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tests in University of Liège have been hired from.
In addition, I would like to thank the University of Patras (Greece), in particular
the Structures Laboratory team with Stathis Bousias and Elias Strepelias of the
Civil Engineering Department for their collaboration, especially the executing of
the experiments on coupling beams and the processing of the experimental data.
I also thank the other jury members for their interest and attention.

I am also grateful for the overall good atmosphere in the department, especially
the encouragement and the sorrow sharing among colleagues.

A special thank goes to my loved ones, especially Franca, my parents and brother
and sister, who have supported me throughout the last 4 months, who endured my
moods and worries and who always believed in me. Without their support, I would
not have achieved the final result.

3



4



Abstract

Title Evaluation of the Load-Bearing Mechanisms
in Coupling Beams and Shear Walls
Based on DIC Measurements

Author Mathias Langer, Master Ingénieur Civil des Constructions
Academic year 2018-2019
Adviser Boyan I. Mihaylov

This work presents two applications of Digital Image Correlation in tests on
short coupling beams and shear walls. This type of reinforced concrete members are
typically subjected to high shear forces and are susceptible to shear failures along
diagonal cracks.

The general principles of DIC and their practical application are studied and
described. Based on DIC analysis, the kinematics of the two reinforced concrete
members are illustrated and compared to a two-degree-of-freedom kinematic model
for short coupling beams and to a three-degree-of-freedom kinematic model for
shear-dominated walls in order to assess their performance. It is shown that the
kinematic model underestimates the deformations of the beam, while the wall’s
deformation patterns are well predicted.

Methods to evaluate the load-bearing mechanisms based on DIC are also pre-
sented. For aggregate interlock, three different crack models are used to determine
the shear transferred through the critical crack based on crack opening and slip. The
shear carried by the critical loading zone is evaluated through constitutive stress-
strain relations for the concrete. It is shown that sum of all contributions from
shear mechanisms gives a shear force of the same order of magnitude as the mea-
sured applied shear force. In the coupling beam, about 45% of the applied shear
force is estimated to be resisted by transverse reinforcement, 35% by the critical
loading zones, and 20% is transferred through aggregate interlock. The shear wall
was only provided with a few stirrups and their contribution was only about 16%,
the aggregate interlock contribution was 8%, while the critical loading zone carried
about 76% of the applied shear force. These results represent a first valuable insight
into how shear is shared among different mechanisms and can be used to inform and
improve models for the shear behavior of non-slender reinforced concrete members.
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Résumé

Titre Étude des méchanismes de résistance
dans des poutres de couplage et des murs de cisaillement
grâce à des mesures DIC.

Auteur Mathias Langer, Master Ingénieur Civil des Constructions
Année académique 2018-2019
Promoteur Boyan I. Mihaylov

Ce travail présente l’application de la méthode ”Digital Image Correlation” sur
un essai sur une poutre de couplage courte (short coupling beam) et sur un essai sur
un mur de cisaillement (shear wall). Ces éléments en béton armé sont typiquement
soumis à des forces de cisaillement importantes et peuvent subir des ruptures par
cisaillement le long de fissures diagonales.

Les principes généraux de DIC et leur application sont étudiés et présentés. Les
cinématiques des deux éléments en béton armé, basées sur DIC, sont illustrées et
comparées à un modèle cinématique à deux degrés de liberté pour la poutre de
couplage et à un modèle à trois degrés de liberté pour des murs de cisaillement afin
d’évaluer leur performance. On montre que le modèle cinématique sous-estime les
déformations de la poutre, tandis que la déformation du mur est bien prédite.

Des méthodes pour quantifier des mécanismes de résistance à partir de mesures
DIC sont également présentées. En ce qui concerne l’imbrication des granulats
dans les fissures, trois modèles sont utilisés pour déterminer, à partir de l’ouverture
de la fissure et de son glissement, le transfert de cisaillement à travers la fissure
critique. Le transfert de cisaillement dans la zone critique de chargement est évalué
sur base de relations constitutives contrainte-déformation du béton. Il est montré
que la somme des contributions des différents mécanismes est du même ordre de
grandeur que la force de cisaillement appliquée. Pour la poutre de couplage, 45%
de la force appliquée est estimée reprise par les étriers, 35% par la zone critique de
chargement et 20% par la fissure critique grâce à l’imbrication des granulats. Le
mur de cisaillement contenait seulement une petite quantité d’étriers de sorte que le
cisaillement repris par ces armatures transversales n’était que de 16%. L’imbrication
des granulats contribue pour 8% à la résistance au cisaillement et les 76% restants
sont repris par la zone critique de chargement. Ces résultats donnent une première
idée concrète de la répartition du cisaillement entre les différents mécanismes de
résistance. Les modèles décrivant le comportement en cisaillement des éléments
non-élancés peuvent être améliorés sur base de ces résultats.
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Chapter 1

Introduction

1.1 Short coupling beams in buildings
Short coupling beams provide coupling of shear walls in coupled wall systems as
illustrated in Fig. 1.1. They are commonly present due to openings in walls for
windows and doors. Since they typically feature small aspect ratios (a/h, with a
being the shear span and h being the depth of the beam), they are referred to as short
coupling beams. Their application in coupled wall structures results in a stiff system
with large lateral resistance. Consequently they work in double curvature with high
shear stresses. Therefore, they are susceptible to shear failures. An example of a
failure of a coupling beam is shown in Fig. 1.2. Since their aspect ratio is small,
they can be considered as deep members and the classical plane-sections-remain-
plane hypothesis does not apply.

1.2 Short shear walls
Short shear walls are often used as wall-type bridge piers in bridges, as illustrated
in Fig. 1.3.

They usually work under a combination of axial load and high shear. As a
consequence, they are susceptible to brittle shear failures. Fig. 1.4 shows an example
of such a failure. For this type of deep reinforced concrete member, the classical
plane-sections-remain-plane hypothesis does not apply.

1.3 Shear mechanisms in coupling beams and
walls

In order to sustain the applied shear force, different shear mechanisms are discussed
in literature. The most discussed shear mechanisms are:

• Aggregate interlock

• Compression zone

• Dowel action

• Shear reinforcement
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Figure 1.1: Entire coupled wall system.

Figure 1.2: Shear failure of a short coupling beam.
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1.4. DIC background

Figure 1.3: Bridge with wall-type pier.

For slender beams and walls many models exist considering one of these actions
as governing. Few models account for a combination of mechanisms or all mecha-
nisms. Cavagnis, Ruiz, and Muttoni (2018), for example, take into consideration all
previously cited mechanisms as well as the residual tensile strength, as shown in a
free-body diagram in Fig. 1.5. The ongoing discussion and the various propositions
lead to the question: Which models are correct?

For short members, no model exists that accounts for all shear mechanisms
except kinematic-based theory for coupling beams and walls. The kinematic model
for coupling beams is referred to as 2PKT and the kinematic model for shear walls
is referred to as 3PKT. They are based on 2 and 3 degrees of freedom respectively
that describe a simplified deformation pattern.
There is a need for validation and refinement of the kinematics as well as for an
experimental evaluation of shear mechanisms in order to possibly improve the model.
Digital Image Correlation provides new possibilities for answering these questions.

1.4 DIC background

Digital Image Correlation (DIC) is a technique that is used to track deformations of
a specimen under loading. This technique is typically used during tests in laborato-
ries, where a specimen is loaded and the engineers are interested in the displacement
field of the specimen.
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Figure 1.4: Shear failure of a pier.

the one proposed by Ulaga can be identified in the different

projections ax and ay of the contact surfaces between the

aggregates and the cement matrix (Figure 7b and Figure 7c,

respectively). A detailed analysis of the two-phase model and

the calculated shear and normal stresses as a function of the

different crack kinematics can be found elsewhere.13,16,23

In Figure 7e–f, the shear stresses measured by Jacobsen

et al22 (black lines in the figure) for some double notch con-

crete specimens tested under different kinematics (first a

mode I, where an initial crack opening w0 is created

between notches, followed by a mixed-mode kinematics,

with combined opening and sliding at an angle γT, refer to

Figure 7d) are compared to the shear stresses calculated

according to the model of Walraven and using the crack

kinematics proposed by Walraven (green lines) and Ulaga

(red lines). It shall be noted that the crack kinematics

imposed by Jacobsen et al22 is a representative of the kine-

matics experimentally measured in the upper and steeper

parts of the critical shear crack of slender members, where

the largest aggregate interlock stresses are activated (initial

opening w0 < 0.05 mm and mixed-mode angle γ > 45 ,

refer to Reference 13).

In Figure 7e–f, it can be observed that the pre- and

post-peak response is overestimated when the crack kine-

matics proposed by Walraven is adopted. On the contrary,

the kinematics of Ulaga leads to solutions that slightly

underestimate the peak stresses and overestimate the post-

peak stresses for sliding larger than 0.25 mm. On that

basis, the transferred normal and shear interface stresses

are estimated using the crack kinematics proposed by

Ulaga,21 which better reproduces the kinematics experi-

mentally measured in comparison to the one assumed by

Walraven18 and provides a lower bound solution of the

aggregate interlock stresses.

Finally, by integration of the stresses along the crack in

the vertical direction, the shear force VAgg. is obtained

(Figure 6).

4.2 | Concrete residual strength contribution

The residual tensile strength of concrete consists on the

capacity to transfer tensile stresses through the fracture

process zone of a crack.24 As experimentally observed,13

the top part of the critical shear crack (quasi-horizontal

part) is characterized by a pure mode I opening response

and is thus governed by the residual tensile strength of

concrete.9

In this paper, the relation proposed by Hordijk25 for the

concrete residual strength is used (see Figure 8a):
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where wc = 5.14#(GF/fct) represents the maximum crack

width for stress transfer, c1 = 3 and c2 = 6.93 are constants,

GF is defined according to fib Model Code 201026 equal to:

GF =73#fc
0:18 N

m
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and the tensile strength of concrete fct is assumed equal to

fct = 0.3#fc
2/3 (for fc < 50 MPa26). Only openings w larger

than 0.02 mm (accounting for DIC reliability) have been

considered for the calculation of the residual tensile stresses,

as the position of the crack tip has been assumed where the

relative displacements reach that value.

Due to the crack inclination, the normal stresses in the

crack lead to a component in the vertical direction, named

VRS (Figure 6).

4.3 | Dowelling action

The dowelling action refers to the capacity of flexural rein-

forcement bars to transfer shear forces across the crack,

which can be activated when the longitudinal reinforcement

follows a transversal displacement. In the analyses pre-

sented in this paper, the dowelling contribution of the ten-

sile reinforcement VD,tens is obtained from the measured

displacements of the concrete surface in the vicinity of the

critical shear crack. It is assumed that the bar is unbonded

in a length lda = ld + db, where ld is the horizontal length

affected by the dowelling crack and db is the diameter of

the bar. The deflection is approximated to a third-order

polynomial on the basis of the vertical displacements and

rotations at the extremities of lda (v0, v0
0, and v1, v1

0), which

are derived through the measurements of two points located

in each external region at a distance xd = db/2 (refer to

Figure 8b). Assuming a linear-elastic behavior of the bar

and differentiating three times, the deflection with respect to

x coordinate, the shear carried by the dowelling action can

be obtained:
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FIGURE 6 Analysis of shear-transfer actions: free-body equilibrium and

internal forces: (a) cantilever subjected to point load; (b) cantilver subjected

to distributed load

CAVAGNIS ET AL. 55

Figure 1.5: Free-body equilibrium and internal forces in a cantilever (without trans-
verse reinforcement) subjected to a point load Q. Vagg = aggregate interlock contri-
bution, VRS = concrete residual strength contribution, VC = compression chord and
arching action, VD,tens. = dowelling action (Cavagnis, Ruiz, & Muttoni, 2018).
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1.4. DIC background

In order to get the displacement field as a function of time or loading, cameras
must take photos at a certain frequency (e.g. 2 Hz) during the loading so that the
evolution of the deformation is recorded.

DIC becomes more and more popular among researchers and a wide range of
software is available, sharing the main principles. The technical development in
terms of high resolution cameras as well as high storage hard drives enables scien-
tists and engineers to use the technique for many applications at different scales.

General principles that are valid for most DIC applications are presented in the
following.

1.4.1 Setup

Digital Image Correlation is nowadays a convenient way to follow a deformation
during lab tests. The technique requires generally high resolution digital cameras to
take a series of images and a computer to process and evaluate the data. It should
be noted that the resulting data from DIC can be very large. First of all, depending
on the duration of the test and the frequency of photograph recording, the number
of photographs can be large. Furthermore, processed data requires a lot of space
too. External hard drives are therefore required in many applications.

Based on the images, a software tries to track observable changes in those images
in order to derive a displacement or deformation field. The DIC can only measure
deformations on the surface of the element (Lavision, 2015).

The processing of the recorded photographs consists mainly in comparing the
digital images at different stages of deformation. More precisely, blocks of pixels,
defined by a ”subset size”, are defined in the reference image. The software tries
to determine their respective locations in a deformed configuration, such that a
displacement information is obtained.
One must make sure that the blocks are unique so that the processing works effec-
tively. The common way to achieve random blocks of pixels is to create a random
pattern on the specimen by producing dark, preferentially black, speckles of 3-5
pixels in size on a white surface in order to achieve a high contrast. The pattern
should be non-repetitive, isotropic and high-contrast (Correlated Solutions, 2009).

DIC requires proper lighting and surface preparation. Therefore, dust particles
on the camera chip as well as light reflections causing bright spots should be avoided.
Those optical errors lead to undesired results. Generally speaking, the specimen
should be lightened in the most uniform way, without causing dark shadows and
leaving dark areas. Adapted light sources are needed.
Furthermore, heat waves must be avoided. They may distort the image, which can
cause major errors in the results. Heat waves can be produced by hot objectives,
but also by light sources. The choice of the type and amount of light source must
be carefully chosen (Correlated Solutions, 2014a).
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1.4.2 Processing
The processing of the photographs is performed based on a set of important no-
tions and quantities. The most important DIC parameters commonly used in DIC
software are the following:

• Mask : The mask defines the region of interest (ROI), the parts of the image
that will be processed. The resulting displacement field is only defined in this
region.

• Seeding points/Seeds: Those are points defined in the masks/ROI and repre-
sent starting points for the algorithm to determine the deformation.

• Correlation mode: It defines the reference for the deformation computation.
The mode ”relative to first” is commonly used. The deformation of each image
is then calculated with respect to the first image of the sequence (Lavision,
2015).

• Subset size: The software assigns a mesh of small windows, called subsets,
across the image. The subset size defines, in pixels, the size of those windows.
To evaluate the displacement of a specific data point, the subset will be used
to correctly locate the point in a deformed configuration.
A clear recommendation for the subset size does not really exist. It can re-
quire some iterations to get this option right. The manual for the software tool
Ncorr states that the smallest subset which does not lead to noisy displace-
ment data should be chosen. Generally, larger subsets may have a smoothing
effect (Blaber & Antoniou, 2017). However, larger subsets contain more infor-
mation and are more unique. Subsets can also overlap, which makes them not
completely independent from each other (Correlated Solutions, 2014b).

• Step size: The step size defines the grid spacing of the data points (Lavision,
2015). For most applications, a good rule of thumb is to choose the step size
to be roughly 1/4 of the subset size, in order to get relatively independent and
non-repetitive data (Correlated Solutions, 2014b).

1.4.3 Strain calculation
DIC software usually offers an option to compute strains. Strains involves differ-
entiation. Strain calculation is thus very sensitive to noise. In fact, noise that is
present in displacement fields will cause magnified errors in the strain field (Blaber
& Antoniou, 2017). DIC software usually employ methods to avoid an amplification
of noise during strain calculation.
Lavision (2015) and Correlated Solutions (2014b) describe in their documentation
that smoothing filters are employed for this effect. A smoothing area can be selected
in the parameters. In practice, if you use a small step size then you’ll want to use a
larger ”strain filter”, defining the ”smoothing area”. For a large step size a smaller
strain filter is recommended (Correlated Solutions, 2014b).

The fundamental strain calculation in a software called Vic-3D uses an algorithm
normally used in Finite Element Analysis software (Correlated Solutions, n.d.). For
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each data point, 3 neighboring data points are used to compute strains. More
precisely, with the surrounding data points, a local mesh of triangles is created and
the the strain for one data point is obtained by interpolating the strain tensor of
the triangles of interest. In case of small triangles, strain tensors are noisy and the
smoothing should be applied. Those strains are smoothened using low-pass filters
(Correlated Solutions, 2009).

Blaber and Antoniou (2017) compute strains from displacement data by using
a least square plane fit to a group of data points. A strain calculation parameter is
the radius of a circle including the data points to fit the plane to. By this method,
displacement gradients are determined, which, in turn, are used in strain calculation.

In conclusion, strain calculation is a tricky operation, especially because differ-
entiation leads to amplified noise. Different programs use different methods to deal
with strain calculation.

1.5 Thesis objectives
Two experimental studies with two different DIC systems will be described. The
experimental program about short coupling beams was initiated by Professor Boyan
Mihaylov. The tests were performed in the University of Patras. A second ex-
perimental program about shear walls at the University of Liège is conducted by
PhD student Renaud Franssen. In the framework of this thesis, these two studies,
more precisely the first test of each experimental campaign, is used to address the
following objectives:

• Discuss best practices for performing DIC measurements.

• Analyze DIC data from the two tests.

• Study the deformation patterns and validate the kinematic models of the
2PKT and 3PKT.

• Use measured kinematics along failure planes together with local constitutive
models to evaluate the mechanisms of shear resistance.

1.6 Thesis outline
The master thesis is structured into different chapters.

In chapter 2, the test on the shear wall and on the coupling beam are described
in terms of test specimen properties and DIC setup.

In chapter 3, the shear behavior of short walls and short coupling beams is de-
scribed. The kinematic model for both members, 3PKT and 2PKT, are presented.
Local constitutive models to evaluate the load-bearing mechanisms based on DIC
measurements are explained.
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Chapter 4 focuses on the test of the shear wall. The global behavior is described
in terms of load-displacement response and at failure. Furthermore, the data from
DIC analysis will be compared with other measurements in order to validate the
DIC. The kinematics of the wall at failure from DIC is compared to the 3PKT
deformation pattern. Finally, the shear-resisting mechanisms, namely aggregate
interlock, critical loading zone and stirrups, are computed.

Chapter 5 is related to the test of the coupling beam. The same points as in
chapter 4 are discussed in this section.
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Chapter 2

Experimental campaigns & DIC
systems

2.1 Test on shear wall

2.1.1 Test specimen

Geometry and reinforcement

The wall has a rectangular cross-section with a depth of 1500 mm and a width of
230 mm. The wall is 2300 mm high. Two reinforced concrete blocks are rigidly
connected to the wall at its top and bottom. The vertical and horizontal force are
applied on the top block.

The wall is reinforced by a series of longitudinal reinforcing bars as shown in Fig.
2.1. A small amount of transverse reinforcement has been placed : 4 stirrups of φ8
every 600 mm. A global view of the reinforcement is represented in Fig. 2.2.

Material properties

Concrete The first specimen of the series of experiments was cast with ordinary
concrete. Tests on cylindrical concrete samples presented a strength of about 53

 

 

Figure 2.1: Longitudinal reinforcement.
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Figure 2.2: Transverse reinforcement. The stirrups in the test had a diameter of 8
mm.

MPa. Young’s modulus was estimated at 32000 MPa. The maximum aggregate size
is 16 mm.

Steel Tests on stirrups revealed a yield strength of fy = 540 MPa and an ulti-
mate tensile strength of fu = 640 MPa. The strain at peak stress is εu = 6.5%. The
longitudinal reinforcement has a yield strength of fy = 530 MPa and an ultimate
strength of fu = 620 MPa. The strain at peak stress is εu = 8%.

All geometrical and material properties of the test specimen are summarized in
Tab. 2.1.

Loading and boundary conditions

The specimen is fixed at the bottom and can freely move at the top. The foundation
is anchored in the slab of the laboratory. The axial force is applied by 6 steel bars,
3 on either side, that are connected to a steel member on top of the wall. By pulling
on these steel bars from below the floor, they compress the wall through the steel
member. The horizontal load is applied by a jack, as can be seen in Fig. 2.3.

