey four

cases:

• The ECM encapsulation of MapRegisters and SMRs at the NATed LISP device.

• The ECM MapRegister processing and forwarding at the RTR.

• The ECM SMR processing and forwarding at the RTR.

• The MapRequest processing for a NATed EID at the RTR.

The white functions correspond to the classic work�ow of a packet, and the blue functions

correspond to the modi�cations that have been made in order to encapsulate correctly the packet.
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Figure 5.7: ECM encapsulation of MapRegister and SMR at the xTR

We advise the reader to have a look back at Figures 4.2 and 4.3 to get a quick reminder of the pack-

ets exchanged during the NATed Registration Procedure, as well as during the Data Forwarding.

Figures 4.4 and 4.5 are also useful to remember the novel SMR procedure.

In Figure 5.7, we review the ECM encapsulation of the MapRegister/SMR at the NATed device.

When a MapRegister/SMR is sent by the LispEtrItrApplication, the Send method is called. In the

normal course, the MapRegister/SMR doesn’t need encapsulation if the source and destination

are both RLOCs. In that case, the packet is directly passed to SendRealOut and pushed down the

stack. In the case of a NATed device however, the MapRegister/SMR needs to be encapsulated

into an ECM header towards the RTR. For that purpose, the Send method has been modi�ed: we

use DPI techniques to check that the message is a MapRegister/SMR and if so, hand control over

to the LispOutput method, in charge of encapsulating packets.

The LispOutput method has also been rewritten to deal with ECM encapsulation. Before it was

only able to encapsulate packets in a LISP data header.

In Figure 5.8, we review the processing and the forwarding of the ECM MapRegister sent by

the NATed device at the RTR. Two modi�cations have been made in the work�ow: the �rst one

is to intercept the packet and record information about it. The second one is to intercept it again,

and encapsulate it in en ECM header towards the Map Server.
As usual when receiving a packet, the �rst method being called is the Receive method. Then, as

the MapRegister is encapsulated towards the RTR, control is passed to the LocalDeliver function.

This function has now been modi�ed to be able to handle ECM encapsulated packets (previously,

it was only able to handle data encapsulated packets). Therefore, if the packet is an ECM encap-

sulated packet, if the device is an RTR, and if the message is a MapRegister, we know that a

remote NATed device wants to use the RTR as a proxy. As explained in Chapter 4 Section 2.3,

the RTR must record a certain number of information about the NATed device in order to later

be able to reach it. These operations are conducted by the SetNatedEntry method, that will add

a special kind of entry into the LISP Cache, recording all that information.

Once this step is carried out, the �ow is resumed as usual and LispInput is called. This method is

in charge of decapsulating packets, and has been modi�ed to handle ECM encapsulated packets,

while previously it was only able to deal with data encapsulated packets.

Once the packet is decapsulated, it will continue its journey in the IP stack. It is passed to the

Receive method again. As can be seen in the Figure, this packet comes from the NATed device

and is addressed to the Map Server, therefore, control will be passed over to IpForward. Then, as

the packet needs to be encapsulated, it is passed to the Send method.
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Figure 5.8: ECM MapRegister processing at the RTR

Once again, the packet will be intercepted in the stack with DPI techniques to determine if the

message is a MapRegister coming from a foreign device. This can be determined simply by

looking at the source address of the packet, which is LRLOC1, and not the RTR RLOC. If that

is the case, it must be ECM encapsulated towards the Map Server and the packet is thus passed

to LispOutput, that will encapsulate it correctly. Finally, SendRealOut is called to forward the

packet down the stack as usual.

Now that we have seen the main of the processing for the NATed Registration Procedure, let

us have a look at the novel SMR procedure. The RTR must handle correctly ECM encapsulated

SMRs, i.e., change the ITR RLOC �eld inside the message, and reoriginate it towards the remote

ITR, as described in Chapter 4 Section 3. To do so, the procedure is roughly the same as in Figure

5.8. Up until LocalDeliver, the process is carried out in the same way. A new condition is inserted

there to check that the message is an SMR in order to change the ITR RLOC �eld. Once this is

done, the work�ow is resumed by calling LispInput as usual. Then the packet follows the same

path except that it won’t be redirected towards LispOutput as it musn’t be encapsulated, but

rather sent as is to the remote ITR.

Lastly, let us review the MapRequest processing for a NATed EID at the RTR, that can be

found in Figure 5.9. As explained in Chapter 4 Section 3, the RTR must do two things: answer

with a MapReply on behalf of the NATed LISP device, and transmit the MapRequest, encapsu-

lated in a Data header, back to the NATed device, for it to be aware of its correspondents. To

do so, the work�ow presented above has been adapted a new time, as can be seen in Figure 5.9.

The MapRequest that arrives at the RTR is destined to the RTR RLOC, control is thus passed

to the method LocalDeliver. Here, we check if the device is an RTR, and if the MapRequest is
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for an EID that is NATed. If so, the IP destination is modi�ed and put to the NATed LISP device

RLOC, LRLOC1. Then control is directly passed to the method Receive. The packet will follow its

journey into the stack as usual, and arrive at the Send method. This method has been modi�ed

to check if the message is a MapRequest for a NATed EID, and if so, redirect the �ow towards

LispOutput, that is in charge of encapsulating the packet in a data header.

At the same time, a copy of the packet is made for it to be delivered at the RTR application, and

for a MapReply to be sent as usual.

Figure 5.9: MapRequest processing for NATed EID at the RTR

Now that we have reviewed the encapsulation/decapsulation process for the control mes-

sages exchanged (during the NATed Registration Procedure, and the novel SMR procedure), let

us review the process for the Data Forwarding. The work�ow is actually the same as the decap-

sulation work�ow (presented in Figure 5.2b) followed by the encapsulation work�ow (presented

in Figure 5.2a) that were already in use for classic Data Forwarding.

However, the LispOutput method has been modi�ed again to deal with the NATed Data For-

warding. Indeed, there are two cases of �gure when the device is an RTR: either it receives

packets from a NATed device, or it receives packets towards a NATed device. In the �rst case,

the encapsulation procedure is not modi�ed. The RTR will perform the necessary MapRequests

if no mapping is present in its Cache and encapsulate packets towards remote ETRs in the usual

fashion. For the second case however, the RTR must deal with NAT traversal. It will thus use the

public IP address and the public port of the NAT to encapsulate the packets, instead of the usual

LISP data port, 4341.

As a �nal step, let us review the state of the LISP Cache and of the LISP Database at the RTR
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when it is serving as a relay for a NATed device. Special entries need to be inserted in both of

them in order for NATed Data Forwarding to happen seamlessly and to integrate well with the

existing work�ow.

