
http://lib.uliege.be https://matheo.uliege.be

Kinematics-Based Modelling of Compact Footings

Auteur : Spada, Giorgia

Promoteur(s) : Mihaylov, Boyan

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil des constructions, à finalité spécialisée en "civil engineering"

Année académique : 2018-2019

URI/URL : http://hdl.handle.net/2268.2/6778

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



 
University of Liège - Faculty of Applied Sciences 

 
Département d'Architecture, Géologie, Environnement et Construction (ArGEnCo) 

 
Graduation Studies conducted for obtaining the  

Master’s Degree in Civil Engineering in Constructions 
 
 

 

Kinematics-Based Modelling of 
Compact Footings 

 
 

 
 

Student: 
Giorgia SPADA 

 
 

Jury Members: 
Boyan MIHAYLOV 

Almila UZEL 
Vincent DENOËL 
Frédéric COLLIN 

Stefano DE MIRANDA 
 
 
 

Academic Year 2018-19 
June 2019 

 



Kinematics-Based Modelling of Compact Footings 

 

 
 
Master Thesis – Giorgia Spada 
 

2 

 
 

 
 
 
 
 
  



Kinematics-Based Modelling of Compact Footings 
 

 

 
Master Thesis – Giorgia Spada 3 

Abstract 
 
 
The main objective of this thesis work is the extension and validation of a Two-Parameter 
Kinematic Theory (2PKT) for shear behavior of deep beams to concrete compact footings. The 
foundations have the purpose to transfer the load of the superstructure and its weight to the soil 
layers. Generally, reinforced concrete footings are designed without shear reinforcement; 
therefore, these elements are susceptible to brittle failure according to the amount of diagonal 
cracking due to shear stresses. Large-scale tests provided by Uzel (2003) are the starting point 
for the analysis. It is known that there is a significant size effect in shear strength of lightly 
reinforced slender members without shear reinforcement, for that it is important to simulate 
during the test the real size of this kind of elements in order to correctly evaluate the influence 
of the size on the shear behavior of large concrete footings; therefore only large-scale tests of 
the Uzel’s series are considered. One-way shear is studied, thus the footings were modelled to 
represent a strip of the element subjected to point load (simulating the load coming from the 
column footing) and uniformly distributed load imposed by a set of hydraulic jacks equally 
spaced (which reproduce the simplified soil pressure, in practice it is not uniform, but it varies 
according to the soil type).  
Then, Finite Element Models (by using program VecTor2) of tests are performed in order to 
obtain reliable and accurate predictions and enlarge the footings database, for which, in the 
literature, few suitable tests are available. Simultaneously, the 2PKT for shear behavior in deep 
beams was developed for footings, adapting the loading conditions and the shear resistance 
contributions. By means of the 2PKT it is possible to predict the shear failure load, the crack 
widths near failure, and the complete deformed shapes. The two parameters used in the models 
are the ultimate vertical displacement of Critical Loading Zone (CLZ) and the average tensile 
strain in the longitudinal reinforcement on the flexural tension side. In order to show the validity 
of the theory, a parametric study is developed by using FEM models. The parameters included 
in the study are the concrete strength, the longitudinal reinforcement ratio and the length of the 
footing. Based on the use of non-linear finite element calculations validated against 
experimental results, it is possible to validate the 2PKT extended to concrete compact footings. 
The 2PKT method reproduces well the observations and the measurements during the large-
scale laboratory tests. The average experimental-to-predicted strength ratio obtained with the 
extended 2PKT calculations for the footings database and the FEM models is 1.04 and the 
Coefficient of Variation (CoV) is 14.2%. The shear resistance components, thus critical loading 
zone and aggregate interlock for footings without shear reinforcement, underline that the size 
effect for deep concrete footings is principally produced by the aggregate interlock mechanism. 
Specifically, increasing the dimension of the element, the critical loading zone deforms more, 
and the diagonal cracks are wider, therefore the shear stresses transmitted throughout the cracks 
reduce.  
This thesis work is just the starting point for the validation of the 2PKT. The FEM models 
created for the parametric study could be actually validated by means of real laboratory large-
scale tests, in order to experimentally demonstrate the shear predictions of the theory and 
enlarge its validity. 
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1. Introduction 
 