Instrumentation

One face of the wall is prepared with a speckle pattern, while the opposite face and
the sides are equipped with displacement transducers (potentiometers) and LED
sensors. The instrumentation is depicted in Fig. 2.4 and 2.5. Blue instrumentation
elements are mostly displacement transducers (DT), whereas the circles distributed
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2.1. Test on shear wall

Figure 2.3: Test setup.

b h d a a/h ρl ρl,web fy ρv fyv f ′c
[mm] [mm] [mm] [mm] [−] [%] [%] [MPa] [%] [MPa] [MPa]
230 1500 1088 2550 1.7 1.86 1.86 530 0.04 540 53
b = width of wall cross-section; h = depth of wall section ; d = effective depth of section;
a = M/V - wall height subjected to shear; a/h = aspect ratio;
ρl = 2As/bh = ratio of longitudinal reinforcement; ρl,web = ratio of longitudinal web reinforcement;
fy = yield strength of longitudinal reinforcement; ρv = ratio of transverse reinforcement;
fyv = yield strength of transverse reinforcement; f ′

c = concrete cylinder strength

Table 2.1: Properties of the shear wall.
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Figure 2.4: Instrumentation (DT sensors, LED targets) of the wall, with tension
side view.

on the wall’s face are LED targets.

Displacement transducers, or potentiometers, measure the relative displacement
between two points by converting the motion into an electrical signal. A part of
the DTs measure global displacements like the horizontal and vertical displacement
of the top block with respect to the foundation as well as a possible movement
of the foundation. In addition, several other displacements are measured, like a
possible crack opening at the base (DT n°8), a possible slip at the base (DT n°7)
and the horizontal displacement of the compression side (DT n°9). Their positions
are specified in a way such that their measurement is useful for the kinematic model
presented in Chapter 3.

The LED system consisting of 54 targets permits to track the displacement
of each LED during the experiment and to give an overall information about the
displacement field and deformations.

2.1.2 DIC system

The system used for the tests on shear walls is Davis 8.0.3 (Lavision), using 2
cameras partly mapped. One camera focuses on the bottom part of the wall whereas
the second camera keeps track of the top part. A part in the middle of the wall
is captured by both cameras. As a consequence, the definition of the experimental
setup in the calibration settings is not necessarily straightforward. The experimental
setup is shown in Fig. 2.6. In addition to the 2 cameras and the box that receives
all signals and transmits them to the computer, 2 vertical light sources provide more
illumination. They flash every time a picture is recorded.
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Figure 2.5: Instrumentation (DT sensors, LED targets) of the wall, with compression
side view.

Figure 2.6: Experimental setup of DIC.
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Calibration

The calibration process is crucial for the processing of the data and the reliability
of the results.
A correct calibration should lead to results representing the true dimensions, which
is defined by an image scale pixel/mm. The calibration should also correct inherent
camera lens distorsions and account for oblique viewing setups. The latter was not
negligible in the setup of the tests of the short walls in the University of Liège, since
both cameras were fixed on a same rail (see Fig. 2.6) but capturing two different
frames at different heights which leads to oblique viewing setups.
From the same point of view, a simple ”define scale” operation was not possible
since this option would not take into account neither camera lens distortions nor
perspective distortions but only determine a pixel/mm scaling (Lavision, 2015).
The more complex alternative to the simple ”define scale” operation is a perspective
calibration correction with use of a calibration plate. A calibration plate, visible in
Fig. 2.7, is characterized by a number of parameters, like shape, size and distance
between marks, distance between planes.

It can be noted here that the calibration process can take place before a test
starts. It consists of taking several pictures with a calibration board, called ”views”,
selecting 3 reference points on the board visible in each picture and do the calibration
process according to the software manual. Lavision (2015) recommends 3 views for
higher accuracy, while 1 view suffice in general.
An example of a recorded picture during the calibration process can be seen in Fig.
2.7. During the calibration process, the 3 reference points must be selected (circles
with cross). The first reference point defined in the first view will define the origin
of the calibrated coordinate system.
In software Davis, the calibration can be changed afterwards by selecting other
calibration settings but using the same pictures recorded during the first calibration.
One can even choose other recordings of the same test.

Before any recording of views, the setup must be defined. The present case of 2
cameras sharing a common area at the middle of the wall is quite special. One has
to think about the setting to chose from the different options in step 1 (Fig. 2.8).
The setup was neither 2 independent cameras nor 2 stereo cameras (mapped) but
rather a mix of both. Both camera frames share a common area, the middle part
of the wall so that the coordinate system of both frames should share a common
origin, so that they are not independent. Two options could be considered:

• The first option consists of carrying out a calibration for either camera, choos-
ing the option 2 cameras (independent 2D+2D) with 2 separate coordinate
systems. The origin of both coordinate system are situated at different lo-
cations. After calibration, one must redefine the origin (option define origin,
maintain calibration) without changing any calibration parameters. The ori-
gin should be selected at a location in the overlapping area so that the same
point can be selected for camera 1 and 2.

• The second option will use the advanced settings allowing the definition of 2
different coordinate systems. However, during the calibration process, one can
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2.1. Test on shear wall

Figure 2.7: Recorded picture during the calibration process.

Figure 2.8: Step 1 of calibration process : Define experimental setup.
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Chapter 2. Experimental campaigns & DIC systems

(a) Raw image, without correction. (b) Corrected image.

Figure 2.9: Comparison between raw and corrected image.

select the same origin by using a recorded photograph where the calibration
plate is visible in both frames (Lavision, 2015).

It is important to know that the output of the calibration is mainly a scaling of
the picture taking into account any varying magnification over the image such as is
the case when using a perspective viewing direction, but also distortions introduced
by the lens. The scale factor (in pixel/mm) represents the number of pixels that
one millimeter contains. A more convenient way to express the scale factor is in
mm/px, which defines the size of a pixel in the corrected image.

The calibration can be verified in several ways. One way is to compare the
width of the wall in the corrected image with the real dimension. Unfortunately,
no measurements were done on the uncracked wall such that a comparison was not
possible. However, in order to illustrate the effect of the calibration, one can com-
pare the depth of the wall measured on the corrected image with the measurement
on the raw image. As an example, the length of a line close to the top of the shear
wall was about 1513 mm in the corrected image, whereas in the original picture,
with the same pixel/mm scaling, the distance was only of about 1478,5 mm. The
correction has thus a significant effect1.
Another way to verify the calibration is to take pictures for a rigid body motion,
e.g. uniform displacement, and check if the displacement is correct in the calibrated
images.

The processing of the recorded pictures gives a displacement field. Each frame
will be processed separately, on the basis of its proper calibration and pictures. Both
datasets will then be combined2 and the vector fields will be merged3 so that one
get the displacement field of the whole specimen.

1The expected depth should have been 1500 mm. If we consider a general construction precision
of 1 cm, the most critical error would be if we consider smallest possible depth of wall of 1490 mm.
The calibrated image give a dimension of approximately 1513 mm. The maximum possible error
is thus (1513-1490)/1500 = 1,53 %.

2The operation ”copy and reorganize datasets - merge datasets to multi frame” will combine
both datasets.

3The operation ”merge vectors” will interpolate the displacement field of the top frame in order
to match it with the bottom one.
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2.1. Test on shear wall

Processing

The test consisted of 9 load steps separated by load stops. The acquisition rate of
the DIC setup was relatively high, a picture every half a second (frequency of 2 Hz).
The recording was interrupted after each loading interval. To analyze a given load
step, the corresponding images should be appended to the reference cycle, which
consists of 60 photographs of the specimen without any loading. The displacement
field issued by the processing is then calculated with respect to the first processed
image, which is a picture showing the unloaded specimen.
For example, in case of the last load step where failure occurred, after appending the
corresponding dataset to the reference cycle, the total set of photographs comprise
924 pictures. The following steps are necessary to process such a dataset:

• Select the operation ”2D DIC (single camera time series)” from the group
”Digital Image Correlation (LSM) - time-series”.

• Define the mask by drawing polygons marking the area of the specimen with
speckle pattern.

• Select seeding points.

• Define time-series settings: correlation mode and maximal expected displace-
ment (in pixels).

• Define displacement calculation settings: Subset size, step size, calculation
mode, activate or not the outlier filter4 and smoothing filter.

Strain uncertainty

This section is dedicated to practical strain uncertainty evaluation. It should be
noted that strain calculations are noisier for small subset sizes, and therefore for
small step sizes since the step size is chosen to be proportional (∼ 1/4 of subset
size). The strain calculation for a subset of 15 pixels is a lot noisier than the strain
field for a subset of 51 pixels. This difference can be seen in Fig. 2.10 that depicts
maximum principal strains of the specimen in still position, where zero strains would
be expected. The maximum principal strains for this configuration give an idea of
the strain uncertainty.
While for the larger subset size of 51 pixels (Fig. 2.10a), the strain uncertainty
has an order of magnitude of 0.01% with a relative smooth appearance, the strain
uncertainty for a smaller subset size (e.g. 15 pixels, Fig. 2.10b) is higher, of an order
of magnitude around 0.1%. In Lavision (2015), similar uncertainties were computed
for those subset sizes.

4If enabled, vectors that deviate too much from their neighboring vectors will be removed from
the deformation field (Lavision, 2015).
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Chapter 2. Experimental campaigns & DIC systems

(a) Subset size : 51 pixels. (b) Subset size : 15 pixels.

Figure 2.10: Strain uncertainties for different subset sizes (colorscale ranging from
-0.00024 to 0.00097).

2.2 Test on short coupling beam

2.2.1 Test specimen

Geometry and reinforcement

The geometry of the specimen is shown in Fig. 2.11. It is a short coupling beam,
orientated vertically, of a length of 1000 mm, a depth of 800 mm and a width of
140 mm. Two rigid blocks are connected to the beam. The blocks and the beam
were not poured at the same time. As a consequence, their material properties are
not identical and the connection is not necessarily completely rigid.

The reinforcement of the beam is represented in Fig. 2.12. Four longitudinal
reinforcing bars of diameter of 20 mm are located at each side of the beam. A light
transverse reinforcement is provided, consisting of stirrups of 8 mm in diameter
spaced by 180 mm. The outer ones are only situated 50 mm from the edge. The
transverse reinforcement ratio is equal to ρw = 0.399%.

Material properties

Concrete The commanded concrete is class C25/30 with an maximum aggregate
size of 16 mm.
The material was separately tested for the base block, the top block and the coupling
beam on cylindrical specimens (height = 300 mm, diameter = 150 mm). The results
are summarized below:

• The base block presented a mean compression resistance of fcm = 40.7 MPa
after 129 days.
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2.2. Test on coupling beam

Figure 2.11: Geometry of test specimen.

• The coupling beam had a mean compressive strength of fcm = 36.4 MPa after
123 days.

• The top block had a mean compressive strength of fcm = 38.1 MPa after 108
days.

Steel The commanded reinforcement is class S500C. Respectively 3 specimens
were tested for the reinforcing bars of diameter 20 mm and the stirrups of diameter
8 mm. For the stirrups, the yield stress is approximately 505 MPa and for the
longitudinal reinforcement around 512 MPa.

Geometrical and material properties are summarized in Tab. 2.2.

b h d a a/d ρl fy ρv fyv f ′c
[mm] [mm] [mm] [mm] [−] [%] [MPa] [%] [MPa] [MPa]
140 800 737 1000 1.36 1.22 512 0.40 505 36.4
b = cross-section width; h = total depth of section; d = effective depth of section;
a = shear span; a/d = shear-span-to-effective-depth ratio;
ρl = ratio of bottom longitudinal reinforcement;
fy = yield strength of longitudinal reinforcement; ρv = ratio of transverse reinforcement;
fyv = yield strength of stirrups; f ′

c = concrete cylinder strength

Table 2.2: Properties of the short coupling beam.
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Figure 2.12: Reinforcement of specimen.
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2.2. Test on coupling beam

Figure 2.13: Global view of the test setup.

Loading and boundary conditions

Fig. 2.13 shows the global setup of the test. The coupling beam is connected to
the rigid blocks, which represent the stiff adjacent walls of a typical short coupling
beam. A massive steel member in L-shape is rigidly connected to the top block. The
steel member is maneuvered by 4 actuators. Two of them load the steel member
horizontally by pulling on it towards a wall. The action from those two horizontal
actuators is the driving force of the test. They are loading the vertical part of the
steel beam on both sides, distant by 1 meter. They are exactly aligned with the mid-
section of the coupling beam. The other two vertical actuators are rather adjusting
the orientation of the steel member before and during the test. More precisely, before
loading the beam horizontally, the two vertical actuators adjust the steel beam in
order to position it horizontally because the instrumentation and the steel member
itself induced some movement, especially rotation, of the coupling beam and top
block. They are separated by 3 meters. Even though the steel member is relatively
massive, the connection of the horizontal and vertical part is not totally rigid.

Instrumentation

Fig. 2.14 depicts the planned instrumentation of sensors. A schematic of the imple-
mented instrumentation is shown in Fig. 2.15 and a photo of the real instrumenta-
tion is shown in Fig. 2.17. The two vertical measurement devices between the top
and bottom block as well as potentiometers measuring the horizontal displacement
of the top block with respect to the bottom block are missing in Fig.2.15 but are
visible in Fig. 2.16.
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Figure 2.14: Planned instrumentation of the coupling beam.
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2.2. Test on coupling beam

Figure 2.15: Implemented instrumentation of the coupling beam.

(a) Speckle pattern and DIC system. (b) Instrumentation on the front and
sides.

Figure 2.16: Photographs from the experimental setup (front view).
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Chapter 2. Experimental campaigns & DIC systems

Figure 2.17: Instrumentation on the back face (without speckles) of the specimen.

2.2.2 DIC system
The system used for the tests on the coupling beams in Patras is different. Only one
camera records the deformation of the specimen under loading. The specimen is con-
siderably smaller than the shear wall such that the frame is sufficient to capture the
whole specimen. The calibration is done with a standard board. The software used
for these experiments is Ncorr. Since the whole DIC setup including the calibration
and the processing of the data was in charge of the laboratory in Patras, only limited
information will be provided in this chapter. The main processing parameters are

• type = regular (analysis)

• radius = 30

• spacing = 3

• pixtounits = 0.5157

The subset spacing can be referred to as the step size by considering step size =
subset spacing + 1 = 4. The subset radius is referring to a circular subset and not
a rectangular one as it is used in Davis. The subset radius is 30 which corresponds
to, by multiplying by the pixel size of 0.5157 mm/px, 15.47 mm radius.

Pictures were taken every 5 seconds.
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Chapter 3

Shear behavior of short coupling
beams and walls

3.1 Deformation patterns
In this chapter, kinematic models will be presented. They are capable of describing
the deformed shape of a specific element. The kinematic model for short coupling
beams uses 2 degrees of freedom (DOF) to describe the deformation pattern, while
the model for shear walls uses 3 degrees of freedom. In combination with equilibrium
equations and stress-strain relationships, those models are capable of predicting the
shear strength and deformation at failure. The components of shear strength are
also distinguished and explicitly calculated (B. I. Mihaylov, Bentz, & Collins, 2013).

These models will be used to describe the deformation of the wall and the cou-
pling beam tested in the lab. The DOFs are computed from experimental measure-
ments, mainly displacement transducers. The predicted deformation will then be
compared to the actual deformation from DIC. In this way, the prediction can be
validated.

3.1.1 2PK model for short coupling beams
Short coupling beams are short members (aspect ratios a/h smaller than 2.5) present
in coupled wall structures. They carry high shear stresses and work in double
curvature.

Fig. 3.1 gives an overall description of the 2PKT for short coupling beams.
The adjacent walls are represented as rigid blocks. The deformation of the beam is
described by 2 kinematic parameters (degrees of freedom). The first degree of free-
dom is the average strain εt,avg in the top and bottom longitudinal reinforcement.
The second degree of freedom is the transverse displacement ∆c. The complete
deformation is described by the sum of the deformation pattern associated with
each of those two DOF as can be seen in Fig. 3.2. The transverse displacement
originates from the deformations of concrete in the critical loading zone (CLZ). The
critical loading zone can be defined as the zone where concrete crushing occurs. The
model is not completely symmetrical due to the formation of the CLZ only at one
end of the diagonal crack. According to experimental observations, this compression
zone is deeper at one end (B. Mihaylov, Liu, & Lobet, 2018), however, compression
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Figure 3.1: Two-parameter kinematic model for short coupling beams (B. Mihaylov,
Liu, & Lobet, 2018).

Figure 3.2: 2PK model for coupling beams.
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3.1. Deformation patterns

zones are generally found at both ends of the beam.

The deformation pattern associated with the DOF εt,avg can be described as
follows. When loaded by shear forces, the longitudinal reinforcement elongates. The
diagonal crack that formed due to high principal tensile stresses widens. Radial
flexural-shear cracks also form. Those cracks delimit a fan of rigid struts on both
sides of the diagonal crack. Similarly to the diagonal crack, the cracks of the fan
also widen due to the elongation of the longitudinal reinforcement.

The deformation pattern associated with the second DOF ∆c can be qualified as
a more typical shear deformation. Here, the deformations are related to the critical
diagonal crack and its ends. While the top end is represented by the CLZ, of a
length of lb1e, and its important diagonal compressive stresses, the bottom end is
the location where the longitudinal reinforcement is subjected to double curvature,
over a length of lk.

Expressions for the length of the CLZ, the dowel length, the cracked length
along longitudinal reinforcement and the angle of the critical crack can be found
in Fig. 3.1 (Eq. (1)-(4)). The complete displacement field can then be computed
thanks to Eq. (5)-(8), in function of the 2 DOFs.

Eq. (9)-(11) provide expressions to determine the stirrup strain and the crack
kinematics, more precisely the crack width and slip, halfway along the crack. Those
3 values are then used to compute the different shear resistance mechanisms across
the diagonal crack in function of the 2 DOFs.

Using the equilibrium of the forces on the beam, the values of εt,avg and ∆c can
be evaluated and thus, the complete behavior of the beam is predicted.

3.1.2 3PK model for walls
The three-parameter kinematic theory for shear-dominated reinforced concrete walls
was published by B. I. Mihaylov, Hannewald, and Beyer (2016). Similarly to the
model for short coupling beams, the kinematic model is able to describe the de-
formation pattern in walls whose aspect ratios is smaller than 3. Based on the
kinematic model, the response of these walls is predicted.

The three degrees of freedom (DOF) and their associated deformation are de-
picted in Fig. 3.3.

The first DOF εt,avg is the average tensile strain in the flexural reinforcement
below the critical crack. The critical shear crack is modeled as a straight line
inclined by an angle of α1 with respect to the vertical axis. The deformation due
to εt,avg consists in a rotation of the top rigid block and a cracking pattern below
the critical crack. The cracking pattern defines a series of rigid radial struts in form
of a fan pinned at point A and delimited by the flexural tensile reinforcement. The
struts are assumed to rotate about point A. The rotation is proportional to the
elongation of the tensile reinforcement between the foundation and the strut. The
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Chapter 3. Shear behavior of short coupling beams and walls

kinematics related to εt,avg reflect mainly flexural deformations.

The second DOF ∆c is the horizontal displacement in the critical loading zone
(CLZ). Since the other two DOF are set to zero, the bottom part remains un-
deformed while the top rigid block translates laterally. This lateral displacement
causes a double curvature of the tensile reinforcement over a length lk. This defor-
mation pattern can be associated with shear deformations.

The third DOF ∆cx corresponds to a vertical displacement of the top block in
the CLZ as a result of a rotation of the rigid block about point B. The action of the
vertical load drives the block downwards. The bottom fan is not affected by ∆cx,
however, the rotation induces a double curvature of the flexural reinforcement.

The superimposition of those 3 deformations gives the total deformation pattern
depicted in Fig. 3.3(d).