Upon reception of an ECM MapRegister at the RTR, we already said (Chapter 4 Section 2.3) that

the RTR is recording a certain number of information about the NATed device in order to be able

to later reach it. We also said that these operations are carried out by the SetNatedEntry method.

The di�erent entries that are inserted by SetNatedEntry and their use can be found in Table 5.1.

Location Entry Purpose

Cache (EID −→ NAT translated address) Forward data packets to-

wards NATed device.

Database (EID −→ RTR RLOC) Answer MapRequests on

behalf of NATed device.

Cache (LRLOC −→ NAT translated address) Forward control packets

(addressed to LRLOC) to

NATed device.

Table 5.1: RTR LISP Cache and Database

The two entries inserted in the Cache are speci�c type of entries meant to deal with NAT

traversal. The class MapEntry has been adapted to record the necessary �elds, namely, the NAT

public port, the RTR own RLOC, and the NATed LRLOC.

3.4 LISP-MN Helper

As we explained in Section 2.4, Helpers are useful in ns-3 to deal with the low-level details of

models and make the life of the script writer easier. Helpers to install the LISP Data Plane and

Control Plane, as well as the MR/MS applications already existed, but no helper for the LISP-MN

had been written yet. Therefore, we implemented a LISP-MN Helper for setting up LISP mobile

nodes, and manage handover procedures from one attachment point to another in the network.

The LISP-MN Helper exposes a certain number of methods that the script writer can use to

easily set up the simulation. Let us review in Listing 5.2 the usage of the Helpers. On line 4, the

LISP-MN Helper is instantiated with the node we want to be a LISP-MN, and its EID address.

Then, on line 11, we de�ne what nodes in the network should be the attachment points for the

LISP-MN, and we set them on line 12 with the SetRoutersA�achmentPoints () method. On line

13 and 15, we de�ne the subnet for each router, which will be used for DHCP considerations.

Then, on line 20, a handover is scheduled from the �rst attachment point (node 3) to the second

attachment point (node 5). Finally, the script writer calls the Install () method to bind everything

together.

1 [ . . . ]

2

3 / ∗ −−− LISP−MN Setup −−− ∗ /

4 LispMNHelper l i spMnHe lper ( nodes . Get (MN) , I p v 4 A d d r e s s ( " 1 7 2 . 1 6 . 0 . 1 " ) ) ;

5 l i spMnHe lper . S e t P o i n t T o P o i n t H e l p e r ( p2p ) ;

6

7 l i spMnHe lper . S e t D h c p S e r v e r S t a r t T i m e ( S t a r t T i m e ) ;

8 l i spMnHe lper . SetEndTime ( EndTime ) ;

9

10 / / S e t a t t a c h m e n t p o i n t s

11 NodeConta iner a t t a c h m e n t P o i n t s = NodeConta iner ( nodes . Get ( 3 ) , nodes . Get ( 5 ) ) ;
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12 l i spMnHe lper . S e t R o u t e r s A t t a c h m e n t P o i n t s ( a t t a c h m e n t P o i n t s ) ;

13 l i spMnHe lper . S e t R o u t e r S u b n e t ( I p v 4 A d d r e s s ( " 1 0 . 1 . 2 . 0 " ) ,

14 Ipv4Mask ( " 2 5 5 . 2 5 5 . 2 5 5 . 0 " ) ) ;

15 l i spMnHe lper . S e t R o u t e r S u b n e t ( I p v 4 A d d r e s s ( " 1 0 . 1 . 3 . 0 " ) ,

16 Ipv4Mask ( " 2 5 5 . 2 5 5 . 2 5 5 . 0 " ) ) ;

17

18 / / S c h e d u l e handover from a t t a c h m e n t p o i n t 0 t o a t t a c h m e n t p o i n t 1

19 / / ( a t t ime HandTime )

20 l i spMnHe lper . ScheduleHandover ( 0 , 1 , HandTime ) ;

21 l i spMnHe lper . I n s t a l l ( ) ;

22

23 [ . . . ]

Listing 5.2: LISP-MN Helper usage

It took only 10 simple lines of code to set up the LISP-MN as well as the whole handover

procedure between attachment points. Previously, when no Helper existed, the script writer

needed roughly 100 lines of code, and had to deal with low-level details about NetDevices and

VirtualNetDevices, Interfaces, DHCP servers and clients, IPv4 and MAC address assignments,

routing tables, etc.

3.5 Unit Tests

ns-3 is a major piece of software, and as such, it requires various tests to ensure the quality,

the correctness, the performance, and the robustness of its implementation. ns-3 provides a

fully-featured testing framework to encourage its contributors to write tests for the models and

code they add into the system. This tool allows for model validation, i.e., the veri�cation that a

particular model is implemented according to its speci�cations.

We wrote di�erent tests for both the NAT model and the LISP model, as none had been

written yet. Testing is of the utmost importance to verify the implementation of a model and

�nd any remaining errors. Additionally, testing is also useful once a model has been veri�ed

to avoid any regression, and keep the system maintainable. Indeed, the system must remain

valid over its lifetime, and it is important to detect any break of functionality when a change is

integrated into the system. These tests will be useful for future developers who wish to modify

the code without introducing regressions in existing functionalities.

In the next sections, we review the di�erent unit tests we implemented, as well as a brief

summary of the features they cover, for both NAT and LISP models. The source �les for the unit

tests can be found in src/internet/test and src/internet/test/lisp-test respectively.

NAT model

The unit tests implemented for NAT can be found in Table 5.2.

LISP model

For the LISP model testing, as we arrived quite late into the development stage, we decided to

implement broad tests for di�erent LISP con�gurations and scenarios, rather than to test each

feature individually. For each con�guration, we check that the �ow is established between the

two ends and that packets are �owing correctly between them. We review in Table 5.3 the dif-

ferent use cases that are covered.
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Unit Test Description
NatDynamic Tests that a packet exiting the subnet through NAT is correctly

modi�ed, and that its returning packet is also correctly modi�ed

(and forwarded) according to the dynamic rule.

NatDynamicDrop Tests that no packet can enter the NATed subnet when no

dynamic rule is de�ned for them, and that such packets are

dropped.