 
1.1 Introduction to shear behaviour 
 
Generally, it is important to predict the type of failure of concrete members and provide an 
adequate safety margin against flexural failure and shear failure. The latest, properly called 
diagonal tension failure, can be more dangerous than flexural one due to its suddenly 
occurrence, therefore with no advance warning. Typically, this failure mode is brittle.  
By providing shear reinforcement (stirrups), the flexural failure commonly occurs before the 
shear failure, thus the element fails in a ductile manner. 
Two types of inclined cracking occur in concrete beams: web-shear cracking and flexure-shear 
cracking. The failure modes are illustrated in Figure 1.1. 
Web-shear cracking begins from an interior point in the concrete element when the principal 
tensile stresses exceed the tensile strength of the concrete. When flexural cracking occurs, the 
shear stresses in the concrete above the crack are increased. The flexure-shear cracks develop 
when the combined shear and tensile stresses exceeds the tensile strength of concrete. 
When inclined cracking occurs in a non-prestressed concrete member, it is generally flexure-
shear type. Web-shear cracking typically occurs near the supports of deep flexural members 
with thin web reinforcement, or near the inflection point or bar cutoff points of continuous 
beams, particularly if the beam is subjected to axial tension. [6] 
 

 
Figure 1.1: Types of cracking in concrete beams [6] 

 
In order to determine the shear strength of concrete beams or shear resistance, two cases are 
possible for concrete elements: with or without shear reinforcement. 
In the first case, so “if beams are equipped with shear reinforcement or stirrups, it is well known 
to predict the shear resistance of the web crushing with the truss analogy developed by Ritter 
and Mörsch that is based on the lower-bound theory of plasticity. The upper bound solution is 
used to minimize the strengthening effect of the stirrups”. [18] 
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Secondly, “when there is no shear reinforcement, the shear transfer mechanism is the only thing 
responsible for forming the shear resistance. That is where Eurocode 2 lacks the support of an 
adequate theory and uses instead totally empirical procedures”. [13] 
 
The mechanisms assumed to be carrying shear force in cracked concrete to the supports when 
no shear reinforcement is provided for the member are: 

• Concrete compression zone (VC): Gradually inclined cracks widen in the concrete; the 
shear resistance decreases while the concrete and dowel action resistance increase. 
Finally, when the aggregate interlock reaches failure, large shear force transfers rapidly 
to the compression zone causing sudden and often explosive failure to the beam. 

• Dowel action (Vd): This shear-load transfer mechanism occurs when cracks grow and 
cut across longitudinal reinforcements, providing an increase into the mechanical shear 
strength. Next, the crack lips transfer shear stresses to reinforcements. Consequently, a 
local bending and shear at reinforcements are observed. Shear resistance caused by 
dowel action can increase as the shear reinforcement decreases.  

• Aggregate interlock (Va): The aggregate interlock mechanism transfers a large part of 
the total shear force to the supports. Width of the cracks, aggregate size and concrete 
strength depend on aggregate interlock. When the longitudinal reinforcement ratio is 
increased with added bars to the beam, the width of the flexural cracks gets smaller due 
to increased shear resistance and consequently the contribution of Va decreases.  

 
 
Beam and Arch Mechanisms 
 
If beams develop a flexure-shear interaction, the shear resistance consists of two different 
mechanisms, beam and arch mechanisms. The beam mechanism forms when the shear to 
effective span ratio a/d is above a transition point, shown in Figure 1.2, and the arch mechanism 
when it is below. Thus, the beam action relies on load transfer across the reinforcement-
concrete interface. When the arch action begins to contribute more than beam action, the 
member can achieve considerably more load than at diagonal cracking. Therefore, arch action 
occurs in the uncracked concrete near the end of a beam, where load is carried from the 
compression zone to the support by a compressive strut. The vertical component of this strut 
transfers shear to the support, while the constant horizontal component is reacted by the tensile 
flexural reinforcement.  
To predict failure mode of the member, Russo et al. [20] concluded that when arch action 
governs, shear-compression (SC) failure should be expected and if beam action governs, 
diagonal-tension (DT) should be expected. 
The flexure-shear combined action is when bending moment and shear force act together in a 
cross section: 4

5
= 6

75
. 
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Figure 1.2: Model for flexure-shear interaction [20] 

 
 
1.2 Failure modes 
 
In this thesis work, footings without shear reinforcement will be studied, therefore in this 
paragraph the various failure modes without stirrups are described. 
 