The displacement of each point in a x-z grid (δx and δz) can be computed thanks
to small displacement kinematics in function of the 3 DOFs. The displacements of
the points of the rigid block are given by

δx(x, z) = εt,avg lt
d

(h− z) + ∆cx

d
(h− d− z) (3.1)

δz(x, z) =
(
εt,avg lt
d

+ ∆cx

d

)
x+ ∆c. (3.2)

The displacements of the points below the critical crack are given by

δx(x, z) = εt,avg x (3.3)

δz(x, z) = εt,avg x
2

h− z
. (3.4)

The model can also be used to estimate the crack width and slip half-way along the
critical shear crack. The crack opening is calculated by

w =
[
εt,min lk
2 sinα1

h

d
+ ∆c cosα1 + ∆cx

d

(
h

2 sinα1
− d sinα1

)]
1
ncr

(3.5)

where εt,min is the strain in the flexural reinforcement within lk. The expression in
the brackets considers one single dominant diagonal crack. However, in members
with considerable reinforcement in the web, the crack opening is distributed among
a number (ncr) of cracks.

The slip between the crack faces can be estimated by

∆ci = ∆c sinα1 + ∆cx cosα1 −∆ci0 ≥ 0 (3.6)

where ∆ci0 represents a certain shortening of the top strut in the fan.
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3.2. Shear mechanisms

δxðx; zÞ ¼ εt;avgx ð3Þ

δzðx; zÞ ¼
εt;avgx

2

h − z
ð4Þ

Note that the displacements in the fan depend only on DOF
εt;avg, which causes rotation of the radial struts about point A,
and therefore results in both vertical and horizontal displacements.

To complete the formulation of the kinematic model, it is nec-
essary to estimate the angle of the critical crack α1 and lengths lk
and lt. Angle α1 is obtained from a shear strength calculation
according to the AASHTO code provisions (AASHTO 2007; Bentz
et al. 2006). Since the steepest cracks in short walls typically propa-
gate along the diagonal of the wall, angle α1 should remain larger
than or equal to the angle α of the wall diagonal. Fig. 3 shows an-
gles α1 and α as well as the equations necessary to calculate lengths
lk and lt. Length lk is evaluated as the sum of the expressions for l0
and (lk − l0), where l0 is the portion of lk below the critical crack.
The expressions for l0 and (lk − l0) are derived by considering one
crack below and one above the critical diagonal crack, taking also
into account limits imposed by the wall height and the width of an
effective tension zone min½2.5ðh − dÞ; h=2$. The crack spacing
along the flexural reinforcement scr is estimated based on Model
Code 90 [MC90 (CEB-FIP 1990)] by considering the reinforce-
ment ratio ρl1 in the effective tension zone. The expression for
lt shown in the bottom of Fig. 3 stems directly from the diagram
in the figure. Fig. 3 also shows the geometry of the critical loading
zone (CLZ), which will be discussed later in the paper.

To check whether the assumed kinematics models well the de-
formations in shear-dominated walls, Eqs. (1)–(4) are applied to
specimen VK3 to compute the location of the vertices of the trian-
gles (grid points) from the measured deformed shape in Fig. 1(c).

The effective depth d of the wall section is calculated by consid-
ering the centroid of the longitudinal reinforcement in one-half of

the section (d ¼ 1,160 mm). The area of this reinforcement As ¼
4,220 mm2 is also the area of the flexural reinforcement in the kin-

ematic model. According to an AASHTO shear strength calcula-

tion, the angle of the critical crack is α1 ¼ 34.5° > α ¼ 25.8°.

This angle is shown in Fig. 1(b) together with the predicted

transition zone at the top of the critical crack. The three DOFs

(a)

(b)

(c)

(d)

Fig. 2. Three-parameter kinematic model for shear-dominated walls: (a) DOF εt;avg, Δc¼ Δcx ¼ 0; (b) DOFΔc, εt;avg¼ Δcx ¼ 0; (c) DOFΔcx,

Δc ¼ εt;avg ¼ 0; (d) combined deformed shape
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Figure 3.3: 3PK model for shear-dominated walls. (a) DOF εt,avg; (b) DOF ∆c; (c)
DOF ∆cx; (d) deformed shape (B. I. Mihaylov, Hannewald, & Beyer, 2016).

3.2 Shear mechanisms
As discussed earlier, concrete members carry shear in a complex manner. The shear
resisting mechanisms and their proportion are highly discussed and a lot of research
is done on this matter.

A free body diagram as shown in Fig. 3.4 helps to identify the mechanisms. The
mechanisms in the previously presented kinematic models are (B. Mihaylov et al.,
2018):

• Aggregate interlock: local stresses across the critical diagonal crack.

 

M

V

VCLZ

vci

Vs

Vd

Figure 3.4: Shear mechanisms in short coupling beams. Vci = aggregate interlock;
VCLZ = shear carried in critical loading zone; Vd = dowel action of longitudinal
reinforcement; Vs = tension in the stirrups (B. Mihaylov, Liu, & Lobet, 2018).
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V CLZ

V CLZ

V s

V agg

Shear force

(a) Short coupling beam.

V CLZ

V s

V agg

Shear force

(b) Short wall.

Figure 3.5: Free-body diagram with applied horizontal shear force and horizontal
components of internal stresses.

• Critical loading zone: Inclined compressive stresses, projected onto the direc-
tion of the applied shear force, results in a shear component.

• Tension in the transverse reinforcement (stirrups): The stress in the stirrups
in the critical diagonal crack give another shear resisting component.

• Dowel action of the longitudinal reinforcement: This component is associated
with the bending of longitudinal reinforcing bars along lk.

The paper by B. Mihaylov et al. (2018) gives expressions of the shear forces in
function of the DOFs ∆c and εt,avg.

In this work, shear-transfer actions should be evaluated based on experimental
measurements, mostly thanks to the displacement field from the DIC. Such an anal-
ysis has already been done for slender reinforced concrete beams without transverse
reinforcement by Cavagnis et al. (2018).

In the following, the investigation of the shear-transfer mechanisms is performed
by considering the failure planes and the resulting rigid bodies sketched in Fig. 3.5.
The internal stresses acting on the rigid body are also illustrated. The total shear
force applied on the rigid body can be considered equal to the sum of all horizontal
components of the shear-transfer actions: tension in stirrups Vs, agrregate interlock
Vagg and shear transferred in the critical loading zone VCLZ .

In the following sections, different formulations are given on which the results
are based on. The measured kinematics as well as fundamental mechanical models
are taken into account in this analysis. The dowel action is neglected in the present
work.
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3.2. Shear mechanisms

the one proposed by Ulaga can be identified in the different

projections ax and ay of the contact surfaces between the

aggregates and the cement matrix (Figure 7b and Figure 7c,

respectively). A detailed analysis of the two-phase model and

the calculated shear and normal stresses as a function of the

different crack kinematics can be found elsewhere.13,16,23

In Figure 7e–f, the shear stresses measured by Jacobsen

et al22 (black lines in the figure) for some double notch con-

crete specimens tested under different kinematics (first a

mode I, where an initial crack opening w0 is created

between notches, followed by a mixed-mode kinematics,

with combined opening and sliding at an angle γT, refer to

Figure 7d) are compared to the shear stresses calculated

according to the model of Walraven and using the crack

kinematics proposed by Walraven (green lines) and Ulaga

(red lines). It shall be noted that the crack kinematics

imposed by Jacobsen et al22 is a representative of the kine-

matics experimentally measured in the upper and steeper

parts of the critical shear crack of slender members, where

the largest aggregate interlock stresses are activated (initial

opening w0 < 0.05 mm and mixed-mode angle γ > 45 ,

refer to Reference 13).

In Figure 7e–f, it can be observed that the pre- and

post-peak response is overestimated when the crack kine-

matics proposed by Walraven is adopted. On the contrary,

the kinematics of Ulaga leads to solutions that slightly

underestimate the peak stresses and overestimate the post-

peak stresses for sliding larger than 0.25 mm. On that

basis, the transferred normal and shear interface stresses

are estimated using the crack kinematics proposed by

Ulaga,21 which better reproduces the kinematics experi-

mentally measured in comparison to the one assumed by

Walraven18 and provides a lower bound solution of the

aggregate interlock stresses.

Finally, by integration of the stresses along the crack in

the vertical direction, the shear force VAgg. is obtained

(Figure 6).

4.2 | Concrete residual strength contribution

The residual tensile strength of concrete consists on the

capacity to transfer tensile stresses through the fracture

process zone of a crack.24 As experimentally observed,13

the top part of the critical shear crack (quasi-horizontal

part) is characterized by a pure mode I opening response

and is thus governed by the residual tensile strength of

concrete.9

In this paper, the relation proposed by Hordijk25 for the

concrete residual strength is used (see Figure 8a):

σres = fct 1+ c1
w

wc

 !3
 !

e−c2 w=wcð Þ
−

w

wc

1+ c31
$ %

e−c2

" #

, ð3Þ

where wc = 5.14#(GF/fct) represents the maximum crack

width for stress transfer, c1 = 3 and c2 = 6.93 are constants,

GF is defined according to fib Model Code 201026 equal to:

GF =73#fc
0:18 N

m
,MPa

 !

ð4Þ

and the tensile strength of concrete fct is assumed equal to

fct = 0.3#fc
2/3 (for fc < 50 MPa26). Only openings w larger

than 0.02 mm (accounting for DIC reliability) have been

considered for the calculation of the residual tensile stresses,

as the position of the crack tip has been assumed where the

relative displacements reach that value.

Due to the crack inclination, the normal stresses in the

crack lead to a component in the vertical direction, named

VRS (Figure 6).

4.3 | Dowelling action

The dowelling action refers to the capacity of flexural rein-

forcement bars to transfer shear forces across the crack,

which can be activated when the longitudinal reinforcement

follows a transversal displacement. In the analyses pre-

sented in this paper, the dowelling contribution of the ten-

sile reinforcement VD,tens is obtained from the measured

displacements of the concrete surface in the vicinity of the

critical shear crack. It is assumed that the bar is unbonded

in a length lda = ld + db, where ld is the horizontal length

affected by the dowelling crack and db is the diameter of

the bar. The deflection is approximated to a third-order

polynomial on the basis of the vertical displacements and

rotations at the extremities of lda (v0, v0
0, and v1, v1

0), which

are derived through the measurements of two points located

in each external region at a distance xd = db/2 (refer to

Figure 8b). Assuming a linear-elastic behavior of the bar

and differentiating three times, the deflection with respect to

x coordinate, the shear carried by the dowelling action can

be obtained:
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FIGURE 6 Analysis of shear-transfer actions: free-body equilibrium and

internal forces: (a) cantilever subjected to point load; (b) cantilver subjected

to distributed load
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Figure 3.6: Free-body equilibrium and internal forces in a RC member (Cavagnis,
Ruiz, & Muttoni, 2018).

3.2.1 Critical loading zone
The shear resisted in the critical loading zone is similar to the ”Compression chord
and arching action” in the case of more slender members. In the paper by Cavagnis
et al. (2018), the contribution of the inclined compression chord and arching action,
referred to as Vc (see Fig. 3.6), is calculated based on measured principal strains
along a vertical section at the tip of a critical shear crack (of length hf in Fig.
3.6). In the case of a shear wall and a short coupling beam, the critical diagonal
crack get rather dispersed close to the end section. Those zones are highly stressed,
which induces distortions and even crushing near failure. The previously described
compression chord action for RC members can thus be interpreted as the mechanism
carrying shear in the critical loading zone (CLZ) of shear walls and short coupling
beams.

The CLZ is not dominated by a single dominant crack but rather by a series
of little cracks and high compressive stresses. In order to evaluate the shear force
transferred by this mechanism, a horizontal plane must be defined at a suitable
height (ordinate). The shear force is then obtained by integrating horizontal shear
stresses over this plane. A typical stress state expected in this region is depicted in
Fig. 3.7. The definition of the plane in the case of deep members is not straightfor-
ward. The general expected trend for a wall or coupling beam as presented in Fig.
3.5 is the following: From top to bottom, the shear transferred along horizontal
planes/cuts (VCLZ) becomes smaller because more and more stress is transferred
through aggregate interlock. When reaching the disturbed region close to the bot-
tom end section characterized by little cracks, VCLZ is expected to become messy
because stresses are more chaotic. Therefore, the ideal free-body diagram (FBD)
would be such that the switch from aggregate interlock Vagg to VCLZ takes place
when the individual crack starts to become rather dispersed resulting in several
little cracks. The location of the plane will be discussed for the shear wall and the
short coupling beam in their respective chapter.

The calculation of VCLZ is thus performed on the basis of stresses along a hor-
izontal plane. These stresses are obtained by considering principal strains along
the plane and by adopting constitutive laws for concrete. The strain and stress
calculation are presented in the following.
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Chapter 3. Shear behavior of short coupling beams and walls

𝜎2
𝜎1

𝜏𝑥𝑦
𝜎𝑦

Figure 3.7: Schematic of typical stress state close to CLZ. σ1 (maximum principal
stress) and σ2 (minimum principal stress) acting along principal stress directions.
τxy (shear stress) and σy (normal stress) acting on horizontal plane.
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Figure 3.8: Constant Strain Triangle (Ponthot, 2016).

Strain calculation

The strain calculation is not performed in the DIC software. The measured displace-
ment field is directly used to compute strains. The displacement field from DIC is
given for points arranged in a regular grid. Those points will be used to form a finite
element mesh and to compute the strains for each element. The mesh consists of
triangles. The nodes are numbered in such a way that the first node is in the top left
corner of the x-y coordinates grid, whereas the last node is the bottom right node.
The triangles are defined ”Constant Strain Triangles”, also called ”linear triangular
elements”, with 3 nodes and 6 DOFs, more precisely 2 DOFs per node: one hori-
zontal and one vertical displacement component (see Fig. 3.8). The fundamental
hypothesis of these elements is a linear displacement across the element:

u = α1 + α2 x+ α3 y (3.7)

v = β1 + β2 x+ β3 y (3.8)
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3.2. Shear mechanisms

with αi and βi being the so-called internal parameters. Developing the strains, we
get:

εxx = ∂u

∂x
= α2 (3.9)

εyy = ∂v

∂y
= β3 (3.10)

γxy = 2 εxy = α3 + β2 (3.11)
Those strains are thus constant, hence the name ”Constant Strain Triangle”.

The area of a triangle is given by

A = 1
2 det

1 x1 y1
1 x2 y2
1 x3 y3

 (3.12)

The finite element formulation gives finally:


εx
εy
γxy

 = 1
2A

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12




u1
v1
u2
v2
u3
v3


(3.13)

with xij = xi − xj and yij = yi − yj.

Principal strains are obtained with the following equations, based on Mohr’s
circle:

ε1 = εx + εy
2 +

√(
εx − εy

2

)2
+
(
γxy
2

)2
(3.14)

ε2 = εx + εy
2 −

√(
εx − εy

2

)2
+
(
γxy
2

)2
(3.15)

A graphical representation of a general strain state is Mohr’s Circle shown in
Fig. 3.9. As a reminder, γxy calculated in Eq. (3.13) is called engineering shear
strain and corresponds to a ”total measure” of shear strain in x-y plane such that:

γxy = εxy + εyx = 2 εxy (3.16)
where εxy = εyx is the average of two strains:

εxy = 1
2

(
∂v

∂x
+ ∂u

∂y

)
(3.17)

The principal strain angle θp, or principal rotation angle, is obtained with:

θp = 1
2 arctan

(
γxy

εx − εy

)
(3.18)

where the angle θp is of the same sign as γxy and θp ∈ [−90°, 90°]. The angle θp
is represented in Fig. 3.10. It corresponds to half the angle in Mohr’s Circle.
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Chapter 3. Shear behavior of short coupling beams and walls

Figure 3.9: Mohr’s Circle representation (left) for a general strain state in x-
y coordinates (right). Source : https://www.efunda.com/formulae/solid mechanics/
mat mechanics/mohr circle usage strain.cfm

Figure 3.10: Comparison between general axis (X-Y) and principal axis (Xp-
Yp). Source : https://www.efunda.com/formulae/solid mechanics/mat mechanics/mohr
circle usage strain.cfm
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3.2. Shear mechanisms

Stress calculation

In terms of stresses, one can only compute the average stress over an element thanks
to the computed strain.

Constitutive laws are needed for the calculation of stresses. The principal stress
directions are supposed to be equal to the principal strain directions defined by the
principal strain angle θp.

Since concrete is a relatively complex material, different cases need to be ac-
counted for depending on the strain state (Cavagnis et al., 2018).

• If ε1 < 0 and ε2 < 0, which can be referred to as biaxial compression, the
stress-strain response of concrete in compression according to Popovics (1973)
is used, without taking into account any confinement or compression softening.
The principal stresses are calculated as follows:

σ1,2 =
n
(
ε1,2

εc1

)
n− 1 +

(
ε1,2

εc1

)nk fc, [MPa] (3.19)

where n and k are calculated with

n = 0.8 + fc
17 , [MPa] (3.20)

and
k = 0.67 + fc

62 , [MPa]. (3.21)

The strain at maximum compression is obtained with

εc1 = fc
Ec

n

n− 1 . (3.22)

The Young’s modulus is, according to Eurocode 2,

Ec = 22000
(
fc
10

)0.3

, [MPa] (3.23)

for quartzite aggregates1.

• If ε1 ≥ 0 and ε2 ≥ 0, a biaxial tensile state must be considered. Tensile
stresses are calculated with a linear-elastic stress-strain curve (Cavagnis et al.,
2018). Therefore, before reaching its tensile strength, stresses are computed
as σ1,2 = Ec ε1,2. If the strain is higher than the cracking strain εcr, σ1,2 = 0.
The cracking strain is given by εcr = fct

Ec
with fct = 0.33

√
fc, [MPa].

1If material properties are determined in the lab, the experimentally obtained modulus of
elasticity of the concrete will be considered.
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Chapter 3. Shear behavior of short coupling beams and walls

• If ε1 ≥ 0 and ε2 < 0, the maximum principal strain ε1 can either be ≤ εcr or
≥ εcr. If ε1 ≤ εcr,

σ1 = Ec ε1. (3.24)
Otherwise, σ1 = 0. The principal compressive stress is calculated according to
a stress-strain relationship taking into account the pre- and post-peak behavior
(Ruiz, Muttoni, & Gambarova, 2007) (see Fig. 3.11(a)):

σ2 = Ec ε2

1 +
(
ε2

ε0

)α (3.25)

with
ε0 = α fc,eff

Ec (α− 1)(1−1/α) (3.26)

and
α = 0.5 + fc,eff

20 +
f 2
c,eff

1500 (3.27)

where fc,eff is the effective compressive strength [MPa].
An approach suitable for smeared cracking within the compression zone will
be adopted. Indeed, according to Vecchio and Collins (1986), cracked concrete
is softer and weaker than concrete in a standard cylinder when subjected to
high tensile strains normal to the principal compression direction. The effective
compressive strength is therefore reduced due to compression softening effects.
The following law proposed by Vecchio and Collins (1986) is used:

fc,eff = fc
1

0.8 + 170 ε1
≤ fc (3.28)

The value of the compressive strength from Eq. (3.28) can then be used in
Eq. (3.27) and (3.26) to compute σ2. It is important to note that Eq. (3.28)
computes very low values for high tensile strains. If α is less than 1, complex
values will be computed for ε0. This is the case if

fc,eff
20 +

f 2
c,eff

1500 ≤ 0.5 (3.29)

or if fc,eff < 8.94, [MPa], which, in turn, is the case if

ε1 >
1

170

(
fc

8.94 − 0.8
)

(3.30)

For example, for fc = 50, [MPa], complex values will be computed if
ε1 > 0.028. Those strain values are not unusual in main cracks. How-
ever, in the critical loading zone, smaller maximum principal strain values are
computed such that the law by Vecchio and Collins is locally applicable.