Table 5.2: NAT Unit Tests

Unit Test Description
Static Scenarios

SimpleLisp

MnLisp

PxTRs

MnBehindXtr

XtrBehindNat

MnBehindNat

Handover Scenarios
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SimpleHandover

NonLisp-

NatHandover

LispNatProxyHan-

dover

NonLispLispProx-

yHandover

Table 5.3: LISP Unit Tests

A lot of network con�gurations have been covered to ensure robustness of the implemen-

tation in various cases. Additionally, they provide code examples of how to set up the various

scenarios. This is useful for the beginner who wishes to setup a scenario, as LISP scripts require

quite a lot of con�guration for them to work properly, in particular regarding the static routes,

LISP Database, and RLOCs con�guration.
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Chapter 6

Analysis of LISP mobility with NAT

In this chapter, we review several handover scenarios between di�erent types of sites and com-

pare their performance. In particular, we will have a look at the performance of NAT Traversal

for LISP tra�c compared to classic tra�c with no NAT deployment. We �rst conduct a theo-

retical analysis on the di�erent scenarios, and explain our methodology for the simulations we

conducted. Then we present the results of the simulations, and draw conclusions.

1 Simulation scenarios and methodology

We are interested in studying the di�erent handover scenarios that can be found in Figure 6.1.

The LISP-MN is �rst situated in a LISP site and is downloading content from the Content Server

(typically, the streaming of a video). This server is situated in a non-LISP site, and thus requires

the use of PxTRs to communicate with the LISP-MN. In a second time, the LISP-MN roams in

a non-LISP site behind a NAT (typically behind an operator box at home) (1). In that case, the

use of an RTR is also required in order to transmit tra�c through the NAT. Then, the LISP-MN

roams again in a second non-LISP site (2). Finally, the LISP-MN arrives in a LISP site (3). We

Figure 6.1: Handover scenarios

will study this mobility scenario in terms of control message overhead, and in terms of handover
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delay. This handover procedure happens transparently for the transport-level communication

and the connection is not interrupted.

1.1 Theoretical analysis

We will now review and compare the control messages exchanged for the three handover scenar-

ios. Note that the handover procedure is fully determined by the site of arrival of the LISP-MN.

The starting site has no impact on the handover procedure and the messages exchanged.

There is one exception though: when the LISP-MN starts a communication behind a NAT, and

then roams into another site with no NAT, the LISP-MN will have to send an additional MapRe-

quest to the Mapping System to resolve the mapping of its correspondent. Indeed, when NATed,

the LISP-MN was encapsulating everything to the RTR, who had the responsibility of resolving

mappings on behalf of the LISP-MN.

Arrival into a non-LISP + NAT site (1)

In Figure 6.2, the precise handover procedure when roaming from a LISP site to a non-LISP site

behind a NAT can be found.

Figure 6.2: Handover procedure when LISP-MN roams behind a NAT

Firstly, the connection is established and data is �owing from the LISP-MN to the content

server through the PxTRs. Notice that the tra�c is asymmetric: LISP-MN sends its packets to the

PETR so that the PETR can decapsulate them and forward them natively in the Internet towards

the content server. Conversely, LISP-MN receives tra�c from the PITR, because it acts as an ITR

for non-LISP sites and encapsulate non-LISP tra�c towards LISP sites.

Then the mobile node roams into a non-LISP site that is behind a NAT, and the handover proce-

dure is started.

The �rst step for a LISP device when receiving a new (L)RLOC is to check whether it is NATed or

not. For this purpose, two control messages (InfoRequest and InfoReply) are exchanged between

the LISP-MN and the Map server. When the LISP-MN realizes it is situated behind a NAT, the

48



NATed Registration Procedure is triggered (see Figure 4.2 for the message details). Once regis-

tered to the RTR and to the Map Server, the LISP-MN cannot resume sending data just yet, it must

�rst update all the remote caches that have stored the previous mapping. To do so, it triggers

the SMR procedure for all remote sites that have been communicating with it (in this case, the

PITR). This remote cache update procedure adds four control messages to the count.

Finally, LISP-MN sends data encapsulated towards the RTR, that is now responsible for encapsu-

lating the packets towards the right ETR. This �ow is new for the RTR, meaning that it probably

doesn’t have mapping information for the destination EID. It issues a MapRequest, answered

with a negative MapReply (as the mobile is communicating with a non-LISP site), before the

data �ow can be resumed between LISP-MN and the content server.

All in all, the control message overhead of the handover procedure is 12 messages. We can

also de�ne the overhead in terms of bytes. As the length of the di�erent control messages varies

according to the number of records, the number of RLOCs in those records, and the MAC algo-

rithm that is used; we will de�ne a lower bound on the number of bytes exchanged. For each

message, we consider the minimum number of bytes for the message to be valid, i.e., a message

with no more than one record, and no more than one RLOC per record. The authentication data

length is assumed to be 32 bytes. The number of bytes for each type of message can be found in

Table 6.1.

Message type Nb of bytes

MapRequest 32

MapReply 40

MapRegister 76

MapNotify 76

InfoRequest 64

InfoReply 96

Table 6.1: Number of bytes for each control message

Then, to the number of bytes for a message, we need to add the encapsulation overhead. The

di�erent values can be found in Table 6.2. For a simple IP packet, the minimun IP header length

is 20 bytes, plus 8 bytes of UDP header. For the ECM encapsulation, we have two times that

quantity, plus the ECM header itself, which is 4 bytes. And �nally, for the Data encapsulation,

this is the same computation as for the ECM header, except that the the data header is 8 bytes

long.

Encapsulation Nb of bytes

Simple 28

ECM 56 + 4 = 60

Data 56 + 8 = 64

Table 6.2: Number of bytes for each encapsulation

If we take back Figure 6.2, and apply the values that we just de�ned for each type of message,

and for each encapsulation, we �nd a lower bound on the message control overhead of 1172 bytes

(672 bytes of control messages, 500 bytes of encapsulation).

Let us now de�ne the handover delay that we will be measuring in our simulation. It is

de�ned as the delay between the last packet received by the LISP-MN before the handover pro-

cedure, and the �rst packet received by the LISP-MN after the handover procedure. This is
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illustrated in Figure 6.2. This handover delay is composed of the NAT discovery process, the

NATed Registration, the remote cache update, as well as the DHCP procedure to acquire a new

(L)RLOC.

Arrival into a non-LISP site (2)

By comparison, the handover procedure when roaming into a non-LISP site (without any NAT)

can be found in Figure 6.3.