 
1.2.1 Shear Failure 
 
Many types of structural concrete members have been reported to fail due to shear distress or 
diagonal failure. A combination of shearing force and moment is the fundamental cause of 
diagonal failure. [17] 
 
 
Diagonal Tension Failure 
 
The diagonal crack initiates from the last flexural crack formed. The failure occurs in beams 
when the shear to effective span ratio a/d is from 2.5 to 6.0. The crack propagates through the 
beam until it reaches the compression zone. When the beam reaches a critical point, it will fail 
as a result of splitting of the compression concrete, beam action is not likely to occur because 
it is not possible to transfer the load between the compression concrete zone and flexural 
reinforcement across the crack. Generally, the failure occurs without waring and the typical 
mode is brittle. 

 
Figure 1.3: Diagonal tension failure of beams [27] 
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Shear Tension Failure 
 
This type of failure is similar to diagonal tension failure but applies to short beams. The shear 
crack propagates through the beam, but without causing the failure of the beam on its own. 
Secondary cracks travel along the longitudinal reinforcement from the last flexural crack and 
can cause a loss of bond between the reinforcement and the concrete or anchorage failure. 
 

 
Figure 1.4: Shear tension failure of beams [27] 

 
 
Shear Compression Failure 
 
If the diagonal shear crack propagates through the beam, causing failure when it reaches the 
compression zone without any sign of secondary cracks (contrarily to shear tension failure) it 
is referred to shear compression failure. This failure mode applies to short beams. 
 

 
Figure 1.5: Shear compression failure for beams [27] 

 
 
1.2.2 Flexural Failure 
 
Flexural cracks are mostly moment dependent and typical of long beams. The cracks develop 
in proximity of the maximum moment. When the shear stress in the concrete reaches its tensile 
strength, cracks develop.  
The cracks are almost vertical and cause failure to the beam due to either of these two cases 
[17]: 
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• Under-reinforced beams: the longitudinal reinforcement yields excessively resulting in 
failure in the concrete compression zone; 

• Over-reinforced beams: concrete in the compression zone fails above the flexural crack 
before the longitudinal reinforcement yields. 

 
Figure 1.6: Flexural failure for beams [27] 

 
 
1.3 Reinforced concrete deep footings 
 
The previous section was a general overview of typical beam’s failure modes (without shear 
reinforcement). For this thesis work, the main objective is the extension to concrete compact 
footings of the observations made for beams and deformation patterns predictions. Therefore, 
an introduction to this kind of elements is necessary. Reinforced concrete footings are designed 
in order to transfer the load of the superstructure and its weight to the soil. In order to achieve 
this purpose, the footings are commonly subjected to flexure and shear. Generally, this kind of 
foundation is designed without shear reinforcement (stirrups); therefore, the concrete footings 
are predisposed to brittle failure according to the amount of diagonal cracking due to excessive 
local shear stresses. 
The shear failure can be localized around the column of the footing or around a plane across 
the footing width. The first failure mode is connected to two-ways shear failure (punching 
shear); while the second to one-way shear failure (beam action shear). For this thesis will be 
analyzed the one-way shear failure for compact reinforced concrete footings, considering a strip 
of the member.  
Due to the absence of shear reinforcement, the resistance of the footing is often governed by 
the concrete contribution to shear strength (VC). The specified critical section for beam action 
shear is located in a plane across the entire width of the footing.  
Generally, for codes, such as for ACI shear previsions, the size effect is neglected, and it is 
considered that the failure shear stress for slender members without shear reinforcement 
decreases as the thickness of the structural member increases. Richart noted that “the factor of 
safety of thin footings appears greater than in thick footings.” [2] 
The ratio of shear length L0 to the effective depth d is typically not very large, when it is low, 
an alternate force-resisting mechanism consisting of diagonal struts and tension ties can create, 
and this may provide adequate shear resistance even for very thick footings.  
The applied shear is mostly transmitted to the sub-soil by diagonal compressive struts, in Figure 
1.7 it is possible to observe the typical diagonal cracks on a reinforced concrete footing 
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subjected to shear force and supported by soil. Generally, the ratio of shear length L0 to the 
effective depth d for compact footings is less than 2. 
 

 
Figure 1.7: Diagonal cracks as a consequence of the diagonal compressive struts flow on a footing subjected to shear and 

supported by soil [11] 

 
It is necessary to specify that for typical design purposes, the soil pressure is considered as 
uniformly distributed below the footing. In reality, the soil pressure is not uniform, therefore 
this is a simplifying assumption. Typically, the distribution of contact pressure depends 
principally on the stiffness of building foundation, the stiffness or compressibility of soil and 
the loading condition. If the foundation soil is a non-cohesive material (i.e. sand), the soil 
pressure is maximum at the mid span of the footing and minimum at the ends; while, if the soil 
foundation is composed of cohesive materials (i.e. clays), the pressure will be maximum at the 
extremities and minimum in correspondence of the geometrical mid span section. The concrete 
footing is compact; thus, it is considered as a rigid element and in Figure 1.8 it is possible to 
observe the real pressure if the soil material is sand (on the left) and it if is clay (on the right). 
This last situation is the most unfavorable one, due to the fact that it will produce a more critical 
stress distributions for shear design. The hypothesis done does not respect the reality, but, in 
practice, the contact pressure is assumed to be uniform in order to have also a general approach 
for all types of soils. 
 