Two alternative approaches will be used in order to see the impact of the
constitutive law on the shear strength calculation (VCLZ):
Cavagnis et al. (2018) express fc,eff for uncracked concrete based on Kupfer’s
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3.2. Shear mechanisms

principal stresses are directly computed from the principal

strains. To that purpose, principal tensile stresses are calcu-

lated assuming a linear-elastic behavior of concrete before

reaching its tensile strength (σ1 =Ec ε1 and σ1 = 0

(if Ec ε1 > fct) refer to Figure 9, where Ec is taken equal to

Ec = 10,000fc
1/3 in MPa). Principal compressive stresses are

computed according to a stress–strain relationship account-

ing for the pre- and post-peak behavior (refer to Figure 9a

and Reference 28):

σ2 =
Ec ε2

1+ ε2
ε0

 !α ð6Þ

with:

ε0 =
α fc,eff

Ec α−1ð Þ 1− 1
αð Þ

ð7Þ

and:

α=0:5+
fc,eff

20
+
fc,eff

2

1500
ð8Þ

where ε2 refers to the measured principal compressive strain

and fc,eff is the effective compressive strength expressed in

MPa. It can be noted that according to the measured strains,

the post-peak part of the curve was not governing for most

specimens, and only limited post-peak deformations were

attained in a few tests (e.g., specimens SC60, SC63,

and SC67).

For uncracked concrete, fc,eff is derived on the basis of

the biaxial failure criterion accounting for the interaction

between tension and compression stresses.29 The concrete

failure surface in the combined tension-compression regime

(left upper and right lower quadrants) is simplified by a

bilinear law (Figure 9b), whose slope is determined by that

of the Mohr–Coulomb failure envelope, using a friction

angle ϕ = 37#.30 Both the contribution of the inclined ten-

sion and compression stresses were accounted for in the cal-

culation of the shear force VC with the pertinent surfaces

and angles.

For specimens SC58, SC60, SC63, and SC67, however,

smeared cracking (refer to Figure 2 and to cracks type G00 in

Figure 4c) was observed within the compression zone (these

cracks were not connected to the critical shear crack). For

these cases (closer to the behavior of a cracked panel with

smeared cracking), the tensile strength of concrete is

neglected and the effective compressive strength is reduced

on the basis of the compression-softening law proposed by

Vecchio and Collins31:

fc,eff = fc 
1

0:8+ 170 ε1
≤ fc ð9Þ

The shear stresses are then computed from the principal

strains and principal stress directions. Finally, by integration

of the shear stresses along the length hF, the shear force VC

is obtained.

4.5 | Distributed load not carried by the critical shear

crack

In reinforced concrete members subjected to distributed

load, a fraction of the load near the support is carried

directly to the support without crossing the critical shear

crack.15 The load directly strutted Vq has been computed as

the integration of the load applied between the intermediate

support (right support) and the position at which the critical

crack D'
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Figure 3.11: (a) Stress-strain diagram for concrete; (b) Kupfer’s failure criterion
(Kupfer, Hilsdorf, & Rusch, 1969) and adopted one (Cavagnis, Ruiz, & Muttoni,
2018).

biaxial failure surface, accounting for the interaction between tension and
compression stresses. Thus, the same criterion is adopted for the critical load-
ing zone, when ε1 ≤ εcr. As can be seen in Fig. 3.11(b), the failure surface
in the quadrants corresponding to a combination of tension-compression is
simplified as a bi-linear law. This law indicates that for σ1 varying between 0
and fct, the compressive strength of the concrete in the orthogonal direction
fc,eff varies between fc and fc − 4 fct. In regions with ε1 > εcr, fc,eff will be
taken equal to fc − 4 fct.

The second alternative is an uniaxial compression law for σ2 disregarding any
biaxial effects (Eq. (3.19)).

In Fig. 3.12, the three approaches for the tension-compression regime are
illustrated in terms of fc,eff .

The use of compression softening equations requires some additional consider-
ations. The compression softening effect is taken into account in the formulation
proposed by Vecchio and Collins (1986) because, as suggested by the authors,
cracked concrete subjected to high tensile strains is softer and weaker in the com-
pression direction. The compressive strength is therefore reduced. The softening
represents a gradual decrease of mechanical resistance due to increased deformation
and cracking and it is commonly related to the reinforcement that bridges the
cracks and weakens the concrete in the vicinity. However, in the two applications
of this thesis, only a small amount of transverse reinforcement is employed. As a
consequence, the smeared cracking might be less pronounced and the compression
softening law might thus be not well adapted.

55
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Figure 3.12: Different laws used for fc,eff in function of the principal tensile strain
for fc = 30 MPa. The biaxial failure criterion refers to the simplified bilinear law
based on Kupfer’s failure surface, the uniaxial compression law refers to Popovics
(1973) and the compression softening law refers to Vecchio and Collins (1986).

From the principal strains and principal stress directions, shear stresses can be
computed and integrated over a plane defining the critical loading zone. To do so,
Mohr’s circle representing the stress state is established (Fig. 3.13). The stress
corresponding to the origin of the circle is σo = σ2 + σ1 − σ2

2 and the radius of the

circle is R = σ1 − σ2

2 . Thus, we obtain

σx = σ0 +R cos 2 θp (3.31)

σy = σ0 −R cos 2 θp (3.32)

τxy = R sin 2 θp (3.33)
VCLZ is then computed by integrating τxy over the defined plane.

3.2.2 Aggregate interlock
Aggregate interlock is considered to be an important mechanism of shear transfer
across cracks. As can be seen in Fig. 3.6, Cavagnis et al. (2018) computed the
aggregate interlock in the critical shear crack. A similar approach will be used for
the short coupling beam and shear wall.

Several models have been proposed to compute normal and tangential stresses
in the crack allowing the transfer of shear forces. Those stresses develop through
contact of the two faces on either side of the rough crack. In general, the basis of all
these models are the crack kinematics, more precisely the crack width (or opening)
and crack slip (or sliding) in the crack. The sliding can induce the aggregate to
interlock with the cement matrix of the opposite crack surface. This can result in a
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3.2. Shear mechanisms

Figure 3.13: Mohr’s circle representation of a stress state. Source: https://www.
efunda.com/formulae/solid mechanics/mat mechanics/mohr circle usage.cfm

(a) Stresses transferred across a rough
crack (left) and smooth crack (right)
(Huber, Huber, & Kollegger, 2016).
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𝜏𝑎𝑔
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(b) Inclined crack with horizontally pro-
jected stress components in case of hori-
zontally applied shear forces.

Figure 3.14: Aggregate interlock stresses: normal stresses σag and tangential stresses
τag.

transfer of stresses across the crack (Huber, Huber, & Kollegger, 2016).

The first step consists in the computation of crack kinematics along the critical
shear crack. In the next step, shear and normal stresses are calculated in the crack
based on the crack width and the slip.

The resulting shear strength by aggregate interlock Vagg is computed by integra-
tion of the stresses projected on a plane parallel to the applied shear forces. Fig.
3.14 shows schematic representations of interlock stresses. The shear resistance by
aggregate interlock Vagg is thus computed as:

Vagg = b ·
(∫

crack
τag sinαcr dl −

∫
crack

σag cosαcr dl
)
, (3.34)

where b is the width of the element and αcr is the crack angle with respect to the
vertical axis.

In the following sections, the calculation of crack kinematics as well as three crack
models are presented. Vagg will be computed with all three models for comparison.
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Chapter 3. Shear behavior of short coupling beams and walls

Figure 3.15: Grid of targets in experimental setups (Campana, Anastasi, Ruiz, &
Muttoni, 2013), cropped.

Crack kinematics

Cavagnis et al. (2018) approximated the shape of the crack by a polyline, connecting
points spaced at maximum 16 mm. They use the approach proposed by Campana,
Anastasi, Ruiz, and Muttoni (2013) in order to calculate crack width and slip based
on the DIC measurements. The method by Campana et al. (2013) is developed to
compute crack kinematics from discrete measurements. The discrete measurements
consists of targets arranged as a grid of equilateral elements (see Fig. 3.15). In order
to determine the kinematics of the cracks, a rigid body is considered at both sides
of the crack. The displacement field of each rigid body is determined by using the
coordinates of two targets, as seen in Fig. 3.16. While this method gives reasonable
values for slender elements like beams, as analyzed by Cavagnis et al. (2018) and
Campana et al. (2013), the same formulation applied on shear walls and coupling
beams produced abnormal results. The method might not be suitable for deep
members.

Another example from literature for calculation of crack kinematics based on
DIC is presented by Huber et al. (2016). They analyzed cracks in reinforced concrete
beams. Huber et al. (2016) also idealized the cracks by a polyline, two points being
separated by approximately 3 facets. In their case, a facet has a size of 15 pixels.
For a given crack, they record about 50 data points. By means of the crack angle
and the displacement of two opposite facets, crack opening and crack sliding can be
determined. A detailed methodology is not described.

The previous examples from literature were not sufficient or suitable for crack
analysis applied on the coupling beam and shear wall. Therefore, a new method
was established and will be described in the following:

The first step consists in fragmenting the crack into several crack units. To do so,
a polyline is defined with points c (cx, cy) in the crack separated by a given vertical
distance. For each defined segment, a reference point is defined in the crack similar
to point f in Fig. 3.16(a). Four neighboring points P1 to P4 are selected as well.
This is done manually on a plot of maximum principal strains where the cracks are
traceable.
The crack angle is determined for each crack unit using the coordinates of the
delimiting points (cx and cy). Similarly to the method by Campana et al. (2013),
the displacement of two rigid bodies on either side of the crack must be determined.
For the left rigid body, points P1 and P2 will determine the displacement field and
the displacement of the point in the crack. For the right rigid body, points P3
and P4 are used to determine the displacement of f with respect to the right body
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where
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7d:

The relative displacement �uu ¼ [u
v
] between two points of the crack

f2 and f1, for which the initial position f (x f , y f ) is the same, can

be calculated as the difference between the two displacement

fields

�uu ¼

u

v

� �

¼ w2(x f , y f )ÿ w1(x f , y f )
8:

This method requires that the zone delimited by the four Demec

targets (see Figure 15) is crossed by a single crack. Once the

relative displacement (�uu) is known, the opening (w, measured

along the axis y9 normal to the crack) and the sliding (˜,

measured along the axis x9 tangential to the crack) at a given

point of the crack with inclination Æ can also be calculated as

�ww ¼

˜

w

� �

¼

cosÆ sinÆ

ÿ sinÆ cosÆ

� �

� �uu
9:
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Chapter 3. Shear behavior of short coupling beams and walls

Figure 3.17: (a) Contact zone between aggregate and cement matrix and aggregate
interlock stresses; (b) Projections areas according to the kinematics proposed by
Walraven (Cavagnis, Ruiz, & Muttoni, 2018).

motion. The complete approach including the calculation of the displacement fields
as well as the calculation of crack width and slip is presented in Appendix A.

Two-phase Model

Walraven (1980) established a theory assuming that crack sliding δ only occurs after
crack opening w. He considered the concrete to be a two-phase system consisting of
a cement matrix and aggregates idealized as rigid spheres (Fig. 3.17). The model,
often referred two as two-phase model (TPM) is based on statistical and geometrical
considerations of the crack surfaces and the contact areas (Cavagnis et al., 2018).
Compressive stresses and shear stresses are computed as follows:

σ = σpu (Ax − µAy) (3.35)

τ = σpu (Ay + µAx) (3.36)
with

• σpu : compressive plastic strength of the cement

• µ : friction coefficient, taken as equal to 0.4

• Ax : average contact area between the cement matrix and the aggregates
parallel to the crack surface

• Ay : average contact area between the cement matrix and the aggregates
perpendicular to the crack surface

Contact Density Model

Another model allowing to calculate the stress transfer across cracks in concrete is
the Contact density model (CDM) proposed by Li, Maekawa, and Okamura (1989).

As can be seen in Fig. 3.18, the complex asperity of a crack is divided into small
”contact units” with inclinations θ.
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3.2. Shear mechanisms

Figure 3.18: Definitions and notations of the CDM (Li, Maekawa, & Okamura,
1989).

Due to a certain crack width and slip, some contact units get in contact and
resist shear and compressive stresses.

The Contact Density model is based on two proposals and three assumptions.
The two proposals are summarized as follows:

• A crack plane is composed of a number of areas, also called contact units.
Those areas are inclined by θ, ranging from −π2 to π

2 . The inclinations θ can
be described by a contact density probability function Ω(θ).

• The contact stress is proposed to be normal to the contact direction θ.

Three assumptions can be described as follows:

• Ω(θ) is a trigonometric function, independent on size and grading of aggre-
gates, expressed by Ω(θ) = 0.5 cos θ, shown in Fig. 3.19.

• An elasto-perfectly plastic model is used to compute the contact stress.

• K(w) refers to the effective ratio of contact area and expresses the loss of
contact if the crack width w is large compared to the roughness of the crack
faces, illustrated in Fig. 3.20.

The contact compressive force Z ′ (see Fig. 3.18) is defined as the force applied
by the positive surface on the negative surface. By multiplying the contact stress
with the effective contact area:

Z ′ dθ = σcon(θ)K(w)AtΩ(θ) dθ (3.37)
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Chapter 3. Shear behavior of short coupling beams and walls

Figure 3.19: Contact density of each direction (Li, Maekawa, & Okamura, 1989).

Figure 3.20: Effective ratio of contact area K, model and measured (Li, Maekawa,
& Okamura, 1989).
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3.2. Shear mechanisms

where At is the surface area of the crack, considered to be equal to 1.27 times the
sectional area of crack plane (crack plane being the X-axis in Fig. 3.18).

By integrating the X and Y-components of Z’, we obtain respectively the shear
(τ) and normal stresses (σ) transferred in the plane:

τ =
∫ π

2
−
π

2
Z ′(w, δ, θ) sin θ dθ (3.38)

σ =
∫ π

2
−
π

2
Z ′(w, δ, θ) cos θ dθ (3.39)

Pure Mechanics Crack Model

The Pure Mechanics Crack Model (PMCM) proposed by Calvi, Bentz, and Collins
(2017) is a simple rational crack behavior model for cracks subjected to cyclic shear
and axial loads based on global and local equilibrium, compatibility and stress-strain
relationships.
More precisely, the model can be used to predict the behavior of cracks and to
estimate the stress-state based on crack measurements.

The constitutive relations used in the model are of particular interest. The
models refers to an empirical expression derived by Vecchio and Collins (1986),
which has been widely used since then:

νci = 0.18 · νci,max + 1.64 · fci − 0.82 · f 2
ci

νci,max
(3.40)

where νci,max is given by

νci,max =

√
f ′c

0.31 + 24·w
ag+16

, (3.41)

which expresses the shear stress transmitted across a crack. f ′c is the concrete
compressive strength [MPa], w is the crack width [mm] and ag is the maximum
aggregate size [mm]. For a given crack width, Eq. (3.40) gives a relation between the
compressive stress fci and the shear stress νci. The relationship and the comparison
with two experimental tests is illustrated in Fig. 3.21. It can be seen that also
tensile normal stresses can be obtained with PMCM.

Another basis of PMCM is the relationship between crack width and crack slip,
which defines the crack contact plane (angle α) (see Fig. 3.22 and Eq. (3.42)):

tan(α) = w

s
(3.42)

As shown in Fig. 3.22, a vertical force νci and a horizontal force fci must be
transmitted at the contact point. Eq. (3.43) expresses the evolution of crack stresses
as a function of crack geometry. This relation can also be seen in Fig. 3.23. Since a
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Chapter 3. Shear behavior of short coupling beams and walls

Figure 3.21: Relationship between shear stress vci and normal stress fci (Calvi,
Bentz, & Collins, 2017).

Figure 3.22: Free-body diagram of aggregate at contact point at loading (Calvi,
Bentz, & Collins, 2017).
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3.2. Shear mechanisms

Figure 3.23: Relationship between crack geometry and crack stresses (Calvi, Bentz,
& Collins, 2017).

friction coefficient value of 0.8 produces a curve that approximate the experimental
results (dots) in a good way, this value will be adopted for calculations.

νci = fci · (sinα + µ · cosα)
cosα− µ · sinα (3.43)

The shear stress νci and normal stress fci are therefore computed thanks to the
combination of Eq. (3.40), (3.42) and (3.43).

Comparison of crack models

Fig. 3.24 shows a comparison of shear and normal stresses in function of crack width
and slip. In the figure, shear stresses are considered positive and normal compressive
stresses negative. Generally speaking, for higher compressive strength of concrete
all three models produce both higher shear and normal stresses. Shear stresses and
normal stresses increase globally with slip and decrease with crack width.
It can be seen that the contact density model computes generally higher values
compared to the other two models.
Shear stresses are smaller than normal stresses (in absolute value) for small crack
width (0.1 and 0.8 mm), whereas in general, shear stresses are higher.
The PMCM model is the only model able to compute tensile normal stresses, for
example for a slip of 0.8 mm and crack width of 1.5 mm or higher.

3.2.3 Stirrups
The investigated shear wall and short coupling beam are slightly reinforced by
stirrups. Tensile stresses in the diagonal crack are redistributed to the shear rein-

65



Chapter 3. Shear behavior of short coupling beams and walls

0.5 1 1.5 2 2.5
-15

-10

-5

0

5

10

15

0.5 1 1.5 2 2.5
-15

-10

-5

0

5

10

15

0.5 1 1.5 2 2.5
-15

-10

-5

0

5

10

15

Figure 3.24: Interlock stresses (shear stress τ defined positive, compressive nor-
mal stress σ defined negative) according to the the Pure Mechanics Crack Model
(PMCM), Contact Density Model (CDM) and Two-Phase Model (TPM) in function
of slip and crack width (w). Maximum aggregate size = 16 mm, concrete compres-
sive strength fc = 30 MPa.

forcement.

The shear force carried by a single stirrup is calculated as

Vs,i = σs π d
2

4 (3.44)

where d is the diameter of the stirrup and σs is the stress in the stirrup at the
location of the crack. Campana et al. (2013) pointed out that even small crack
width can cause the stirrups to yield. The shear test on the shear wall and the short
coupling beam causes relatively wide cracks such that the stirrups are assumed to
be yielding. However, stirrups very close to the end sections should not necessarily
be accounted for because they are not crossing the critical shear crack and the crack
width is much smaller in those regions. For yielding stirrups, the stress in the steel
should be taken as the yielding stress. The total shear strength from the stirrups is
calculated as the sum of the contribution of each stirrup.
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Figure 4.1: Evolution of applied horizontal load.

In this chapter, the behavior of the wall during the test will be described. The
DIC measurements will be validated by comparing them with other experimental
measurements. Then, the observed deformation of the wall will be compared to
the kinematic model. In the last section, the shear-resisting mechanisms will be
evaluated and compared to the applied shear force.

4.1 Global observed behavior

In this section, the global behavior of the wall under shear loading will be described.
The load steps as well as the load-displacement curve will be presented. Finally,
the failure mode will be illustrated.

In terms of load sequence, the wall was first loaded by an vertical load of 1200
kN followed by several load steps where the shear force increased step by step. The
evolution of the applied horizontal force can be seen in Fig. 4.1.

The sequence of the test was as follows:

• Load step B0: During this reference step, no load is applied to the specimen.
The cameras connected to the DIC system take photographs of the wall at
rest.

• Load step B1: The wall was first gradually loaded by a vertical load up to
1200 kN. This force was kept constant during the following load steps.

• Load step B2: The horizontal load increased from 0 kN to 77 kN.

• Load step B3: The horizontal load increased up to 500 kN, with an interme-
diate pause at about 250 kN.

• Load step B4: The horizontal load increased up to 650 kN.
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Figure 4.2: Load-displacement curve.

• Load step B5: The horizontal pressure was increased to 750 kN and then
decreased to 700 kN for safety reasons during the load stop.

• Load step B6: The horizontal forces reached 850 kN, then was reduced to 775
kN during investigations.

• Load step B7: The horizontal force reached approximately 935 kN.

• Load step B8: The force increased from 857 kN to 1000 kN and was then
reduced to 900 kN.

• Load step B9: The horizontal force increased gradually until reaching 1042
kN when a sudden and brittle failure took place. The vertical force was still
at 1208 kN at that point. After failure, the forces both for the horizontal and
vertical actuator were suddenly removed.