Figure 6.3: Handover procedure when LISP-MN roams into a non-LISP site

As can be seen, the procedure is less complicated, and will most probably result in a shorter

handover delay, with only 7 control messages exchanged, instead of 12. In terms of bytes, the

overhead is at least 612 (416 bytes of control messages, 196 bytes of encapsulation). The handover

procedure is the same as for the �rst scenario, except that the overhead of the RTR is not present

anymore: the messages can �ow directly between participants without having to be relayed by

the RTR. Moreover, a MapRequest to the Mapping System is also sparred, as the LISP-MN already

knows to which ETR to encapsulate, while the RTR had to discover it.

The handover delay is de�ned in the same way as for the �rst handover scenario.

Arrival into a LISP site (3)

Finally, let us have a look at the handover procedure when roaming into a LISP site on Figure

6.4.

The procedure is very similar to scenario (2) (see Figure 6.3) but with some additional over-

head. The NAT discovery and Registration process happen in the same way, except that each

packet is intercepted by the xTR and encapsulated a second time, adding to the delay. This sec-

ond encapsulation is represented by a red cross at the xTR. The remote cache update procedure

is also longer than in scenario (2), due to the fact that the RLOC assigned to the LISP-MN is in

fact part of the EID space of the xTR, and is therefore an LRLOC that is not routable. For this

reason, the remote ITR (the PITR in this case) must �rst query the Mapping System to be able

to send the SMR-invoqued MapRequest. More precisely, the PITR, upon receiving an SMR from

the LISP-MN, wishes to send an SMR-invoqued MapRequest back to the LISP-MN. However,

the LRLOC of the LISP-MN is not routable. Therefore, the PITR �rst sends a MapRequest to the
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Figure 6.4: Handover procedure when LISP-MN roams into a LISP site

Mapping System. Once it has the necessary mapping, it can send the SMR-invoked MapRequest,

encapsulated towards the xTR.

The number of control messages exchanged is 10, slightly more than for scenario (2) and

slightly less than for scenario (1). As for the two previous scenarios, let us compute the control

message overhead in terms of bytes. This time, all messages from and to the LISP-MN su�er

double encapsulation (data encapsulation), because the LISP-MN is situated into a LISP site. After

computing, we get an overhead of at least 1052 bytes (520 bytes of control messages, 532 bytes

of encapsulation).

The handover delay is de�ned in the same way as for the �rst two scenarios.

A summary of the number of control messages exchanged (as well as the number of bytes)

in each of the scenarios can be found in Table 6.3.

Scenario (1) (2) (3)

# control messages 12 7 10

# bytes ≥ 1172 ≥ 612 ≥ 1052

Table 6.3: Handover overhead

1.2 Simulation setup

In this section, we explain the details of the simulation setup and we justify our choices. In par-

ticular, we see how the handover procedure between sites is carried out, and what type of tra�c

is used during the simulation. Additionally, we also justify why we analyse only the handover

delay, and why we don’t attempt to draw any further conclusions on application-level conse-

quences.
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Handover procedure

Regarding the handover procedure between two attachment points (router1 and router2, for ex-

ample), the LISP-MN is actually physically connected to both of them, and has one interface for

each router. First, the interface to router1 is up, while the interface to router2 is down. This sim-

ulates a situation where the LISP-MN is in the subnet of router1.

Then, during the handover, the interface to router1 is set down, and the interface to router2 is

set up. This simulates the roaming of the LISP-MN in the subnet of router2. Of course, this is a

very arti�cial way of simulating a roaming event. In reality, the connection of the LISP-MN to

the second subnet would not be immediate, as it is implemented in the simulation. However, this

immediate connection allows us to focus solely on the delays introduced by LISP, without any

exterior interference.

Type of tra�c

As to the type of tra�c used for the simulation, we chose to use a constant bit rate tra�c over

UDP. This may look like an unrealistic assumption to use this kind of tra�c to simulate the

streaming of a video, but it serves our purpose of evaluating the handover delay as accurately as

possible.

The tra�c generated by the streaming of a video is far from a constant bit rate tra�c. Indeed,

streaming is composed of two transmission phases: a bu�ering phase, or initial burst, where a

certain amount of video is downloaded as fast as possible; and a throttling phase, where parts

of the video are requested on demand by the client, when its bu�er gradually becomes empty as

the video is played out.

Roughly, this kind of tra�c can be modeled with an On-O� application, which is characterized

by periods of data transmission followed by periods where no tra�c is generated.

However, this kind of tra�c doesn’t allow us to measure precisely the handover delay. Indeed,

what we want to know is the time necessary for the LISP-MN to be reachable after a handover.

This time has been de�ned as the delay between the last packet received by the LISP-MN be-

fore the handover procedure, and the �rst packet received by the LISP-MN after the handover

procedure. If we use an On-O� application, it may happen that the LISP-MN’s unreachability

period overlaps with an O� period of the tra�c, as can be seen in Figure 6.5a. In such a case, we

would measure a handover time ofHt+ t1+ t2, while the real handover time (i.e., unreachability

period) is Ht.

Conversely, by using a constant bit rate tra�c (1024bytes/0.01s), we can detect more accu-

rately the handover time Ht with a maximum error of 2ε, where ε = 0.01 s (assuming perfect

conditions, where the network doesn’t introduce additional delays, and where packets arrive at

a constant rate at the LISP-MN).

In practice, even with imperfect conditions, the handover time measure with a constant bit

rate application still stays more accurate than with an On-O� application. In conclusion, by

choosing a cbr tra�c, we remove from the equation other considerations (such as streaming

considerations), which allows us to only study the e�ect that interests us, namely, the handover

delay.

Application-level consequences

The basic use case that we introduced earlier is the streaming of a video. Therefore, it could

have been interesting to have a look at the content quality, as observed by the mobile user when
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(a) On-O� tra�c

(b) Cbr tra�c

Figure 6.5: Handover time measure methodology

watching the video. We can de�ne the content quality as the number of stalling events (i.e., the

number of times the video freezes - and for how long - because of an empty bu�er). However,

we will see that these e�ects are not signi�cant to study in the context of a LISP handover, and

that no strong conclusions can be drawn from simulations, or even from real observations.

Indeed, we can be faced with di�erent scenarios. It could happen that the handover occurs

during a period where the bu�er is full, and thus where no tra�c is generated. In that case,

the handover would occur completely transparently to the user, without any bad e�ect on the

content quality (even though the handover delay may be quite long). Or, on the other hand, it

could happen that the handover occurs right at the time where the bu�er becomes empty and

that new video chunks are requested. In that case, a stalling event would be more likely.

What situation the user will be in most of the time is completely random, and doesn’t depend

on any parameter, or anything linked one way or another to LISP. Indeed, the time at which the

handover happens (bu�er full, or bu�er empty) is completely random. Therefore, it would be

meaningless to a�rm that 15% of the time (for example), the user experiences a stalling event.