 
Figure 1.8: Distribution of the soil pressure under the footings (MacGregor and Wight [1]) 

 
Experimental and analytical data regarding shear behavior of reinforced concrete large footings 
are provided by Uzel (2003). The test specimens were designed to represent a strip of footing 
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member. Since the shear resisting mechanism of footings is a result of the beneficial loading 
and support conditions, special attention was given to the loading set-up. The test specimens 
were subjected to concentrated loads and uniformly distributed loads, which simulated column 
loads and soil pressure, respectively. [3] 
 
 
1.4 Objectives of the research 
 
The objectives of this master thesis work are: 

• The extension of a Two-Parameter Kinematic Theory (2PKT) for shear behavior in 
deep beams, developed by Mihaylov (2013), to concrete compact deep footings. 
Specifically, the first step is the study of the theory for deep beams, consequently the 
development of the theory for large compact concrete footings with the necessary 
modifications and assumptions. 

• The validation of the extended 2PKT for footings against experimental tests. Precisely, 
the starting point are large-scale samples provided by Uzel. 

• The development of a larger footing database in order to validate the new model. Due 
to lack of tests in the literature review, Finite Element Models are validated against 
experimental tests. Thus, a parametric study is performed including validated models 
from the Finite Element Analysis by varying one parameter per time and conducting 
three analysis with two different Uzel’s tests as model. 

 
 
1.5 Outline of the thesis 
 
Below it is possible to read the plan and the skeleton of the following thesis work. 
 
Chapter 1: Brief introduction of the studied topic and presentation of the developed work. 
 
Chapter 2: Explanation of the failure modes for concrete footings and research for suitable tests 
in order to create a database of samples. Detailed description of Uzel’s (2003) tests, the 
procedure, the results and observations. They are the starting point to validate a Two-Parameter 
Kinematic Theory (2PKT). 
 
Chapter 3: The presentation of the used modelling approaches and the theory behind the 
adopted software (VecTor2) to model the tests and create reliable samples to extend the 2PKT. 
The procedure of modelling is explained. Presentation of the 2PKT for beams and other 
approaches commonly used by codes. 
 
Chapter 4: The 2PKT is extended to footings by means of some assumptions and modifications. 
The theory is developed, and the main hypothesis are presented in this part. 
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Chapter 5: Finite Element Models using VecTor2 are created for Uzel’s tests in order to obtain 
a reliable reproduction of real tests. The 2PKT strength predictions are compared with real test 
data in the literature. Before the validation of the theory applied to deep footings, a parametric 
study is developed using as starting point FEM validated against real laboratory test data. A 
MatLab code is developed in order to compute and to visually compare the theory’s predicted 
displacements with the test results. Finally, the theory is validated after the discussion of the 
results and comparison between the experimental data and the predicted ones. 
 
Chapter 6: The conclusions are presented and some suggestions for future steps are offered. 
 
Appendix 1: The database of footings with their main parameters and data is presented. 
 
Appendix 2: In this part some 2PKT calculations are shown, especially the last iterative step 
and the final results. 
 
Appendix 3: Development of most significative FEM results from the parametric study. 
 
Appendix 4: Comparison of actual load-displacement curves for Uzel’s tests with the 2PKT 
provisions. 
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2. Test of footings 
 
 
2.1 Introduction 
 
In order to properly transmit loads from the super structure (building or bridge, see also Figure 
2.1) to the soil layers, concrete footings are designed. During the transferring of forces, the 
concrete element is subjected to flexure and shear. Generally, it is quite common to project the 
footing without shear reinforcement, so that it is inclined to brittle failure due to excessive local 
shear stresses. 
The shear failure can be localized around the column of the footing, this mode is connected to 
two-ways shear failure (punching shear); or around a plane across the footing width while the 
second to one-way shear failure (beam action shear). For this thesis research the one-way shear 
failure for deep reinforced concrete footings will be analyzed and, in order to achieve this 
purpose, the footing is considered as a reinforced concrete beam, thus without representing the 
footing column, but just the loads coming from the superstructure. 
 