The load-displacement response in Fig. 4.2 shows the load in function of the mea-
sured horizontal displacement1 at the top of the wall. In the beginning of the test,
the wall was relatively stiff. However, when the shear force increased, cracks formed
on the tension side of the wall. This led to a gradual loss of stiffness, which is rep-
resented by the flattening force-displacement curve. When the shear force reached
500 kN, 3 cracks initiated on the tensile side, in the lower part of the wall. When
the load increased, more cracks formed, also in the middle part, and propagated
towards the base as seen in Fig. 4.3a. When the load increased to 750 kN, many
cracks arrived close to the foundation. A diagonal crack formed and reached almost
the top corner. Up to a load of 850 kN, cracks become wider and new cracks formed
below the diagonal crack. With an increased load (up to 935 kN), additional diag-
onal cracks formed reaching up to the top corner and down to the bottom block.
When the load increased further, cracks became wider (see Fig. 4.3b).

1The top displacement was deduced from LED measurements.
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(a) After load step B4. (b) After load step B8.

Figure 4.3: Crack pattern at two different load steps.

When the force reached 1042 kN and the horizontal displacement was 21 mm,
the wall failed. Since the experiment is force-controlled, which means that only the
force of the actuators can be regulated, the applied force was immediately set to
zero when failure occurred. The failure mode was diagonal tension failure. A major
diagonal crack developed during loading. The wall finally failed in shear along this
diagonal crack.

The cameras connected to the DIC system took photos every half a second. The
pictures in Fig. 4.4 show the instant right before, during and after failure. It can
be seen that the failure causes a block of concrete, located between the critical
diagonal crack and a neighboring crack, to spall. Additional photos of the specimen
after failure are shown in Fig. 4.5. It can be seen that the compression zone in the
bottom left part of the wall was highly stressed in compression, as shown by the
disintegration of concrete. The principal diagonal crack is slightly curved.
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(a) Instant right before failure. (b) At failure.

(c) Instant right after failure.

Figure 4.4: Pictures taken by DIC system before, during and after failure, within
a span of 1,5 seconds. The top and bottom photographs correspond to the camera
focusing respectively on the top and bottom part of the wall.
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(a) Global view. (b) Close-up of top right corner (tension
side).

(c) Close-up of bottom left corner (com-
pression side).

(d) Close-up of bottom compression side.

Figure 4.5: Specimen after failure.
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4.2. Validation of DIC measurements

4.2 Validation of DIC measurements
It is important to compare the DIC data with the recorded data from displacement
transducers (DT). Indeed, this can help to validate the displacement field from
DIC. In addition to DT measurements, a LED system consisting of 54 targets was
installed. Tracking the displacement of each LED gives overall information about
the displacement field and deformations. More precisely, the coordinates of the
LEDs are recorded during the loading. Therefore, a comparison with LED targets
could also be done for some measurements.

4.2.1 Processing of DIC data
The results in section 4.2 are based on the original calibration with the following
parameters:

• The experimental setup was defined as 2 independent cameras.

• 6 views per camera.

• Camera 1 : Scale factor = 1.46784 px/mm, thus a pixel size of 0.68127 mm;
RMS of the fit = 0.483 px.

• Camera 2 : Scale factor = 1.46706 px/mm, thus a pixel size of 0.68164 mm;
RMS of the fit = 0.503 px.

The RMS (root-mean-square) of the fit reflects the quality of the calibration. As rec-
ommended by Lavision (2015), the average deviation of the dewarped mark positions
to the ideal regular grid (RMS) should preferably be lower than 1 pixel. A value
lower than 0.3 pixel is excellent, whereas values bigger than 2 pixel are questionable.

The results are obtained with following processing parameters:

• Subset size: 51 px

• Step size: 13 px

• Accuracy: medium

• Smoothing filter and outlier filter enabled

• Maximum expected displacement: 200 px

Other comparisons were done with the same parameters, but smaller subset sizes
(e.g. 31 px and 15 px) and respective step sizes (e.g. 8 px and 4 px). The data points
in the bottom frame, for a step size of 13 px and a pixel size of 0.68127 mm/px are
at a distance of 8.86 mm.

The DIC data is computed for 36 instants. To do so, the pictures from load
step B9 (864 pictures) were appended to the pictures of the reference step B0 (60
pictures). In this set of pictures (in total 924 pictures), every 25th picture (every
12.5 seconds) in the range 1-876 was processed. Failure occurred at picture 870. The
processed data set thus comprises 36 instants. The data from the different systems
are compared for the 32 instants during cycle B9 and before failure.
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Figure 4.6: Location of points used to compare DIC measurements to DT measure-
ments.

4.2.2 Comparison with DT and LED measurements

The comparison between DIC and DT measurements is done for discrete points. In
fact, the displacement transducers measure the relative displacement between two
points. In order to compare DIC to DT, the relative displacement between two data
points from DIC analysis should be considered. These data points should be close
to the measurement points of the DTs. Fig. 4.6 shows the mask (region of interest)
used for the bottom frame of the wall in the DIC software. The grid of blue lines
represents the grid of data points, such that at each intersection, the displacement
field is calculated. The black dots show the location of the DIC data points used
for comparison.

The second comparison is between DIC and LED measurements. The number-
ing of the LED targets is given in Fig. 4.7. The output data from LED consists
of the coordinates of each LED. The coordinates were recorded for each load step
separately. The theoretical grid of targets is shown by horizontal and vertical lines
in Fig. 4.8. It can be seen that the blue crosses corresponding to the measured
coordinates in load step B0 (no loading) slightly deviate from the theoretical reg-
ular 2D grid. The measured coordinates were corrected by a uniform translation
and rotation about the bottom left target position. The corrected coordinates are
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Figure 4.7: Numbering of LED targets.
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Figure 4.8: LED target positions on theoretical position grid.
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4.2. Validation of DIC measurements

represented by red circles. This correction was applied to all data from LED. The
displacement of one LED target at a given load step is simply computed from the
difference in coordinates (position) between the load step and the reference coordi-
nates (reference position).

The position of the LED is recorded every half a second. The data is saved to
a separate file for each load step. The start and the end of the recording is not
synchronous with the DIC data acquisition, which complicates a good correlation
between the data from those systems.

The following measurements were compared. The measurement point refers to
the numbering of the data point (DIC system) in Fig. 4.6, while the number of the
DTs and the LEDs are shown in Fig. 4.7.

• At measurement point 1, the absolute vertical displacement will be calculated
and compared to DT n°11 (vdef R1) and to the vertical displacement of LED
n°4.

• At measurement point 2, the absolute horizontal displacement will be calcu-
lated and compared to DT n°9 (dc) and to an interpolation of the horizontal
displacement between LED n°44 and LED n°42.

• At measurement point 3, the vertical displacement will be compared to DT
n°8 (w R). Since the point 3 is not in the mask, the displacement of the closest
point to it’s right will be used.

• At measurement points 4, the relative displacement of those two points will
be compared to DT n°10 (hdef 3). The measurement from LEDs is obtained
by interpolating vertically between the the relative horizontal displacement
measured by LED n°44 and n°20 and the relative horizontal displacement
measured with LED n°43 and n°31.

• For measurement points 5 and 1, their relative vertical displacement will be
compared to DT n°12 (vdef R2).

• In the same way, the relative vertical displacement of points 6 and 5 will be
used for comparison with DT n°13 (vdef R3).

• Similarly, the deformation between points 7 and 6 is compared to DT n°14
(vdef R4).

• On the compression side, the vertical displacement of point 8 will be compared
to DT n°18 (vdef L1) and LED n°13.

• The vertical deformation between points 9 and 8 is compared to DT n°19
(vdef L2).

Some important points need to be kept in mind when analyzing the results.
Regarding the comparison between DIC and DT, one should know that the dis-
placement field from DIC is based on the deformations measured at the surface with
the speckle pattern. The instrumentation is installed on the opposite face and on
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the sides. The deformations measured at the two opposite faces is not necessarily
identical. Furthermore, the DIC points are only approximately located in the same
position as the DT. For example, deformations on the sides (measured by the DTs
named vdef Li and vdef Ri) are compared to data points situated in the mask of
the face. The mask is slightly cropped compared to the specimen such that an outer
point of the mask is not exactly situated at the edge of the wall. In addition, the
installed instrumentation can deviate from their intended position due to manual
installation.

Regarding the comparison with the data from the LED system, the location of
the targets due to handcraft is not a hundred percent accurate. Another uncer-
tainty factor are the previously described interpolations between targets in order
to obtain the displacement in another point. Therefore, differences in displace-
ments/deformations between the three different systems are likely.

The results of the comparison are presented in Fig. 4.9.
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Figure 4.9: Comparison between DIC (subset = 51 px, step = 13 px), DT and LED
at load step B9, before failure, in absolute values.

As can be seen in Fig. 4.9, the curves corresponding to different systems are sim-
ilar in shape. However, they differ in terms of absolute value. The deformations or
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Subset/ vdef R1 dc w R hdef 3 vdef R2 vdef R3 vdef R4 vdef L1 vdef L2
Step
51/13 -0,10 54,20 25,06 19,79 25,49 17,95 44,66 53,75 23,00
15/4 1,00 53,31 28,48 19,87 16,78 23,75 44,04 51,28 49,66
31/8 1,85 53,56 33,97 20,08 15,53 23,20 38,31 53,84 26,79

Table 4.1: Mean deviation in percent [%] between DIC and DT data for different
subsets (and steps) [px].

displacements computed from DIC are mostly higher than measured by DT. Defor-
mations computed with LED are in 3 out of 4 cases smaller than DIC measurements.
The comparison between DIC and DT for different subset sizes is summarized in
Tab. 4.1. It can be noted that different subset sizes do not lead to very different
results. However, the DIC deformations and displacements are generally higher than
recorded by the DT.

4.3 Comparison with kinematic model

One objective of the thesis is to validate the kinematic models. To do so, the
deformation pattern from 3PKT is compared to the deformation computed with
DIC at the instant right before failure (at peak).

4.3.1 Processing of DIC data
For the following sections, where the kinematics and shear mechanisms are analyzed
for the whole wall, the displacement fields needed to be mapped. It has been chosen
to redo the calibration with the advanced setting, using three views per camera
and choosing the same marker when calibrating both cameras. That marker will
become the (0,0) coordinate position, so the two cameras, even if analyzed separately,
should have a correct mapping of the results. Since the same images were used, one
should not expect a fundamental difference between the calibrations. The calibration
parameters are

• 3 views per camera.

• Camera 1 : Scale factor = 1.46602 px/mm, thus a pixel size of 0.68212 mm;
RMS of the fit = 0.364 px.

• Camera 2 : Scale factor = 1.4524 px/mm, thus a pixel size of 0.68852 mm;
RMS of the fit = 0.239 px.

Compared to the original calibration, the RMS value improved, reflecting an even
better calibration quality.

The DIC computation was done for the bottom frame and top frame separately.
Both displacement fields were then merged and the complete displacement field is
obtained.
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Figure 4.10: Longitudinal reinforcement of the wall.

4.3.2 Measured geometry and DOFs of kinematic model
The three-parameter kinematic model is based on 3 DOFs. These DOFs will be
computed from experimental measurements (displacement transducers). The pre-
dicted deformation pattern is also a function of the angle of the critical crack.
These 4 elements necessary for the computation of the deformation pattern will be
presented in this section.

The critical crack angle is determined based on the crack pattern at failure. From
pictures, it can be seen that the critical crack angle reaches the top corner of the
wall (see Fig. 4.4) such that the crack can be idealized by a straight line, reaching
from the bottom left corner to the top right corner. The angle of the critical crack
α1 is thus equal to the angle of the wall diagonal α with respect to the vertical axis.
Therefore,

α1 = α = arctan
(

h

a− 250

)
, (4.1)

with

• h = depth of the wall = 1500mm

• a = wall height subjected to shear = 2300 (height) + 250 (distance from top
edge to point of application of the horizontal actuator) = 2550 mm,

which yields α1 = 33°.

To compute the first DOF εt,avg, one has to know the effective depth of the sec-
tion because the strain is evaluated at the effective depth of the wall d. The depth of
the section is calculated by considering the longitudinal reinforcement (Fig. 4.10) in
one half of the section and by calculating its centroid, which yields d = 1088.4 mm.
The DTs n°4 (vdisp R) and n°5 (vdisp L) measure the vertical displacement of the
top block respectively on the tension side and compression. The vertical displace-
ment at d is obtained by linear interpolation between those two measurements, since
the block is considered to be rigid and does not deform. At peak, vdisp R measured
-10.98 mm (upwards) and vdisp L measured 4.09 mm (downwards). By interpo-
lation, the vertical displacement of the top block at a distance d from the left edge
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(compression side) is -4.11 mm (upwards). The length over which the strains are
averaged (lt) corresponds to the height of the wall (2300 mm). The first DOF is
thus

εt,avg = 4.11
2300 = 0.0018. (4.2)

The second DOF is the horizontal displacement in the critical loading zone
∆c = 5.391 mm measured by DT n°9.

The third DOF ∆cx representing the vertical displacement in the CLZ is not
measured directly. If the concrete block above the critical crack is assumed to
remain undeformed, as described in the 3PKT, the vertical displacement in the
CLZ is supposed to be equal to the vertical displacement of the top block at the
same location. The vertical displacement of the top block at the edge of the wall is
obtained by interpolating between vdisp R and vdisp L. The downward displace-
ment at the edge yields 2.16 mm.

With these DOFs, the deformation pattern is calculated according to Eqs. (3.1)-
(3.4) presented in section 3.1.2.

4.3.3 Comparison of displacement fields
The displacement field computed with DIC will be compared to the deformation
pattern predicted by the kinematic model. DIC measurements are valid in a grid
of discrete data points, two neighboring points being separated by a distance equal
to the step size. The grid of points will be transformed into a mesh of triangles
suitable for further strain calculations. The mesh is also well adapted for visualizing
deformations. However, the mesh can become very dense, especially for small step
sizes. For applications related to kinematics, the mesh will be made coarser. For
example, for a step size of 4 pixels, the ”coarseness factor” is chosen to be 15 such
that every 15th data point (horizontally and vertically) will be taken as a vertex of
the triangular mesh. For a step of 13 pixels, the coarseness factor is 5. Generally
speaking, it is convenient to construct the mesh such that the triangles have their
diagonal edge parallel to expected cracks. In addition, the deformed shapes are
generally amplified by an ”amplification factor” (AF), usually taken as 15. In this
way, the relatively small displacements become more visible.

The deformation pattern from DIC as a direct result of the analysis as well as
the kinematic model determined with the 3 DOFs are represented in Fig. 4.11a and
4.11b, amplified by a factor 15.

The horizontal displacement components δz from DOF 1 to 3 for a point in the
top left corner of the mask (coordinates x=11.95 mm, y=2072 mm) are listed below.
One has to keep in mind that the mask used for DIC analysis is not reaching up to
the top edge of the wall due to processing reasons.

• δz DOF1 = 7.82 mm.

• δz DOF2 = 5.39 mm.

• δz DOF3 = 4.21 mm.
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(a) Deformation pattern from DIC analy-
sis with colorbar representing |ε1| + |ε2| to
illustrate damage, AF = 15.
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(b) Deformation pattern from kinematic
model (3PKT), AF = 15.

Figure 4.11: Deformation patterns at peak.

The total horizontal displacement of the top left point according to 3PKT is thus
the sum of the contributions from each DOF, which gives 17.12 mm. For DIC, the
horizontal displacement of the data point in the same position is 23.2 mm. The
difference between DIC and 3PKT is quite high, namely 6.08 mm (26.2%). These
horizontal displacements can also be compared to the displacement of the top block
determined with LED, which was 21 mm at peak.

While the DIC cameras capture the absolute displacement field of the speckle
pattern, the kinematic model only describes the deformation of the wall itself, dis-
regarding any secondary movement. Therefore, in order to validate the kinematic
model, every secondary movement that is obviously not taken into consideration
by the kinematic model, should be removed from the output of DIC. The following
movements and their respective values at peak were taken into account in the DIC
analysis but not in the 3PKT:

• The slip of the foundation with respect to the floor, measured by hdisp F :
0.2478 mm.

• The slip in the crack at the interface between the wall and the foundation,
measured by s R: 0.7712 mm.

• The pull-out of the reinforcing longitudinal bars on the tension side, estimated
from strain gages values: 1.10 mm.

• The rotation of the foundation, measured indirectly by vdisp FL and vdisp FR,
giving values at peak of respectively -1.513 mm (downwards, compression side)
and 0.2066 mm (upwards, tension side).

These deformations are illustrated in Fig. 4.12. The pull-out of the longitudinal
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Figure 4.12: Secondary movements accounted for in DIC. From left to right: initial
position, slip foundation-floor, slip at interface wall-foundation, pull-out, rotation of
foundation.

reinforcement is related to strains in the footing. The shear wall is supposed to be
rigidly fixed to the foundation. Under shear loading, the longitudinal reinforcement
is highly stressed on the tension side at the basis of the wall. The strains do not
become directly zero at the footing. The reinforcing bars still carry strains into
the footing over a certain length. This phenomenon is called ”strain penetration
effect”. The pull-out of the rebars results in a rotation of the wall about a certain
point. The point of rotation can be considered as the point dividing the base into a
compression and tension zone, which can be interpreted in terms of vertical strains
εy. The compression zone would thus be the zone with negative values for εy.
Another way to define the point in question is to look at the displacement field and
define it as the point where the vertical displacement on either side is of different
sign (e.g. points moving down to its left and up to its right). From Fig. 4.13, it
can be seen that the pure compression zone represented as a black color ends at
abscissa x = 230 mm. It was also observed that points close to the bottom edge
move upwards to the right of this abscissa. The point of rotation of the wall due
to pull-out will thus be defined at x=230 mm and y =0 mm. Consequently, the
displacement field caused by the pull-out is calculated by small rotations. The angle
of rotation is given by

θPO = 1.10
(1500− 39)− 230 = 8.94× 10−4, (4.3)

Similarly, the rotation of the bottom block, the foundation, causes a displacement
field captured by DIC technology, but not by the kinematic model. The rotation of
the bottom block should thus be deducted from the DIC result for proper validation.
The angle of rotation is computed as

θR = 1.513 + 0.207
1500 + 2 · 570 = 6.51× 10−4. (4.4)

The x-coordinate of the point of rotation is 1752.9 mm and is therefore situated right
of the wall. Consequently, every data point moves downwards due to the rotation of
the foundation. The horizontal and vertical displacement for each data point based
on a rigid body rotation about the point of rotation will then be deducted from DIC.
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Figure 4.13: Vertical strains εy with a colorbar representing negative values (com-
pression) in black.
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(a) Deformation pattern from DIC analy-
sis with colorbar representing |ε1| + |ε2| to
illustrate damage, AF = 15, modified by
removing the displacement due to pull-out,
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0 500 1000 1500
0

500

1000

1500

2000

(b) Deformation pattern from kinematic
model (3PKT), AF = 15.

Figure 4.14: Deformation patterns at peak.

A new comparison between the kinematic model and the modified DIC deforma-
tion pattern is shown in Fig. 4.14.

The horizontal displacement of a point in the top left corner of the mask will once
again be compared to the displacement from 3PKT. In the following, the secondary
displacements for the top left point are computed and removed:

• Data point of coordinates x = 11.95 mm and y = 2072 mm.

• The horizontal displacement of this point from DIC is 23.2 mm.

• The horizontal displacement due to pull-out is 8.94× 10−4 · 2072 = 1.852 mm.

• The horizontal displacement due to rotation of foundation is 6.51×10−4·2072 =
1.350 mm.

• By deducting also the slip in the crack and the slip of the foundation, the
corrected horizontal displacement becomes 23.2−1.35−1.85−0.248−0.771 =
19.02 mm.

The difference between the corrected value from DIC and the kinematic model
is 19.02-17.12 = 1.90 mm (10%). The top horizontal displacement determined with
the 3 measured degrees of freedom is thus very close to the actual displacement.
In addition, it is important to visualize the shape of the missing deformation. To
do so, the displacement field computed with 3PKT will be subtracted from the
displacement field from DIC. Fig. 4.15 shows the difference in displacement field,
both for the unmodified DIC and for the modified DIC deformation pattern.
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(a) Difference in displacement fields be-
tween DIC and kinematic model, unmod-
ified DIC, AF = 15.
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tween DIC and kinematic model, modified
DIC, AF = 15.