The only thing we can say is that, in the worst case (bu�er empty), a user would experience a

stalling event of Ht seconds.

In conclusion, the only signi�cant parameter that we can study is the handover delay. Trying

to conclude anything else about application-level consequences makes no sense.

1.3 Simulating a realistic network

Simulation is useful to evaluate new technologies, to verify and analyse protocols and systems,

without the need to develop a complete test bed, which is most often very costly. This is why we

decided to use the ns-3 Network Simulator. However, although ns-3 provides robust models of

how packet data networks work and perform, we must take care to set up a realistic simulation,

whose results are meaningful and can be applied to reality.

Although ns-3 is very scalable and e�cient, it is of course impossible to model the entire

Internet in it. Our simulation must necessarily use a reduced number of nodes and do some ab-

stractions. For the simulation to be as realistic as possible, we will be using some real data that we
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introduce in the simulator for several aspects of the scenario, namely, the Mapping Distribution

System, the use of proxies, the use of RTRs, and the SMR exchange between xTRs.

We review in the next sections the datasets that we use, and how we model the delays in-

troduced by the use of those elements. We also provide a visual summary of the places where

arti�cial delays have been introduced.

Simulating the Mapping Distribution System

We already talked about the Mapping Distribution System (MDS) of LISP in Chapter 3 Section

1.3, saying that LISP relies on such a Mapping System to obtain mappings between EID and

RLOC(s). The current Mapping System is LISP Delegated Database Tree (LISP-DDT) [15] and

is organised as a distributed hierarchical database, mirroring a DNS-like architecture. Such a

distributed database is composed of multiple nodes and organised in multiple levels.

In ns-3 however, the entire Mapping System is not composed of a full DNS architecture.

Rather, it is simulated with only two nodes: a unique Map Resolver, to query the Mapping Sys-

tem, and a unique Map Server, to forward MapRequests to authoritative ETRs. Therefore, it is

necessary to simulate the response time of the Mapping System by introducing arti�cial delays

in the Map Server response time, in order to simulate the entire process of the Mapping System

lookup. To do so, a Random Variable is used to draw the response time from.

In order to choose a �tting distribution for the response time, we base our choice on the

work of Coras et al. [25]. They have evaluated the performance of the LISP Beta Network [26]

regarding the Control Plane (i.e., the Mapping System) and found that the Mapping System typ-

ically provides reliable performance and relatively low resolution delays. The resolution delay

is de�ned as the RTT a packet requires to travel to the Map Resolver, cross the Mapping System,

reach the authoritative ETR, and return to the requesting ITR. They found the median to be less

than 200ms, with only 10% of the requests exceeding 500ms.

Figure 6.6: RTT distribution

[25]

The Cumulative Distribution Function (CDF) of the RTT can be found in Figure 6.6 for

2012 and 2013. answered corresponds to real mappings, and negative corresponds to negative

MapReplies. The RTT for negative MapReplies is often lesser than for classic MapReplies be-

cause the negative MapReply typically comes from a DDT node, while the classic MapReply

comes from an ETR, and thus travels a bit further into the Mapping System hierarchy.

In ns-3, there is a convenient way to de�ne a Random Variable based only on its CDF, with

the EmpiricalRandomVariable class. Therefore, we used the overall 2013 curve of Figure 6.6 to
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de�ne the Random Variable used for the response time of the Map Server.

Simulating PxTRs

In Chapter 3 Section 1.4, we introduced the interworking mechanism that is used for communi-

cation between LISP sites and non-LISP sites. This mechanism introduces two network elements,

the PITR and the PETR, that act as ITR and ETR for non-LISP sites. These elements are deployed

worldwide, outside the edge domains, in the core of the Internet, and are geographically spread

apart.

Several studies have already been conducted on PxTRs ([16], [25]) and show that this inter-

working mechanism has a global negative impact on performance. Indeed, their use introduces

a path stretch as well as additional delays in the tra�c. In particular, Coras et al. [25] show that

there is an increase in the delay by at least 20% for 70% of the EID space. They also con�rm

the intuition that the placement of PxTRs in the topology, as well as the BGP policies, are the

determining factors in the path and delay stretch introduced by the use of proxies.

In ns-3 however, we cannot simulate the entire Internet topology, neither the placement of

PxTRs in that topology, nor the BGP policies. Therefore, we must necessarily introduce arti�cial

delays, as we did for the MDS, to simulate the use of PxTRs. This arti�cial delay will be introduced

in the processing time of the PITR, to simulate the time required to travel to the PETR, reach the

remote host, arrive at the PITR, and �nally return to the origin xTR.

We searched for a ready-to-use dataset giving the distribution of delays when using proxies,

but unfortunately, we were unable to �nd one. Therefore, in order to choose a �tting distribution,

we will combine two datasets, that can be found in Figures 6.7a and 6.7b:

(a) RV1 (b) RV2

Figure 6.7: PxTRs delays distribution

• RV1: A dataset of RTTs from a vantage point to several locators, from Saucez et al. [27].

• RV2: A dataset of relative delay stretch due to interworking, from Coras et al. [25].

The relative delay stretches of RV2 are computed according to the following formula:

ρ =
d̂p − dn
dn
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where dn is the delay between two xTRs without the intervention of proxies, and where d̂p
is the delay obtained if the tra�c transits through proxies.

Obviously, these relative stretches alone can not directly be used for the simulation. Indeed,

they don’t give real delays that we can introduce in the simulator, but rather, they only give the

increase in the delay when using proxies. Unfortunately, we do not dispose of the raw data used

to compute ρ, i.e., we do not dispose of the distributions of d̂p nor dn. This is why we need the

second dataset, RV1, that gives us RTTs of RLOCs, or in other words, the delay between two

xTRs without the intervention of proxies.

In practice, to compute the delay introduced by PxTRs in ns-3, we will use two Empirical-

RandomVariables, each representing the distributions of dataset RV1 and RV2. We draw a time

from RV1, which gives us the time between two xTRs without the intervention of proxies, and

we multiply it by a coe�cient drawn from RV2, which represents the delay stretch. That way,

we are able to simulate the time that is needed for tra�c to transit through proxies.

Simulating RTRs

As we explained in Chapter 5, the NAT extensions [8] proposed for NAT traversal of LISP tra�c

are still at the early development stage. To the best of our knowledge, no investigation of NAT

traversal has been conducted. Therefore, we do not dispose of any data we could introduce in

ns-3 for the use of RTRs. Therefore, we will use a uniform random variable in the interval [90-

110]ms.

Simulating the SMR exchange

In Chapter 4 Section 1.2, we introduced the SMR procedure [5] that is used to update remote

caches upon a roaming event. As a reminder, this procedure is composed of 3 messages ex-

changed between two xTRs: �rst an SMR is sent to the remote LISP device (whose mappings

must be updated). In turn, this device will send a MapRequest, that will then be answered with

a MapReply.

To simulate the delay for each packet of the exchange, we can use the dataset RV1 from

Saucez et al. [27], which represents the distribution of RTTs between xTRs. The RTT is de�ned

as the time needed for a packet to reach the remote xTR and come back to the sender. As such,

we cannot directly use the data, because we need the delay from one end to the other, and not the

RTT. We thus make the assumption that the delays to the remote xTR and back are symmetric,

and divide the values by two.

In practice, in ns-3, we de�ne an EmpiricalRandomVariable based on the RV1 dataset. To

simulate the time needed for a packet to reach the remote xTR, we draw a delay from the random

variable and divide it in two.

Arti�cial delays deployment

We now present in Figure 6.8 a summary of the random variables that have been deployed in the

simulation in order to recreate a realistic environment.

Random variables are represented by red labels. We �rst have the MDS random variable that

is used at the Map Server to simulate the lookup time of the entire Mapping System. Then, at

the proxies, we have two random variables, RV1 and RV2. Combined, they represent the delay

introduced by the use of proxies. The random variable RV1 is also deployed in each LISP device
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Figure 6.8: Random Variables deployment in simulation scenarios

to simulate the SMR exchange procedure. Finally, there is a uniform random variable deployed

at the RTR, to simulate the time needed to make a detour through the RTR.

1.4 Independent replications of the simulation scenario

To evaluate the handover delay, we launched multiple runs of the scenario in order to get mean-

ingful results. When using a simulator to evaluate a scenario, it is important to make sure the

di�erent instances of the scenario have been run independently of each other for the results to be

signi�cant. We will now brie�y introduce the ns-3 Random Number Generator (RNG) and how

it was used to convince the reader of the validity of the results, and to allow them to reproduce

the results obtained.

ns-3 uses a (pseudo) RNG that produces a long sequence of random numbers based on the

seed that it is given. The length of this sequence is called the period, and it is important in

a simulation to guarantee that we will never cycle and repeat ourselves. This long sequence

of numbers is divided into streams that are uncorrelated to each other. Each stream is itself

partitioned disjointedly into uncorrelated substreams. The RNG produces 1.8 × 1019 streams,
each partitioned into 2.3 × 1015 substreams, each containing 7.6 × 1022 random numbers. In

total, the RNG produces 3.1 × 1057 uncorrelated random numbers before it cycles and repeats

itself. A summary of this can be found in Figure 6.9.

Figure 6.9: ns-3 Random Number Generator

The way ns-3 works is by assigning a stream to a Random Variable (RV) each time that a

RV is created. Conceptually, this means that each RV has its own “virtual” RNG. Additionally,

this means that in a simulation it is possible to instantiate the same number of RVs as there are
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streams, i.e., 1.8 × 1019. In our simulations, we used between 7 and 8 random variables, as can

be seen in Figure 6.8, which is by far inferior to 1.8× 1019.

The Random Variable is then con�gured to use one of the substreams found in the stream,

with the run number. In a simulation run, this means that each RV can be used to draw at most

7.6× 1022 random numbers from it. In our case, random variables have been used for the MDS

response time to MapRequests, for the SMR exchange, and for the RTT of data packets. The

number of requests made to the MDS is clearly inferior to 7.6 × 1022. The SMR exchange is

limited to three messages. And the number of data packets exchanged during the simulation

(less than a thousand packets) is also inferior to that number. Therefore, we are assured of the

statistical soundness of a simulation run.

Finally, to actually run multiple independent replications of the same simulation scenario, the

way to proceed is to advance the run number, which causes the RV to use a di�erent substream
from its main stream. As the di�erent substreams are uncorrelated, the independence property

of the multiple runs of the simulation is ensured, and this allows us to compute statistics on a

large number of independent runs.

In our simulation, the RNG has been con�gured with a seed of 5, and 30 independent repli-

cations have been run through a bash script that advances the run number at each run.

2 Simulation results

In this section, we present the results we obtained for the di�erent handover scenarios we intro-

duced in Section 1. Finally, we have a look at the limitations of the simulations.

2.1 Analysis

Figures 6.10a, 6.10b, and 6.10c depict the global handover delay for each simulation scenario,

namely, a handover between a LISP site and a non-LISP site behind a NAT, a handover between

a non-LISP site behind a NAT and a non-LISP site, and a handover between a non-LISP site and

a LISP site.

(a) Regarding the roaming into a non-LISP site behind a NAT, the handover delay is less than

1.75 seconds 80% of the time.

(b) For the roaming into a non-LISP site, the delay is less than 1.43 seconds 80% of the time.

(c) And for the roaming into a LISP site, the delay is less than 1.9 seconds 80% of the time.

Let us �rst have a look at the di�erence between the roaming in a non-LISP site behind a

NAT (1) and the roaming in a non-LISP site (2), in order to evaluate the impact of NAT traversal

on LISP tra�c. Globally, the roaming in a non-LISP site (2) has the smallest handover delay. This

is not surprising as this scenario is the simplest one and su�ers least overhead. Indeed, from the

theoretical analysis (see Figure 6.3), scenario (2) has the smallest number of control messages

exchanged, as well as the smallest number of bytes. The main part of the handover is composed

of the SMR exchange.

On the other hand, the roaming into a non-LISP site behind a NAT (1) su�ers the most over-

head in theory (see Figure 6.2), with 12 control messages exchanged, for a total of at least 1172
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(a) Arrival in a non-LISP site behind a NAT (1) (b) Arrival in a non-LISP site (2)

(c) Arrival in a LISP site (3)

Figure 6.10: Simulation results

bytes. This is reverberated in the handover delay that we observe in Figure 6.10a, which is higher

than for scenario (2). As expected, the NAT deployment has a negative impact on the handover

delay, due to the additional complexity of the handover procedure in itself (NATed Registration

procedure), as well as the RTR relay that must be used for all tra�c, and that introduces a path

stretch, as well as additional delays.

Now that we reviewed the impact of NAT traversal for LISP tra�c, we can compare with the

roaming of a LISP-MN in a LISP site (3). From the theoretical analysis (see Figure 6.4), scenario

(3) su�ers from quite some overhead as well, with 10 control messages exchanged, for a total of

at least 1052 bytes. By comparison, scenario (1) had 12 control messages for at least 1172 bytes.