Figure 4.15: Comparison of displacement fields at peak (deformed positions of DIC
subtracted by deformed positions of kinematic model).

Comparing Fig. 4.15a with Fig. 4.15b shows that removing well known com-
ponents from DIC improves the estimation of the kinematic model. The interest
of the kinematic model remains in its simplicity. Therefore, the main interest in
this chapter is to check missing degrees of freedom, which were not yet accounted for.

It can be observed that the right edge of the wall curves more than predicted by
the 3PKT. The missing deformation in the bottom concrete body is also visible when
comparing the edges of the mask in the middle (discontinuity due to steel bar). One
reason might be the assumption of rigid struts between the cracks. In fact, the zone
below the critical crack is represented by a series of rigid radial struts pinned at the
bottom left edge and connected to the tension reinforcement. The rotation of each
strut about the pinning point is proportional to the elongation of the reinforcement
such that the displacements in the fan depend only on the first DOF εt,avg. If the
struts were not assumed to be rigid, they could deform and become shorter and the
deformation of the block below the crack predicted by 3PKT would be higher.
The concrete block above the critical crack remains globally undeformed, which
confirms the hypothesis of 3PKT. But close to the critical crack, another crack
formed such that the assumption of one uncracked concrete block above the critical
crack is not completely verified. As a consequence, the slip in the crack is not only
concentrated in one single crack.
Another factor is the shape of the critical crack. While in the kinematic model, the
critical crack is modeled with a straight line, the real crack is more curved. This
choice might lead to higher lateral displacement in the lower part of the top concrete
block than actually observed in reality.
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4.3.4 Comparison of crack displacements
The 3PK model provides formulas for crack width and slip halfway along the crack.
They will be compared to the crack width and slip computed based on DIC.

Regarding the crack opening, the kinematic model suggests to check if the crack
width will be distributed among ncr several major cracks. According to the model,
this must be taken into account if the longitudinal web reinforcement ρl,web ≥ 0.2%.
In the present case, referring to Fig. 4.10, the longitudinal web reinforcement ratio
is similar to the total reinforcement ratio since the reinforcement is almost uniformly
distributed.

Since ρl,web = 1.86% is much bigger than 0.2%, ncr will be taken bigger than 1
and can be estimated by the number of cracks within the transition zone between
the fan and the rigid block:

ncr = lk
scr

(4.5)

with lk being the length of the transition zone and scr being the crack spacing in
the effective tension zone. The latter one is computed with

scr = 0.28 db
ρl1
, (4.6)

where ρl1 is the reinforcement ratio in the effective tension zone. Since the lon-
gitudinal reinforcement is uniformly distributed, ρl1 = ρl = 1.86%. With a bar
diameter db of 16 mm for the main flexural reinforcement, the crack spacing is equal
to scr = 240 mm. Since the critical crack reaches up to the top corner, lk = l0 where

l0 = scr ≥ min (1.5(h− d), d− h/2) · cotα1 = 519 mm. (4.7)

The crack width should thus be distributed among ncr = 519/240 = 2.16 cracks.
εt,min is assumed to be ∼ 0.5εt,avg. With the previously determined parameters, the
crack width is w = 3.09 mm. By ignoring the term ∆ci0 in the formula for slip, the
slip halfway along the crack is ∆ci = 5.45 mm.

The term ∆ci0 can be estimated from DIC. In fact, it corresponds to the shorten-
ing of the bottom half of the top strut from the fan. The shortening can be estimated
by having a look at the displacements of a point halfway along the critical crack in
the strut that formed just below it. In the present case, a point with coordinates x
= 686 mm and y = 1141 mm is suitable. Its horizontal displacement is -11.48 mm
and vertical displacement is 2.384 mm. The displacement parallel to the crack of
crack angle α1 ∼ 33° is determined with trigonometry, which yields 4.26 mm. Tak-
ing ∆ci0 as 4.26 mm, the theoretical slip of the kinematic model reduces to 1.174 mm.

A detailed description of the crack displacements along the entire crack based on
DIC is given in section 4.4.1. The crack width and slip based on DIC measurement
halfway along the crack are 1.97 mm and 1.39 mm.

In conclusion, the crack width determined by 3PKT is about 56.9% higher than
the one measured thanks to DIC. The slip from 3PKT is only 15.54% smaller than
the slip based on DIC.
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Figure 4.16: Free-body diagram of a wall with applied horizontal shear force and
horizontal components of internal stresses.

4.4 Mechanisms of shear resistance

In this section, the shear-resisting mechanism presented in chapter 3 will be com-
puted. First, the aggregate interlock will be evaluated. Then, the shear resisted
in the critical loading zone is evaluated. Finally, the contribution of the shear
reinforcement is determined. In the last section, the total shear resistance will be
evaluated and compared to the maximum applied shear force.

These three contributions are pointed out in Fig. 4.16.

4.4.1 Aggregate interlock

The interlock stresses are calculated thanks to three different models based on crack
displacements. These crack kinematics, namely crack width and slip, should be
evaluated along the critical diagonal crack.

Measured crack kinematics

The crack kinematics from DIC will be presented in this section. By dividing the
height of the wall into approximately 100 mm segments and selecting manually the
end points of each segment as well as the point in the crack and the 4 points to
evaluate the movement of each face of the crack, we can compute the crack width
and slip. In practice, those points are situated as presented in Fig. 4.17, in agreement
with the crack kinematics methodology presented in Appendix A.

The computed crack width and slip are represented in Fig. 4.18 by polygons.
Larger polygons indicate higher slip in the crack or larger crack opening.
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4.4. Mechanisms of shear resistance

Figure 4.17: Zoom on crack (plot of maximum principal strain). ∗ = end points of
crack, + = crack point, bullets in blue, green, red, yellow = P1 to P4.

Interlock stresses and shear contribution

In chapter 3, three crack models were presented, each of them computing interlock
stresses based on crack width and slip. Thus, for each crack segment visible in Fig.
4.18, a normal and shear stress is determined. The total shear trasferred through
the crack is then calculated by integrating the horizontal components of the stress
normal to the crack and tangent to the crack with Eq. (3.34). In the present case,
the integral consists of the sum of the shear contribution from each segment. In
fact, the interlock stresses for a given crack segment are considered constant along
the segment. As a consequence, the stresses and thus the shear force vary stepwise
along the crack.

These following shear forces are obtained with the crack models for crack width
and slip represented in Fig. 4.18:

• Two-phase model (TPM): 122.80 kN.

• Contact Density Model (CDM): 47.406 kN.

• Pure Mechanics Crack Model (PMCM): 208.75 kN.

As an example, the evolution of the contribution of shear stress and normal
stress from PMCM is shown in Fig. 4.19. Those contributions correspond to the
segments represented in Fig. 4.18, from bottom to top. Generally speaking, shear
stresses are higher than normal stresses. However, the steep angle of the crack plays
an important role since shear and normal stresses must be projected horizontally
in order to check for horizontal equilibrium. The total shear force for PMCM is
obtained by integrating the dashed curve over the total crack length. As an exam-
ple, the first segment, at the bottom of the crack, is characterized by a very small
crack width (0.34 mm) and slip (0.53 mm). Combined with a crack angle (angle of
the crack with respect to the vertical axis) of only 21.7 °, the interlock contributes
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Figure 4.18: Crack width (white) and slip (red) [mm].
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Figure 4.19: Stress contributions to total shear force transferred in the crack for
PMCM model.

only little to Vagg for PMCM. For TPM and CDM, it provides even an unfavorable
contribution (reduction).

Since the displacement field is not computed over the whole specimen because of
experimental construction conditions, the interlock stresses between segment 9 and
10 in the middle of the specimen as well as the contribution of the top right crack
part should be estimated.
For the middle part, it has been decided to compute the crack angle and crack seg-
ment length from the end points of the adjacent segments, here defined by points
with coordinates (686;1204) and (796;1383). The shear stress and normal stress
is taken as the average of the stresses of the adjacent segments. Projecting those
stresses horizontally and integration over the crack surface, the additional contri-
bution is estimated. The crack part in the middle is estimated to increase the
previously determined value by 8.78% (based on PMCM model).
Similarly, interlock stresses of the missing top part are considered to be equal to the
stresses developing in the adjacent segment below. The crack angle and length of
the segment are computed with end points (1217;1912) and (1380;2107). The cal-
culation yields that the contribution to Vagg is consequently increasing by 15.94%.
By taking into account those two contributions, Vagg yields 260.4 kN according to
PMCM.

4.4.2 Critical loading zone

The shear transferred in the critical loading zone is evaluated by integration the
shear stresses over a horizontal plane, as illustrated in Fig. 4.16. The location of
the horizontal plane should be discussed. In fact, the ideal situation would be to
cut horizontally when the critical diagonal crack becomes more dispersed and little

91



Chapter 4. Results: Short Wall

(a) Maximum principal strain ε1 for a sub-
set of 15 px (factor 3).

(b) Maximum principal strain ε1 for subset
of 51 px.

Figure 4.20: Maximum principal strains.

cracks are present. However, from experimental data, defining the region with little
cracks is not straightforward as will be explained in the following sections.

Strains

Strain fields are determined with the constant strain triangle method described in
chapter 3.

In this application, for a subset of 51 pixels and a step of 13 pixels, no factor
is applied to the mesh. However, for a subset of 15 pixels and a step of 4 pixels, a
coarseness factor of 3 is applied such that a right-angled mesh triangle has its two
perpendicular legs of length 3 × 4 = 12 pixels. As a consequence, the density of
the mesh is similar to the one obtained with a step of 13 pixels. Furthermore, the
computation time is limited (order of magnitude: 10 seconds, for 113400 elements).

Strain calculations for a small subset (e.g. 15 px) give a maximum principal
strain field, which allows for easy tracking of the cracks, as can be seen in Fig.
4.20a. Higher subset lead to smoother strain fields as can be seen in Fig. 4.20b.
Fig. 4.20a and 4.20b show that the strain field is a bit discontinuous and disturbed
along a horizontal line at height 760 and 1370. These are the limits of the overlapping
area, in which the vector field from the bottom frame and from the top frame are
interpolated and merged. These are the locations where the masks ends. Close to the
ends of the mask, irregularities are more common, which enhances the probability
of discontinuities in the merged vector field. This is also the case close to the steel
bars where the mask had to be disconnected.

The critical loading zone is situated at the bottom left corner, where the maxi-
mum principal strains are disturbed and do not reveal clear cracks as can be seen in
Fig. 4.21a. It should be noted that the critical diagonal crack is the one emerging
from the top right corner of Fig. 4.21a. As already mentioned earlier, an addi-
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(a) Close-up of area close to CLZ (ε1). (b) Close-up of area close to CLZ (ε2).

Figure 4.21: Principal strains in disturbed area (CLZ) at the bottom left of the wall.

Figure 4.22: Shear stresses τxy for VCLZ , based on the biaxial failure criterion.

tional crack left to it becomes visible and wide especially in the zone close to the
bottom. The exact plane where the critical crack gets dispersed can not be identi-
fied straightaway from Fig. 4.21a. Another indicator might be minimum principal
strains. High principal compressive strains are observed in the zone as shown in
Fig. 4.21b, where the lower limit of ε2 is set to the crushing strain of approximately
2.5× 10−3. Crushing strains are present up to a level of y = 150 mm. Considering
both Fig. 4.21a and 4.21b, the horizontal plane is assumed to be somewhere in the
area defined by x ∈ [0, 300] and y ∈ [150, 400]. The criterion for the horizontal cut of
the FBD is the maximization of VCLZ . Therefore, the shear resistance is computed
for different planes in the previously defined area and the value of VCLZ is chosen to
be the maximum value.

Stresses and shear contribution

The shear stresses in the previously defined zone are shown in Fig. 4.22. The
planes are defined in a row of triangles. Therefore, the value of τxy along the x-axis
(horizontal axis) for a given plane is chosen to be the average value of τxy from the
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Figure 4.23: Maximum principal strains ε1 in zone, with ε1 ≥ εcr being colored in
black.

upper and lower triangle. VCLZ is obtained by integrating τxy over the plane.

Since most of the maximum principal strains are higher than εcr (see black
triangles in Fig. 4.23), the three different constitutive laws presented in chapter
3, namely ”biaxial failure criterion”, ”uniaxial compression” and ”compression-
softening” give different values for σ2 and therefore for τxy and VCLZ .

The shear force transferred in different planes is shown in Fig. 4.24 for the 3
different models, in function of the height of the row. It can be seen that they do
not differ very much in shape but in value. While the compression-softening effect
gives generally lower shear forces due to reduced compressive strength, uniaxial
compression gives the highest shear force because no biaxial effect is considered
and higher compressive stresses are accepted. The biaxial failure criterion produces
intermediate values.

For the preferred constitutive law, including compression-softening, the maxi-
mum shear is transferred at the plane at height 303 mm with a maximum value of
539 kN. The evolution of stresses along the horizontal axis for this row is represented
at Fig. 4.25. Maximum principal stresses σ1 are mostly 0 since the maximum strain
is often larger than εcr. Principal compressive strain directions in the analyzed zone
are shown in Fig. 4.26. They are mostly close to vertical, slightly inclined.

As can be seen in Fig. 4.25, shear stresses are zero close to and behind the metal
bar which causes a discontinuity in the stress fields. To estimate a more correct
value of the shear force resisted in the critical loading zone, an interpolation will be
done between abscissa 140.5 with shear stress τxy = -14.7 MPa and 211.5 with τxy =
-16.3 MPa to account for shear stresses in the discontinuous zone. Integrating the
mean value over the plane, the additional shear force to be considered would be:

VCLZ,add = (−14.7) + (−16.3)
2 · 230 · (211.5− 140.5) = −253 kN, (4.8)
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Figure 4.24: Evolution of VCLZ along the y-axis according to the 3 proposed models.
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Figure 4.25: Principal stresses (σ1 = s1 and σ2 = s2) and horizontal shear stress
τxy = txy at plane of maximum VCLZ according to compression-softening model.
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Figure 4.26: Principal compressive strain/stress directions in CLZ.
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which results in a total shear force transferred in the CLZ (in absolute values) of
539 + 253 = 792 kN . One should also note that the critical loading zone is thus
defined by a plane at height 303 mm reaching from the left edge of the wall to
abscissa 291.3 mm. This should be considered in the overall body equilibrium.

4.4.3 Stirrups
The contribution from tensile stresses in the stirrups to the resisting shear force is
calculated in this section.

As shown in Fig. 2.2, 4 layers of stirrups are placed. According to the plan,
stirrups of diameter 6 mm should be placed, but diameter 8 mm were delivered and
placed. Assuming a yield stress of 540 MPa in each stirrup, the shear transferred
by the stirrups is estimated to be 217.2 kN. If we take into account the fact, that
the lowest level of stirrups is not intersected by the free-body diagram, the shear
resistance provided by the stirrups drops to 163 kN.

4.4.4 Total shear force
To evaluate the total shear force, the now defined free-body diagram should be
examined. The horizontal cut for VCLZ was decided to be at height y = 303
mm. However, the aggregate interlock is only evaluated down to height y = 408
mm. Therefore, the interlock along approximately 100 mm is missing, but it was
observed that the lowest crack segment considered in the calculation barely con-
tributed. Therefore, the missing segment is assumed to be negligible.

By adding the previously defined load-bearing mechanisms, with PMCM model
for aggregate interlock, we obtain a total transferred shear force of

Vtot = VCLZ + Vagg + Vs = 792 + 260 + 163 = 1215 kN, (4.9)
, which is larger than the applied shear force at peak of 1042 kN. The computed
shear resistance is 173 kN higher, which corresponds to 16.6%.

The same calculation is done for the other two aggregate interlock models:
• TPM: Vagg = 122.8 kN . With an increase of 8.78% and 15.94% for the missing

crack segments, Vagg yields 155 kN. The total shear force yields Vtot = 1110 kN ,
which is 68 kN larger than the applied force (6.53%).

• CDM: Vagg = 47.4 kN . With an increase of 8.78% and 15.94% for the
missing crack segments, Vagg yields 59.1 kN. The total shear force yields
Vtot = 1014 kN , which is 28 kN smaller than the applied force (-2.69%).

In conclusion, the sum of the contributions from aggregate interlock, critical
loading zone and stirrups give a shear resistance of the same order of magnitude
as the applied force. The Contact Density Model produces the smallest aggregate
interlock, but the total resisted shear force is the closest to the applied load.

The critical loading zone is shown to be the dominant mechanism in this appli-
cation, accounting for 76% of the applied force. The contribution from stirrups is
estimated to be about 16%. The missing 8% come thus from aggregate interlock.
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Chapter 5

Results: Coupling Beam

In this chapter, the behavior of the coupling beam during the test will be described.
The DIC measurements will be analyzed and validated by comparing them with mea-
surements from displacement transducers (potentiometers). Then, deformations will
be analyzed and compared to the deformation pattern predicted by the 2PK kine-
matic model. In the last section, the shear-resisting mechanisms will be evaluated
and compared to the applied shear force at peak.

5.1 Global observed behavior
The load-displacement response is obtained with measurements from potentiome-
ters. The horizontal load corresponds to the sum of the applied force of the two
horizontal actuators. The horizontal displacement is defined as the displacement
of the top block and will be taken as the average of the measurements from the
displacement transducers installed at either side of the top block. They measure the
displacement with respect to the bottom block. Therefore, one should keep in mind
that in case of a slip of the bottom block with respect to the floor, the absolute
horizontal displacement is actually higher than the one measured by DT. Fig. 5.1
shows the load-displacement curve for the short coupling beam.

The pre-peak behavior can be described as follows. As the load increases, cracks
initiate in the end sections, soon followed by inclined cracks that propagate from the
side edges towards the compression zones in the end sections. The latter are referred
to as flexure-shear cracks and develop due to tension along most of the shear span
caused by the double curvature. At a load slightly higher than 300 kN, a major
diagonal crack forms. The crack extends from the top right corner to the bottom
left corner. This crack causes a sudden displacement of the concrete above the
formed crack and the applied force is suddenly decreased. At that point, a load stop
takes place to allow crack measurements by hand. Cracking leads to a gradual de-
crease in stiffness represented by a diminishing slope of the load-displacement curve.

The maximum horizontal load applied to the beam is 456 kN. The horizon-
tal displacement of the top block reaches 6.63 mm at peak. Since the experiment
is displacement-controlled, the post-peak behavior is well described. In fact, the
actuators apply the exact amount of force to produce a certain increment of dis-
placement. The curve decreases after the peak, reflecting a gradual decrease in
resistance of the beam. The failure is defined at the point when the applied force
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Figure 5.1: Load-displacement response of the short coupling beam.

can not be increased further. A photograph of the specimen close to peak is shown
in Fig. 5.2. The failure is described as diagonal tension failure along the major
diagonal crack. After failure, the major crack continues opening gradually and the
shear mechanisms become less effective. During the post-peak, it is also observed
that concrete in the compression zones is highly stressed, leading to gradual damage
and disintegration. Towards the end of the test, several other inclined cracks start
to widen significantly and in the bottom compression zone, big pieces of concrete
are likely to spall due to high compressive stresses, as can be seen in Fig. 5.3.

The vertical displacement of the top block during the test can be seen in Fig.
5.4. With increasing horizontal force, the beam elongates vertically. At 45% of the
test duration, the peak force is reached. Simultaneously, the vertical displacement is
maximum. This is explained by the fact that afterwards, the load decreases gradually
and the tensile reinforcement is less stressed. As a consequence, the longitudinal
reinforcement and the beam shorten. The vertical actuators do not influence the
vertical deformation. In fact, they prevent the top block from rotating, but allow
for free elongation. Therefore, they are regulated such that the displacement of
both actuators is identical. The force in the actuator on the side of the horizontal
actuators remains constant at about -21.3 kN (push), while the pulling force applied
by the second vertical actuator increases gradually from the initial force of 21.3 kN to
approximately 55 kN (pull) at peak. Afterwards, the force remains nearly constant.
The pull exerted by the second actuator is thus the driving force that prevents the
top block from rotating.