Although scenario (1) su�ers the most overhead in theory, the handover towards a LISP site (3)

has the largest handover delay most of the time, as can be seen in Figure 6.10c, with a median of

1.76 seconds for scenario (3), and a median of 1.67 seconds for scenario (1).

This is surprising, because we expected NAT traversal to have a larger impact on the han-

dover delay than scenario (3). However, these results can be explained from the simulation. If we

look back at Figures 6.2 and 6.4, which depict the control message exchange for scenario (1) and

(3) respectively, we see that both scenarios are almost identical: There is one InfoRequest/Reply

exchange, one SMR exchange, and one MapRequest made to the MDS. Both the SMR exchange

and the request to the MDS are part of the Post-Registration Delay that is represented in the

59



Figures. The main di�erence is the Registration Procedure, which is NATed in one case, and not

in the other.

From their similitude, we would expect both scenarios to have the same delays for each aspect

of the handover (InfoRequest/Reply, SMR, MapRequest), except with a larger delay for the Reg-

istration Procedure in case of a NATed device, overall resulting in a larger global handover delay

for scenario (1). However, this is not what we observed in the simulation results.

(a) Roaming into a non-LISP site behind a NAT

(b) Roaming in a LISP site

Figure 6.11: Handover delay split into its main contributions

In order to investigate further these results, we present in Figure 6.11 the mean global han-

dover delay split into its main contributions, for scenario (1) and scenario (3). We only represent

the mean Registration delay and the mean Post-Registration delay because all other contribu-

tions (DHCP, InfoRequest/Reply, proxies) are identical for both scenarios. The �rst thing that

we can observe from Figure 6.11 is that the NATed Registration Procedure is indeed longer than

a classic Registration Procedure with no NAT deployment. This was expected of course, since

the RTR introduces a stretch.

Then we can see that the Post-Registration delay (composed of an SMR exchange and a MapRe-

quest to the MDS) is shorter in the NATed case than in the classic case. This is unexpected,

because the Post-Registration delay is made up of the same events in both scenarios. From this

basis, we could thus expect similar results. However, this is not the case, and the delay is shorter

in the NATed case than in the classic case.

This surprising result can actually be explained by the fact that in practice, for scenario (1), the

MapRequest to the MDS is made in parallel to the SMR procedure. The delay for the MapRequest

thus overlaps with the SMR exchange delay. While for scenario (3), the SMR procedure can only

complete once the MapRequest to the MDS has been resolved, making these events sequential

and not parallel.

This explains why the global handover delay is shorter most of the time for scenario (1), con-

versely to what was predicted.

To conclude our analysis of the simulation results, we observed that the roaming into a LISP

site (3) su�ers the largest handover delay most of the time, followed by the roaming into a non-

LISP site behind a NAT (1), followed by the roaming into a non-LISP site (2).

60



2.2 Limitations

As we already explained, simulation is a great tool to evaluate new protocols and systems, but

one must take care to setup a realistic scenario for the results to be meaningful. In Section 1.3,

we reviewed the datasets that we used to introduce arti�cial delays in the simulation in order to

capture the ins and outs of real LISP tra�c. However, for the NAT traversal part (NATed Reg-

istration Procedure, relaying of all tra�c through the RTR), we did not dispose of any datasets,

simply because the NAT extensions of the LISP protocol have never been studied in the �eld, to

the best of our knowledge. We thus fell back to a simplistic uniform random variable to try to

introduce some delays due to the use of an RTR.

However, such a variable probably fails to capture the delays introduced by this new network

element. Indeed, the impact of RTRs probably depends on their placement in the topology, much

like the impact of PxTRs does. Additionally, for a scenario where both RTRs and PxTRs are used,

the path stretch (and thus additional delays) will also depend on the placement of PxTRs and

RTRs relatively to each other. As no study of RTRs has been done, and even less studies of the

use of RTRs and PxTRs jointly, the e�ects of both elements combined are di�cult to evaluate

with a simple uniform random variable.

From the results of the simulations, we found that NAT traversal (1) has a smaller impact on the

handover delay most of the time than for scenario (3). However, in a real environment, it would

be reasonable to expect the opposite, with scenario (1) having a larger impact than scenario (3).

Indeed, proxies already introduce some form of triangular routing. Using RTR besides proxies

may deteriorate even further the performance, as yet another detour is introduced in the tra�c.

Finally, regarding the arti�cial delays introduced by the use of PxTRs, the datasets that were

used are not perfect either. Indeed, we combined two datasets, RV1 and RV2, because we did not

�nd a ready-to-use dataset giving the distribution of delays when using proxies. It would have

been more accurate to directly use such a distribution. However, even though these datasets have

some limitations, we can say that they manage to model the e�ects of proxies reasonably well.
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Chapter 7

Conclusion

Internet routing protocols have not evolved much over the years, despite the Internet huge

growth and its deep changes in terms of network usage, such as Tra�c Engineering (TE), mo-

bility, or multi-homing. These factors are now threatening the scalability of the current Internet

architecture and addressing system. To remedy these issues, a new kind of network-level proto-

col arose, based on the identi�er/locator separation paradigm. LISP is one of those protocols and

is the most widely deployed nowadays. LISP advocates for the separation of the identi�er and

the locator roles of the IP address, introducing two distinct address spaces: the EID (identi�er)
address space, and the RLOC (locator) address space. In order to bind the two address spaces

together, and to stay compatible with legacy Internet, LISP uses encapsulation to tunnel packets

from one border router to another. A Mapping System is used to map an EID to a set of RLOCs,

and e�ectively encapsulate packets in the core of the Internet.

Afterwards, LISP-MN and LISP+NAT have been introduced to bring mobility extensions to

LISP, and provide a NAT traversal mechanism for LISP mobile nodes, respectively. However,

these propositions remain mostly limited to the theoretical level and, to the best of our knowl-

edge, no investigation of their combined performance has ever been conducted.

1 Contributions

In this master thesis, we aimed to provide a �rst look at NAT traversal for LISP mobile nodes

through simulations on the ns-3 Network Simulator. We studied several handover scenarios

between di�erent types of site (LISP, non-LISP, non-LISP behind NAT) and compared their per-

formance regarding the handover delay, and the overhead of the handover procedure. Our ex-

periments led us to believe that NAT traversal does have a negative impact on LISP tra�c, which

is not surprising due to the complexity brought by LISP+NAT.