5.2 Validation of DIC measurements

In this section, the DIC measurements will be analyzed and the load sequence will
be traced back. The data will also be compared to measurements from displacement
transducers (DT).
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5.2. Validation of DIC measurements

Figure 5.2: Test specimen (opposite side of DIC frame) at a horizontal load of 452
kN and a horizontal displacement of 6.74 mm.
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Figure 5.3: Last photograph of the time-lapse (end of test) at a horizontal load of
312 kN and a horizontal displacement of 24.1 mm.
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Figure 5.4: Mean vertical displacement of top block.
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5.2. Validation of DIC measurements

Figure 5.5: Region of interest within the dimensions of the specimen (black lines).

5.2.1 Processing of DIC data
The output of the DIC processing performed by the University of Patras is a dis-
placement field at 1312 instants. Since pictures were taken every 5 seconds during
the test, the steps give the displacement field for every fifth second. The region of
interest in represented in Fig. 5.5. The mask defining the region where DIC will be
analyzed has a size of 771.49 × 971.58 mm and therefore does not cover the whole
beam (of size 1000 × 800 mm) to reduce the risk of bad calculations at the edges.
We assume that the region is centered.

Load cycle identification

Three different systems can be distinguished. The first one is the DIC system, which
provides the displacement field for the whole test, at 1313 steps, which corresponds
to a time interval of 109,33 min (1 h and 49 minutes). The second system is a
camera that took photos at a constant frequency of 1/20 Hz (one picture every 20
seconds) of the other side of the specimen without speckles. The camera captured
also the current applied force and the horizontal top displacement. A total of 331
pictures were taken in the same time interval as for the DIC system. Both recording
systems, DIC camera and second camera, took photos continuously, even during
load stops. The third system is the recording of the deformation of each sensor
(DT), strain gage and applied forces. The data acquisition is not continuous, such
that no recording takes place during load stops.

A perfect match between the DIC and the DT measurements is therefore not
possible in an accurate way. However, it was possible to identify the load steps
among the 1312 steps from DIC analysis thanks to the second camera systems.
From the camera taking pictures of the specimen and a screen with the applied load
and horizontal displacement, the beginning and the end of an time interval, e.g.
load step or load stop, could be defined with a 20 seconds-accuracy (respectively 4
DIC steps). The following cycle duration were estimated (LS = load step interval,
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LB = load stop (break) interval):

• LS1 : 400 s

• LB1 : 240 s

• LS2 : 260 s

• LB2 : 360 s

• LS3 : 220 s

• LB3 : 700 s

• LS4 : 340 s

• LB4 : 440 s

• LS5 : 220 s

• LB5 : 560 s

• LS6 : 2580 s (43 min)

A specific number of DIC steps could be assigned to those time intervals by dividing
each interval by 5 seconds (time interval of two consecutive DIC steps).

Once the number of steps belonging to each load step or stop is identified, which
steps correspond to each interval should be determined. To do so, one particular
event was taken into account: the occurrence of the major diagonal crack. From
camera pictures, it is observed that the crack occurs at a load of approximately
309 kN and a horizontal displacement of about 2.61 mm. This rapid formation
results in a deformation of sensor POT66 and POT59, which capture the relative
displacement of points situated on the two sides of the crack. The relative displace-
ment between two points on either side of the crack, based on the first 900 DIC
steps, is represented in Fig. 5.6. It can be observed that a sudden deformation
between the two selected points take place from step 344 to step 345. From pictures
and experimental data it could be concluded that due to the occurrence of the
diagonal crack, the force dropped suddenly and the loading was stopped in order to
allow crack measurements, marking the start of a load stop interval. Therefore, the
vertical lines delimiting load steps and stops (red vertical lines) are shifted in a way
that a new load stop begins at step 345.

The previously estimated loading and load stop sequence seem to match well to
the recorded deformation from DIC: The relative displacement in Fig. 5.6 increases
during loading and remains globally constant during load stops.

It should also be noted that the spreadsheet containing DT and force measure-
ments does not reveal the data acquisition rate. However it can be estimated as
follows:
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Figure 5.6: Relative displacement of two data points (DIC) representing the sensor
POT66.

• For load step 4, about 142 DT measurements were recorded. For the same
cycle, 68 DIC steps are available. The ratio is 2.09. Therefore, the data
acquisition frequency is about 2.09 times higher than for DIC, which would
correspond to a mean time interval of 2.39 seconds.

• For load cycle 5, about 89 measurements were recorded and 44 DIC steps
are available. The ratio yields 2.02, which gives a mean time interval of 2.47
seconds.

It can be concluded that the data acquisition rate of experimental data is in the
order of magnitude of 1/2.4 Hz.

Quality of DIC measurements

The displacement field is relatively noisy. The subset radius might have been chosen
too small. A larger subset radius would have given a smoothing effect. Furthermore,
the pictures used for DIC analysis are not completely stable. In fact, the image is
slightly moving from one step to another. An immovable camera setup is crucial for
good images. At step 768, a person ran in front of the DIC camera, which results
in an aberrant measure. Aberrant displacements are also common during steps in
the post-peak, which can be explained by big deformations and disintegration of
concrete.

Another important observation could be made. From displacement field calcula-
tion it could be seen that around step 650, the camera connected to the DIC system
moved considerably. This affects also the results of displacement field calculations.
Fig. 5.7a and 5.7b illustrate the difference in displacement between step 645 and
650. This displacement, which is only due to a movement of the camera and not a
deformation of the specimen, should thus be accounted for in the following steps. To
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(a) Horizontal displacement field [mm] at
step 645.

(b) Horizontal displacement field [mm]
at step 650.

Figure 5.7: Horizontal displacement field before and after discontinuity.

do so, the difference between the mean horizontal displacement of steps 653 to 655
and steps 646 to 648 is computed for each data point. Every displacement field after
step 649 will be corrected by subtracting the erroneous displacement, noted ∆vx,
from the DIC calculation. One should keep in mind that this camera movement was
the most pronounced. However, photographs are not always stable throughout the
complete test as mentioned earlier.

Peak load step

In order to compute shear mechanisms and to compare the kinematics from DIC to
the 2PKT model, the peak load step should be identified. As described earlier, the
matching of the different systems can not be done in a perfectly accurate way. The
following estimation is done to estimate the peak load step:

• From time-lapse photos it could be seen that the development of the critical
diagonal crack occurs between photo 88 and 89.

• Thanks to the monitor displaying the applied shear force and horizontal top
displacement, it could be concluded that the peak is probably reached between
photo 209 (displacement: 6.45 mm, shear force: 438.73 kN) and photo 210
(displacement: 6.74 mm, shear force: 451.62 kN).

• The difference in time is thus estimated to be (209− 88) · 20 = 2420 seconds.
In terms of DIC, this corresponds to 2420/5 = 484 steps.

• As mentioned earlier, the development of the crack takes place between step
344 and 345. Therefore, the peak load should be reached around step 345 +
484 = 829.
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Figure 5.8: Effect of filtering DIC data in the post-peak region. The deformation
corresponds to the relative displacement between two points on either side of the
crack.

5.2.2 Comparison with DT measurements
In order to compare DIC measurements with DT measurements, the load stop in-
tervals will be removed from the DIC data as they are not included in the recording
of DT. For comparison, DIC data will be filtered in a simple way to remove aber-
rant values and to reduce the noise. Aberrant values are set to NaN and noise is
filtered with the Matlab function medfilt11. An example of the filtered data in the
post-peak can be seen in Fig. 5.8.

The comparison will be done for POT66, POT59, web expansion and base cracks
(Fig. 5.9).

POT66

The sensor POT66 measures the relative displacement between two points on either
side of the critical crack close to the upper compression zone. A comparison of DT
and DIC is represented in Fig. 5.10. It is important to note that the horizontal force
is synchronous with the DT measurement since their data acquisition is identical.
The load steps for DIC are only estimated such that they do not match perfectly.
However, it can be concluded that, especially before the peak, the deformation is
similar for DIC and DT, sometimes shifted due to uncertainties in terms of load
intervals. In the post-peak, DIC deformation reaches higher values.

POT59

The transducer POT59 measures the same deformation as POT66 but near the
bottom compression zone. The comparison between DIC and DT is given in Fig.
5.11. DIC computation is not reliable towards the end of the experiment because
the point at the edge is highly disturbed due to disintegration of concrete. The

1The Matlab function medfilt1 applies a third-order one-dimensional median filter to the data.
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Figure 5.9: Implemented instrumentation of the coupling beam.
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Figure 5.10: Comparison between DT and DIC for POT66.
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Figure 5.11: Comparison between DT and DIC for POT59.

same conclusions can be drawn as for POT66 as we have a good correlation between
DT and DIC especially in the pre-peak zone. Towards the last 20% of the loading,
POT59 stops recording additional displacement, because the transducer might have
reached its deformation limit.

Web expansion

Sensor POT57 and POT60 measure the displacement of the sides during the test.
The comparison between DIC and DT is given in Fig. 5.12. A surprising behavior
takes place for the DTs. One can expect the POT57 to get shorter in a higher pro-
portion than the POT60 to get longer, due to cracks that form in between. However,
after 10% test progress, the web starts to contract according to the measurements
from DTs. Indeed, from experimental data, we can see that POT60 starts recording
a displacement earlier than POT57, which leads to the apparent contraction. The
experimental setup might be the source of error. DIC computation, on the other
hand, gives the expected evolution. A sudden increase in web expansion takes place
at test progress 0.265, which corresponds actually to the development of the major
diagonal crack. The global shape is similar for both curves.

Bottom base crack

The base crack is measured by SPR-POT5. It is compared to the vertical dis-
placement of a point located in the theoretical position in the mask. The result
is represented in Fig. 5.13. A large difference is visible. While the potentiometer
measures a maximum crack opening of about 0.17 mm, the point from DIC compu-
tation moves vertically by ∼1.2 mm. This difference is significant and may be due
to a different cracking pattern in the base region at the two faces of the specimen.
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Figure 5.12: Comparison between DT and DIC for the web expansion.
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Figure 5.13: Comparison between DT and DIC for SPR-POT5.
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Figure 5.14: Comparison of absolute vertical displacement of point below crack,
between DT and DIC.

Top base crack

A comparison with the crack opening of the top base crack, measured by SPR-POT4
is not straightforward. In fact, the potentiometer measures the relative displacement
of two points: a point situated on the top block and a point below the supposed
crack. From DIC computation, we obtain the absolute displacement for a grid of
point. Therefore, we can compare the absolute vertical displacement of the point
below the crack. To do so, we have to combine the DT measuring the vertical dis-
placement of the top block with SPR-POT4. The result is represented in Fig. 5.14.
At peak, the measured vertical displacement of the top block is 1.2 mm, and the rel-
ative displacement of the two measuring points of SPR-POT4 equals approximately
0.3 mm, which corresponds theoretically to the top base crack opening. Therefore,
at peak, the vertical displacement of the measuring point on the specimen yields 0.9
mm. The DIC computation yields higher values, up to 1.5 mm. Apart from that,
the overall shape of the curve is similar for both systems.

Top horizontal and vertical displacement

Fig. 5.15a and 5.15b show the horizontal and vertical displacement field at peak,
obtained by averaging the displacements over steps 827 to 831 for noise reasons,
having taken into account the displacement correction ∆vx. Horizontal displace-
ments are counted positive to the right. Vertical displacements are counted positive
upwards.

The mean horizontal and vertical displacement of the top block at peak were
measured by DT and their values are respectively 6.628 mm and 1.197 mm.

In terms of vertical displacement, a direct comparison between the displace-
ments of the top edge of the mask and the measured displacement from DT is not
straightforward. Indeed, local deformations like crack opening of the top base crack
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(a) Horizontal displacement field [mm] at
peak.

(b) Vertical displacement field [mm] at
peak.

Figure 5.15: Displacement fields at peak.

and compression of concrete in the right zone of the beam result in a nonuniform
displacement along a horizontal line. On the contrary, displacement transducers
measures a single value for the top block.

In terms of horizontal displacement, DIC values at the top of the mask are close
to 8 mm while the measured horizontal displacement of the top block from DT is
6.63 mm. First of all, the measured displacement corresponds to the displacement of
the top block with respect to the bottom block. However, a slip of the bottom block
with respect to the floor could be measured (0.3308 mm) such that the absolute mean
displacement, with respect to the floor, would be 6.96 mm. The DT measurement
also accounts for the slip between the top block and the beam, measured by POT20.
At peak, the slip reaches 0.43 mm. This slip is not accounted for in the DIC analysis.
Finally, the absolute horizontal displacement of the top block reduced by the slip at
the top interface is 6.53 mm. Thus, the difference between DT and DIC in terms of
horizontal displacement at the top of the beam is of about 1.47 mm.
It should be noted that the values of the 2 displacement transducers measuring the
horizontal displacement differ by almost 1 mm, which reveals uncertainties about
the measurements. Furthermore, displacements from DIC analysis vary quite a lot
around the peak. Unstable photographs and uncertainty regarding the chosen peak
step may lead to slightly overestimated values.

5.3 Comparisons with kinematic model

In this section, the deformation pattern from 2PKT is compared to the deformation
computed with DIC at peak.
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5.3.1 Measured geometry and DOFs of kinematic model
The 2PKT predicts the deformation pattern of a short coupling beam based on
2 degrees of freedom. The deformation pattern is computed with the equations
presented in Fig. 3.1. The DOFs are determined with experimental measurements
and the angle of the critical crack is determined by observations.

The angle of the critical crack α1 is estimated to be equal to the angle of the
diagonal of the shear span with respect to the vertical axis:

α = arctan h
a

= 38.66°, (5.1)

where h is the depth of the beam and a corresponds to the shear span.

DOF 1 and 2 for 2PKT are concluded from potentiometers. DOF 1, εt,avg,
corresponds to the average strain along the reinforcement. Thus, DOF 1 is taken
as the vertical displacement of the top block at peak divided by the length of the
beam:

εt,avg = vtop
a

= 1.197
1000 = 0.001197. (5.2)

DOF 2, ∆c corresponds to the transverse displacement of the CLZ. It is taken as
the mean value of the deformation measured in POT59 and POT66 at peak:

∆c = POT59 + POT66
2 = 1.732 + 2.156

2 = 1.944 mm. (5.3)

The kinematic model is computed by placing the origin of the 2PKT system of
coordinates (x and z) in the bottom right corner of the face with speckles. Therefore,
the CLZ is assumed to be at the bottom left corner of the specimen according to
2PKT. The x-axis is the longitudinal axis of the beam in the kinematic model.

5.3.2 Comparison of displacement fields
The displacement figures below are obtained with a coarseness factor of 15 such
that every 15th data point will be taken as a vertex of the triangular mesh. The
mesh becomes coarser and provides enhanced visibility.

The deformation pattern at peak from DIC and the kinematic model are repre-
sented in Fig. 5.16a and 5.16b, amplified by a factor of 15 (amplification factor =
AF). As a reminder, the deformation computed with DIC is already corrected by
∆vx (camera movement at step 649) and averaged over 5 steps.

The horizontal displacement δz of the top left point in the mask (with DIC-
coordinates x = 14.44 mm, y = 986 mm) is the sum of the contribution from DOF
1 and DOF 2:

• δz DOF1: 1.496 mm.

• δz DOF2: 1.944 mm.
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(a) Deformation pattern from DIC analy-
sis with colorbar representing |ε1| + |ε2| to
illustrate damage, AF = 15.
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(b) Deformation pattern from kinematic
model (2PKT), AF = 15.

Figure 5.16: Deformation patterns at peak.

The difference between the predicted deformation pattern and the deformation
from DIC is significant.

The following aspects must be taken into account for a proper comparison. While
the DIC camera captures the absolute displacement field of the speckle pattern,
the kinematic model only describes the deformation of the beam. The following
movements were taken into account in the DIC analysis but not in the 2PKT, and
their values at peak:

• The slip of the bottom block with respect to the floor: 0.331 mm 2.

• The slip in the crack of the beam with respect to the bottom block, measured
by POT7: 0.670 mm.

• The pull-out of the reinforcing longitudinal bars on the tension side, estimated
from strain gages values: 0.307 mm.

These deformations are illustrated in Fig. 5.17.
The pull-out of the longitudinal reinforcement is related to strains in the footing.

The short coupling beam is supposed to be rigidly fixed to the wall. The wall is
represented by the bottom block in the present experimental setup. When the beam
is loaded, it deforms in a double curvature shape. At the basis, the longitudinal
reinforcement is highly stressed on the tension side. The strains do not become
directly zero at the footing. The reinforcing bars still carry strains into the footing
over a certain length. This phenomenon is called ”strain penetration effect”. The
pull-out of the reinforcing bars results in a rotation of the beam about a certain
point. The point of rotation can be considered as the point dividing the lowest part
of the beam in a compression and tension zone. Another way to define the point

2A second sensor measured 1.332 mm. Both sensors give different values for no obvious reason.
The smaller one will be considered because it seems more probable to have only small slip.
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Figure 5.17: Secondary movements accounted for in DIC. From left to right: initial
position, slip bottom block-floor, slip at interface beam-bottom block, pull-out.

in question is to look at the displacement field and define it as the point where the
vertical displacement on either side is of different sign (e.g. points moving down to
its left and up to its right). From Fig. 5.16a it can be seen that mostly every point
tend to move upwards except for points very close to the left edge. For those reasons,
the point of rotation is chosen at the bottom left corner of the beam. Consequently,
the displacement field caused by the pull-out is calculated by small rotations. The
angle of rotation is given by

θPO = 0.3074
800− 38 = 4.034× 10−4. (5.4)

The horizontal displacement due to pull-out for the top left point in the mask is
then −θPo y = 0.398 mm.

The horizontal displacement of the top left data point (DIC) is -7.93 mm (already
corrected by ∆vx = 1.8311mm). After removing the slip of the bottom block, the
slip in the base crack and the horizontal displacement due to pull-out, the horizontal
displacement of the top left point in the mask yields −7.93+0.398+0.670+0.331 =
−6.53 mm. The sum of displacement from DOF1 and DOF2 is only 1.496+1.944 =
3.44 mm, which corresponds to only 53% of the value from DIC. The modified
deformation pattern from DIC is shown in Fig. 5.18.

In order to identify missing deformations in the kinematic model, the difference
in deformations between DIC and 2PKT is shown in Fig. 5.19. They are obtained
by subtracting the predicted kinematics from DIC deformation.

Comparing Fig. 5.19a with 5.19b shows that removing well known components
from DIC improves the estimation of the kinematic model. The missing deformation
can be interpreted as a shear deformation, as illustrated in Fig. 5.20.

5.3.3 Comparison of crack displacements
The 2PK model provides formulas for crack width (w) and slip (s) halfway along the
crack (Eqs. (10)-(11) in Fig. 3.1). In order to compute w, lk should be determined.
Since the the angle of the critical diagonal crack is assumed to be equal to the angle
of the diagonal of the shear span, lk is equal to l0. l0 corresponds to the length of
heavily cracked zone at the bottom of the critical diagonal crack when referring to
the deformation patterns in Fig. 3.1. With lk being equal to 118.1 mm and DOF 1
and 2, the crack width halfway along the crack yields 1.631 mm and the slip in the
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(b) Deformation pattern from kinematic
model (2PKT), AF = 15.

Figure 5.18: Deformation patterns at peak.
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(a) Difference in displacement fields be-
tween DIC and kinematic model, unmod-
ified DIC, AF = 15.
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(b) Difference in displacement fields be-
tween DIC and kinematic model, modified
DIC, AF = 15.

Figure 5.19: Comparison of displacement fields at peak (deformed positions of DIC
subtracted by deformed positions of kinematic model).
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(a) Difference in displacement fields be-
tween DIC and kinematic model overlayed
with missing shear deformation, AF = 15.

(b) Missing shear deformation, AF = 15.

Figure 5.20: Possible missing deformation in 2PKT.

crack yields 1.214 mm.

The crack kinematics based on DIC are computed along the critical crack in
section 5.4.1. Halfway along the crack, the crack width is ∼ 2.34 mm and crack slip
is ∼ 0.39 mm.

In conclusion, the crack width determined by 2PKT is about 30.3% smaller than
measured with DIC. On the contrary, the slip is about 3 times higher compared to
DIC.

5.4 Mechanisms of shear resistance
In this section, the shear-resisting mechanisms will be computed: aggregate in-
terlock, shear transferred in the critical loading zone and shear contribution from
stirrups. Finally, the total shear resistance is calculated and compared to the ap-
plied force at peak.

The free-body diagram illustrating the shear transfer mechanisms is depicted in
Fig. 5.21.

5.4.1 Aggregate interlock
Interlock stresses are computed with three different crack models. The application of
these models requires crack measurements, namely crack width and slip. Therefore,
before stress calculation, the crack displacements are determined along the critical
shear crack.
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Figure 5.21: Free-body diagram with applied horizontal shear force and horizontal
components of internal stresses.

Measured crack kinematics

Crack kinematics are computed from DIC for the displacement field at peak (aver-
aged over step 827 to 831) according to the method explained in Appendix A. The
critical diagonal crack is approximated by a polyline with segments approaching the
crack over a vertical distance of about 31 mm. The crack is visualized thanks to the
maximum principal strain field computed with the averaged displacement at peak
for a coarseness factor of 3 (constant strain triangle mesh). The method could be
applied for the main portion of the critical crack. However, in the end regions, where
the crack is not very distinctive, the method is not applied. The crack width and
slip are represented in Fig. 5.22.
It can be observed that crack width increases towards the mid-height of the beam

and becomes smaller towards the bases. The slip, on the other hand, is mostly be-
tween 0.3 and 1 mm. The small slip values can be explained by the fact that the top
block is not restrained by an axial force and can thus freely move vertically. Only
the rotation of the block is prohibited and controlled by the two vertical actuators.
As a consequence, when the crack forms, the two sides of the crack can open with-
out bearing a significant sliding within the crack since the left part is not driven
downwards due to an axial force.

Interlock stresses and shear contribution

Based on crack kinematics, interlock stresses are calculated with three different
models presented in section 3.2.2: Contact Density Model (CDM), Pure Mechanics
Crack Model (PMCM) and Two-phase model by Walraven (1980) (TPM). Each
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Figure 5.22: Crack width and slip computed from DIC at peak.
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Figure 5.23: Stress contributions to total shear force transferred in the crack for
CDM model.

model computes a shear stress and a normal stress for a crack segment. The shear
force is then calculated by integrating the horizontal components of those stresses
over the crack surface.

The following shear forces are obtained with the three models based on crack
width and slip shown in Fig. 5.22:

• Contact Density Model (CDM): 114.7 kN.

• Pure Mechanics Crack Model (PMCM): 40.3 kN.

• Two-Phase Model (TPM): 28.6 kN.

Therefore, the contact density model achieves the highest value for Vagg. The shear
stress contribution and normal stress contribution to the horizontal shear force is
shown in Fig. 5.23, along the crack, starting at the bottom. High contributions are
obtained for crack slips close to 1 mm in the top part of the crack and for small
crack width at the two lowest crack segments (0.46 and 0.76 mm), but also for crack
segments with a large crack angle.

5.4.2 Critical loading zone
Shear transferred in the critical loading zone is estimated by integrating shear
stresses over a horizontal plane. For a coupling beam, the high compressive stresses
are supposed to develop close to the end sections, to the left of the crack in the
lower part and to the right of the crack in the top part. It is important to note that
the 2PKT only accounts for one CLZ. However, in a symmetrical loading situation
as in the test on the short coupling beam, there is no real reason for only one CLZ.
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5.4. Mechanisms of shear resistance

(a) Maximum principal strain field. (b) Minimum principal strain field.

Figure 5.24: Strain fields.

Hence, two critical loading zones are considered in the following.

To compute stresses, strains must first be evaluated. They are computed with
the finite element formulation for constant strain triangles. Therefore, a mesh of
triangles is formed based on the grid of data points.

Strains

As can be seen in Fig. 5.24, maximum and minimum principal strain calculation
give a relative irregular strain field. This is partially due to the small step size used
in the DIC analysis, which gives a high resolution (1 data point every ∼ 2 mm), but
the resulting strain fields are not smooth. The strain fields are obtained considering
constant strain triangles with a length of 3× the step size.
The minimum principal strain field does not reveal distinctive compression zones
in the top right corner, right to the crack, or in the top left corner, left to crack.
Indeed, in those zones, several triangular elements are not blue-colored, indicating
tensile strains. The same phenomenon is observed for εy strain field depicted in
Fig. 5.25. One could expect compressive vertical strains in those locations, which
is not the case, especially in the top zone. Generally speaking, those zones can be
described as disturbed, by the formation of several cracks (as seen in photos at that
loading stage). This phenomenon is illustrated in Fig. 5.26, where several little
cracks were identified and marked at the top during the previous load stop. In the
bottom zone close to the critical crack, those little cracks were not traced. These
results are consistent with the crack pattern revealed by the maximum principal
strain field.

The location of the horizontal cuts (see FBD) in the beam should ideally be at
the height where the critical crack starts to disperse and the shear transfer mode
changes from aggregate interlock to shear transferred through high compression.
Since the plots of strain fields do not reveal a clear indication of the location, stress
fields are investigated. The criterion for the plane position is thus chosen to be the
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Chapter 5. Results: Coupling Beam

Figure 5.25: εy strain field. Negative (compressive) strains are represented in black.

Figure 5.26: Test specimen (opposite side of DIC frame) close to peak force.
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5.4. Mechanisms of shear resistance

Figure 5.27: Shear stresses τxy in the top right corner (left figure) and in the bottom
left corner (right figure).

plane, which maximizes the value of VCLZ .

Stresses and shear contribution

Fig. 5.27 shows shear stresses τxy in the top right corner and in the bottom left
corner of the mask. As can be seen, the finite element computation leads to a rela-
tively noisy stress field, with high variability from one triangle to adjacent triangles.
However, two horizontal planes could be identified with throughout negative shear
stresses (blue triangles). One is located at height 911 mm and the other one at
height 855 mm (see black rectangles in Fig. 5.27). Similarly, two planes in the
bottom left corner are promising for a high shear force because of relatively high
(negative) shear stresses. In order to find the maximum VCLZ close to the CLZ, the
shear force will be determined for these 4 discrete planes.

Thus, by integration of horizontal shear stresses over these planes reaching
from the edge of the specimen to the critical diagonal crack, the following shear
components are obtained. The smaller absolute value is generally obtained with
compression-softening law and the highest absolute value according to uniaxial com-
pression law.

• Top right corner:

– Height = 911 mm : VCLZ ∈ [70; 96] kN, as shown in Fig. 5.28. The exact
values are:

∗ Biaxial failure criterion: 78.6 kN
∗ Uniaxial compression: 95.3 kN
∗ Compression-softening: 70.3 kN

– Height = 855 mm : VCLZ ∈ [100; 140] kN.

• Bottom left corner:

– Height = 150 mm : VCLZ ∈ [74; 100] kN.
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Figure 5.28: Evolution of shear in CLZ along height.
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Figure 5.29: Evolution of shear in CLZ along height.

– Height = 81 mm : VCLZ ∈ [86; 102] kN. The exact values are:
∗ Biaxial failure criterion: 86.5 kN
∗ Uniaxial compression: 101.5 kN
∗ Compression-softening: 86.9 kN

It is decided to select the planes at height 81 mm and 911 mm. The shear force
according to compression-softening law are respectively 86.9 kN and 70.3 kN. The
variation of shear stress along those planes is shown in Fig. 5.30.

5.4.3 Stirrups
The third shear-resisting mechanism taken into consideration is the tensile stress
in the stirrups. As can be seen in Fig. 2.12, two stirrups are placed very close
to the end sections and are therefore not intersected by the cut for the free-body
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Figure 5.30: Stresses along chosen planes (max. principal strain s1 = σ1; minimum
principal strain s2 = σ2; shear stress txy = τxy) computed with compression-softening
law.

diagram. Hence, if only 4 among 6 layers of stirrups are considered to yield, the
shear transferred across the crack through stirrups is Vs = 204.7 kN .

5.4.4 Total shear force
The total shear force resisted by aggregate interlock, critical loading zone and stir-
rups is obtained by adding up all three contribution.

The free-body diagram (Fig. 5.21) should be recalled. The horizontal cuts were
performed at height 81 mm and 911 mm for VCLZ . Therefore, the aggregate interlock
should only be computed for the crack reaching from the bottom horizontal plane
to the top horizontal plane. The shear resisted through aggregate interlock was
obtained for the crack reaching from height 35.8 mm to 869.9 mm. The crack length
of the missing part at the top is very close to the crack segment that was mistakenly
accounted for in the bottom. It is assumed that the aggregate interlock in the
bottom part, below the CLZ plane, is balancing the missing aggregate interlock
contribution in the top part. By choosing the aggregate interlock value from CDM,
the 3 contributions to the shear force are summed up:

Vtot = VCLZ,1 + VCLZ,2 + Vagg + Vs = 70.3 + 86.9 + 114.7 + 204.7 = 476.6 kN. (5.5)

The applied shear force at peak was 455.9 kN. With the CDM for interlock
stresses, the difference in shear force is only 4.54%.

Choosing PMCM instead of CDM, Vtot = 402.2 kN . The total applied shear
force at peak is 455.9 kN, which gives a difference of 11.78%.

With the two-phase model for aggregate interlock, Vtot = 390.5 kN (14.34% of
difference).

Hence, the Contact Density Model gives the highest aggregate interlock and the
best balance between total resisted shear force and applied shear force.
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The contribution from stirrups is the largest (45%), followed by the sum of the
critical loading zones (35%). The missing shear resistance comes from aggregate
interlock (20%).
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Chapter 6

Conclusion

This thesis aimed at analyzing DIC data from two tests, one test on a short shear
wall and another test on a short coupling beam. The goal of the tests is to acquire
new knowledge about the shear behavior of non-slender structural members. Both
tests were completely independent from each other: They were tested in different
labs, with different experimental setups and different DIC systems. Even though
these tests originated from different experimental campaigns, the same questions
were raised and should be answered. The thesis focused on the use of Digital Image
Correlation in order to provide answers.

The technique allowing to compute displacements and deformations by means
of a series of images had to be understood. The calibration procedure, which is
crucial for obtaining reliable results, had to be reviewed for the shear wall. In
fact, for specimens of large dimensions, two cameras are employed. The calibration
should be adapted such that a good mapping of both camera frames is possible.
The processing is the next step of the analysis. The processing of large amounts of
data sets of images can be a time and storage space consuming procedure. General
principles and notions regarding processing parameters were described and their
practical applications on real tests illustrated.

The validation of DIC measurements is generally not a straightforward process.
Different independent measurement systems are useful for validation of DIC and
global comparison. However, in this thesis, it was also illustrated how complex com-
parisons between different systems can be. A major issue is the non-synchronous
data acquisition. In fact, most systems have their proper measuring rate and not
every system is measuring during the same time intervals. If synchronous data ac-
quisition is not possible in a test, one should make sure that it will still be possible
to place every measured data at the right position in time. For the test on the
short coupling beam, the coordination of the different sets of data was particularly
challenging. For both tests, the validation of DIC measurements was performed
by comparing displacements of discrete points of the DIC grid with measurements
from displacement transducers. For the shear wall, the displacements and deforma-
tions computed with DIC were generally higher compared to measurements from
displacement transducers. For the coupling beam, most of the measurements were
similar.
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Chapter 6. Conclusion

After the validation of the DIC measurements, the deformation patterns of the
test specimens were studied. A coarse mesh of triangular finite elements is suitable
for this purpose. One main objective was to validate the kinematic model of the
2PKT for coupling beams and of the 3PKT for shear walls. It is important to note
that the displacement field from DIC could not directly be used for comparisons
with the kinematic models. Indeed, DIC computes the absolute displacement field
of the speckle pattern, while the kinematic model only predicts the deformation of
the specimen independently from any experimental setup. Due to practical condi-
tions, secondary movements were captured by DIC and could be quantified by well
positioned displacement transducers. Those movements were first subtracted from
the DIC data in order to get a proper comparison with the kinematic model. The
application of the kinematic model requires 3 degrees of freedom for the shear wall
and 2 DOFs for the coupling beam. The installation of displacement transducers
in appropriate positions was necessary in order to measure the required degrees of
freedom. Based on the measured DOFs, the whole deformation pattern is obtained
from the kinematic model.

The difference between the kinematic model for shear walls and the DIC mea-
surements was relatively small. The top horizontal displacement was only under-
estimated by about 10% with respect to the horizontal displacement from DIC.
The overall shape of the predicted deformations is in a good agreement with the
real deformation. In terms of crack width and slip halfway along the crack, 3PKT
computes 57% higher crack width, whereas the slip is approximately the same as
the one based on DIC.

Regarding the coupling beam, the difference between the predicted deforma-
tion and the deformation computed with DIC was higher. The top horizontal
displacement is roughly half of the displacement from DIC. More importantly, the
deformation missing in the 2PKT can be interpreted as shear deformation. This
information is valuable for possible improvements of the 2PKT. In terms of crack
kinematics, 2PKT predicts a slightly smaller crack width than DIC. On the con-
trary, the slip is about 3 times higher compared to DIC.

The thesis also aimed to compute shear-resisting mechanisms based on kinemat-
ics obtained with DIC. Similar studies were already performed for slender elements.
In this thesis, similar approaches are used to evaluate the load-bearing mecha-
nisms in the short coupling beam and wall. To do so, kinematics from DIC along
failure planes were combined with local constitutive laws to evaluate the contri-
bution from each shear mechanism. Three mechanisms are considered governing:
aggregate interlock, stirrups and shear transferred close to the critical loading zones.

For the critical loading zone, a method to compute strains based on displacement
fields had to be applied. The constant strain triangle formulation was presented and
applied to both tests. It could be seen that this method has some disadvantages.
It is, for example, highly sensible to noise in the original data. In the case of the
shear wall, the mask was split in 4 regions because three steel bars disturbed the
images of the speckle pattern. This caused unreliable strain data on the contours.
The subsequent stress calculation is performed based on constitutive laws. Three
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different laws were compared for the compression-tension regime in order to illus-
trate the differences. The law accounting for compression-softening in the critical
loading zone was chosen for the calculation of VCLZ . From experimental data, the
horizontal failure planes could not be identified in a straightforward way. It has
been chosen to choose the plane with the highest shear force close to the disturbed
zone.

In terms of aggregate interlock, crack kinematics along the critical shear crack
had to be determined. An approach for this computation was established based on
the displacement of two rigid bodies on either side of the crack. Using the obtained
crack width and slip, three crack models were implemented to evaluate shear and
normal stresses on the crack. It could be seen that, for example, the Contact
Density Model produces the lowest aggregate interlock for the wall but the highest
for the coupling beam, compared to the other two models.

The shear contribution from stirrups was estimated based on the yield stress of
the bars intercepted by the critical crack.

The total shear force resisted by these 3 mechanisms was, for both applications,
in the same order of magnitude as the measured applied force. For the wall, the
sum of all contributions was the closest to the applied shear force when considering
the Contact Density Model for interlock stresses. The difference was only 2.69%.
The same applies to the short coupling beam. With the Contact Density Model,
the difference between applied shear force and resisted force is only of about 4.54%.
From this point of view, this crack model seems to be adequate. In the coupling
beam, about 45% of the applied shear force is estimated to be resisted by transverse
reinforcement. The critical loading zones account for roughly 35%. The missing
20% is assumed to be transferred through aggregate interlock.
The shear wall was only provided with a few stirrups. The contribution from stirrups
is estimated to be about 16%. The shear resisted in the critical loading zone is about
76% of the applied force. The missing 8% come from aggregate interlock.

6.1 Future work

The results in this thesis are based on DIC measurements. Further understanding
of the DIC systems, their practical applications and limitations would be useful to
improve the accuracy and the reliability of the measurements.

The kinematic models can be reviewed based on the findings of this thesis.
Especially for the short coupling beam, the deformation pattern predicted by the
model could possibly be improved. It could also be interesting to point out the
differences in shear mechanisms between the kinematic models and the results based
on DIC.

The strain calculation was performed with a finite element formulation. It could
be seen that the computation of the strain fields is sensible to noise in the data.
Therefore, the application of techniques for smoothening of strain fields could be
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investigated in the future.

The performed evaluation of shear mechanisms is suitable for deep members like
short coupling beams and shear walls, presenting a critical diagonal crack and highly
stressed regions close to the end sections. The evaluation of each contribution is
based on different approaches, constitutive laws and crack models. Even though the
Contact Density Model for aggregate interlock appears to give the best result, one
should keep in mind that several assumptions regarding the other two mechanisms
can have big impacts. For future work, the sensibility of each shear mechanisms in
function of the assumptions could be evaluated in order to become more confident
about the results.

One main concern is the definition of the contours of the critical loading zones.
Hence, developing a general criterion that is applicable to the data from DIC could
be considered. The computation of stresses in the CLZ needs constitutive relations.
Enhanced constitutive modelling of concrete in the CLZ could be done in order to
get reliable results.
Regarding aggregate interlock, further comparisons and validation of different mod-
els can be done.
Furthermore, the computation of the contribution of the stirrups can be improved
by, for example, accounting for a more complex yielding behavior.
In addition to the three presented mechanisms, a forth contribution to shear resis-
tance could be considered and calculated in the future: the contribution from the
dowel action.
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Appendix A

Crack kinematics methodology

The inclined crack is approximated by a polyline. One crack segment is delimited
by two points c. The angle of the crack with respect to the vertical axis is defined
as αcr and determined thanks to the coordinates of points ci and ci+1. The displace-
ment fields of two rigid bodies located at both sides of the investigated crack are
determined separately, based on the displacement vectors of two discrete points (P1
and P2 for the left body, P3 and P4 for the right body).

Fig. A.1 shows a schematic of the crack model. The displacement field calcu-
lation is only described for the rigid body on the left side of the crack (rigid body
1). The approach is identical for the right one (rigid body 2), by replacing the
subscripts 1 and 2 (corresponding to points P1 and P2) by 3 and 4.

The displacement field for the rigid body 1 is computed as a uniform translation
of (dP2,x, dP2,y) combined with a rotation about point P2.

The rotation θ1 (positive counter-clockwise) about point P2 can be approximated
by the mean value of

θx = −dP1,x − dP2,x

∆y1,2
(A.1)

and
θy = dP1,y − dP2,y

∆x1,2
(A.2)

The displacement of the point in the crack computed with the previously de-
scribed displacement field for rigid body 1 gives

df1,x = dP2,x − θ1 ∆y2f (A.3)

df1,y = dP2,y + θ1 ∆x2f . (A.4)
The coordinates of the point in the critical crack in the deformed position yields

f1,x = fx + df1,x (A.5)

f1,y = fy + df1,y. (A.6)
The displacement of the point in the crack computed with the displacement field

for rigid body 2 gives
df2,x = dP4,x − θ2 ∆y4f (A.7)
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Figure A.1: Modelled crack segment and rigid body displacement. The arrows are
displacement vectors (e.g. output of DIC analysis).

df2,y = dP4,y + θ2 ∆x4f . (A.8)
The coordinates of the point in the critical crack in the deformed position yields

f2,x = fx + df2,x (A.9)

f2,y = fy + df2,y. (A.10)
The schematics in Fig. A.2 illustrate two different scenarios resulting from the

previous computation of the displacement of the two sides of the crack. One can
determine

φ = arctan
(

∆yf12

∆xf12

)
(A.11)

d =
√

∆yf 2
12 + ∆xf 2

12 (A.12)

δ = π

2 − φ− αhor. (A.13)

δ can be negative if the right side of the crack slides downwards with respect to the
left side and positive otherwise. Crack opening and crack sliding are given by

w = d cos δ (A.14)

s = d sin δ. (A.15)
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Figure A.2: Schematic for crack opening w and slip s calculation.
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