To perform our experiments, we adapted the ns-3 Network Simulator to incorporate a NAT

model, proxy functionalities, and LISP+NAT extensions to the existing LISP model. Our work

provides PxTRs and RTRs implementation, as well as the NATed Registration Procedure, and

NATed Data Forwarding. Additionally, we wrote a LISP-MN Helper, meant to help the script

writer to easily setup a scenario with mobile nodes and handovers. Various unit tests for the

NAT and LISP models have also been added to the ns-3 testing framework.

We also de�ned the novel SMR procedure used to update the remote caches after a handover,

in case the LISP node is NATed. Indeed, all works about NAT traversal focused on static scenarios,

with no roaming and no handover. This important aspect of mobility, i.e., the update of remote

nodes’ state after a handover, was left completely unspeci�ed.
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2 Future work

All aspects of the work to evaluate LISP mobility with NAT have been achieved: NAT, proxy, and

LISP+NAT models have been implemented in the ns-3 Network Simulator. The analysis itself

has been conducted in the most realistic way possible, with the use of datasets to simulate real

LISP tra�c. However, one can always �nd re�nements to bring to one’s work.

Regarding the implementation in ns-3, one idea would have been to integrate LISP processing

into the Net�lter framework. Indeed, as of now, a lot of LISP-related code has been written inside

the IP stack functions (Receive, Send, Forward, and LocalDeliver). This is of course functional,

but it is not the most modular way of doing things, as IP code shouldn’t be mixed with LISP code.

However, as it was already implemented there when we started our work, we only extended it.

One idea would have been to rework the entire structure, leveraging on the Net�lter framework

that we integrated into ns-3. Indeed, Net�lter allows a module to register callbacks at certain

places in the IP stack. Based on this approach, the LISP module would then have been com-

pletely separated from IP, and only register callbacks to the Net�lter framework. However, a

�rst study to determine the feasibility of this solution must be done, as LISP processing is more

complex than simple packet �ltering, or network address translation. Indeed, it requires to jump

from one place to another into the stack, as we reviewed in the encapsulation/decapsulation

work�ow, and the various Data Plane operations. If the integration is possible however, the code

would really bene�t from greater clarity and modularity.

In this master thesis, we studied LISP mobility with NAT. However, initially, we had con-

sidered some other �elds of possible study, that were unfortunately unrealizable due to ns-3

limitations. We brie�y present these areas for further analysis here.

Outgoing Tra�c Engineering

As we already explained, LISP brings new routing capabilities, especially for Tra�c Engineering.

A LISP site has the possibility to easily control its incoming tra�c by manipulating the mappings

it distributes. This concerns interdomain incoming Tra�c Engineering, i.e., how tra�c enters

the network. However, we didn’t �nd any work on outgoing Tra�c Engineering, i.e., how tra�c

leaves the network.

There are two aspects to outgoing Tra�c Engineering: the �rst one is to determine which

xTR/RLOC should be used for the outgoing tra�c, based on whatever criteria (performance, load

balancing, customer or peer link, etc). The second one is to e�ectively enforce the decision that

is made in the LISP site, so that packets leave the network through the chosen xTR/RLOC.

Currently, outgoing Tra�c Engineering is achieved with BGP and intradomain TE, where the

chosen best routes learned via BGP are distributed in the internal routers of the AS. With LISP

however, one cannot simply distribute routes learned via BGP, as the paradigm has completely

changed.

This raises several questions: How to best choose the xTR/RLOC? Could an operator easily

de�ne several criteria for this choice? For example, one criteria could be the performance from

the host to the xTR (i.e., we choose which xTR is used based on the delays from the host to

the xTR). Another one, probably more interesting, would be to choose the xTR/RLOC based on

the upstream provider that we want to use for the outgoing tra�c, depending on the provider

performance. To go even further, the choice of the xTR/RLOC could also be based on both the

source and the destination at the same time. For example, we could imagine that the choice of

the best ISP also depends on the destination. Would it be possible to take the destination into
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account when selecting the xTR/RLOC?

For the enforcement aspect of outgoing TE, how to e�ectively distribute routes in the internal

routers? How to implement it? In any case, iBGP must necessarily be modi�ed since external

routes (learned via eBGP) mustn’t be distributed to the internal routers anymore, because of the

two address spaces of LISP. Should we de�ne a new mechanism to distribute routes inside the

AS? Or should we modify iBGP to do it?

Source- VS. Destination-based Tra�c Engineering

LISP gives network operators a way to enforce Tra�c Engineering decisions, with its mechanism

of mappings. However, the control plane, i.e., how those mappings are created, is not de�ned.

Right now, mappings are most often created based on policy criteria (load balancing, type of link,

preferred RLOC vs. backup RLOC), and not on performance criteria. The only attempt that we

found at performance-based TE is IDIPS [19]. The authors present a solution called IDIPS (ISP-
driven path selection) allowing an ISP to engineer its interdomain tra�c. IDIPS can be seen as a

black box ranking paths based on network measurements. It is implemented in a server-client

fashion, where IDIPS servers can be queried by LISP routers in order to rank paths between two

RLOCs.

In such a scenario, we could ask ourselves who has the responsibility of querying the IDIPS

servers for RLOC selection? The ITR, who wishes to �nd the best path? Or the authoritative

ETR, who owns the mappings? Both have their advantages and shortcomings.

• Ideally, if the ETR is responsible for querying IDIPS, it should consider all possible sources,

to rank path from the sources towards itself. Indeed, mappings cannot be generic for all

sources, as tra�c coming from China or from Europe won’t follow the same paths. The

ETR would then use the possibility o�ered by LISP to di�erentiate mappings based on the

requester of the mappings, to deliver the correct mapping to the correct source.

In that case, the granularity of the sources must be determined since it is not manageable

to query IDIPS for all possible sources in the world. What would be the granularity to have

the best trade-o� between management overhead and precision of the Tra�c Engineering?

What would be the cost of storing all those di�erentiated mappings? The problem here

is that the ETR potentially maintains information for sources that will never encapsulate

towards itself. Should we instead only select some LISP sites (those that encapsulate the

most towards the ETR) instead of considering all sources, in order to reduce the load?

• The second option is to leave this responsibility to the ITR, and have a collaboration be-

tween the ETR (who provides the list of RLOCs) and the ITR (who determines which RLOC

to use by querying IDIPS). However, querying the IDIPS servers will introduce additional

delays before packets can be sent to the destination. What are those delays? Are they

reasonable or will they be too high?

Considering everything, what is the best option to perform performance-based Tra�c Engi-

neering? The ITR, or the ETR?
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