 
Figure 2.1: Example of compact footing for linear wall [Mihaylov] 

 
2.2 Failure modes of footings 
 
The foundation is the part of the structure that transfers the loads to the supporting soil in such 
a way that the resulting bearing pressures are kept under acceptable limits.  
The first failure mode for concrete footing is when it may fail in shear as a wide beam along a 
critical section at a distance d from the column face in each direction. This is called “beam 
shear” or “one-way shear” as it resembles the shear crack in a concrete beam. This failure mode 
is shown in Figure 2.2. Generally, to avoid one-way shear failure of foundations, the shear 
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stress at the critical section of footing should be less than the shear strength of concrete with 
given percentage of reinforcement used. 
The second failure mode considers that the column may penetrate, or punch, the footing. 
Therefore, it is called “punching shear” or “two-way shear” and occurs not along a straight 
plane, but along a 3D plane at a distance d/2 all around the column (where d in both failure 
modes is the effective depth and it is represented in Figure 2.2 and Figure 2.3). 
Normally, codes and standards include the two checks in the calculation of the concrete shear 
strength, the computation of the shear acting at the critical plane described above, and then the 
comparison of both. Usually the shear strength is provided by the concrete only, otherwise a 
special and expensive shear reinforcement would be necessary. The punching shear failure, also 
known as diagonal tension failure of foundation, produces the formation of inclined cracks 
around the perimeter of the column. In order to avoid punching shear failure, the ultimate 
upward shear force at this section in the foundation should be less than the shear resistance of 
concrete for the given percentage of concrete. The failure of foundation in this mode 
materializes as truncated cone or pyramid around the column (Figure 2.3). 
The last possible failure mode for footings is the flexure failure: during the design, Mu/bd2 is 
calculated to get the amount of reinforcement needed to resist to the bending moment the 
foundation is exposed to. Where Mu is the ultimate (already increased or factored moment) and 
b is the width of footing. The critical section for flexure is considered at distance d from the 
face of footing. The standard codes take care of flexure failure during design by providing 
percentage of reinforcement required to resist the bending moment. When bending moment 
increases, the footing fails as shown in Figure 2.4. 
 
As previously mentioned, for this thesis research the one-way shear failure is considered. 
 

 
Figure 2.2: One-way shear failure [11] 
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Figure 2.3: Two-ways shear failure [11] 

 

 
Figure 2.4: Flexural failure [11] 

 
 
2.3 Tests in the literature 
 
A number of experimental tests focusing on the shear behavior and strength of footings have 
been performed so far, the first works were carried out in the United States of America in 1948 
by Richart, who presented two papers on experimental investigations, the tests follow the ACI 
Building Code of that period (1947). The point load on the top, which represents the loads 
coming from the column, was applied by a testing machine; on the bottom the specimens were 
sustained by a bed of spaced car springs in order to make the reaction of the soil uniform, even 
if, as specified in the introduction (in Chapter 1), it is actually not uniformly distributed, but it 
depends on the soil material. The resistance of the concrete footings, the failure modes, the 
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bond between steel and concrete, the diagonal tension and the tension in the steel were 
examined. For the following section, the database creation, it is important to say that the 
specimen of series 5 from 501 to 506 (a and b) perfectly match with the objective of the thesis. 
The considered last footings present three types of observed failure modes: 

a) Punching failure; 
b) Failure by inclined crack developed across the whole width of the member (as in 

beams); 
c) Combination of the previous failure modes. 

It is necessary to mention that all the tests performed by Richart had effective depth smaller 
than 400 mm. Generally, in practice works, the used value for real constructions is bigger than 
400 mm, therefore, the size effect is not always considered. Commonly, it is possible to take 
into account the size effect when the effective depth is greater than 300 mm. The presented and 
considered tests are, consequently, handled with caution and always remembering that not 
always they are suitable with the input parameters used for the analysis of the shear behavior 
as objective of the research. 
 
Recently, various interesting experimental findings have been produced with lightly reinforced 
large compact members without shear reinforcement (Kani (1967), Collins and Kuchma 
(1999)). The evidence from that tests is that for lightly reinforced slender members without 
stirrups, the failure shear stress decreases as the length increases. The shear capacity of footings 
is enhanced by the transverse clamping stresses that are introduced to these members by the 
loading support conditions.  
The tests performed by Uzel (2003) for her PhD thesis fit into this context and the objective 
was the observation of the actual shear behavior. She performed experimental research 
regarding small-scale test, medium-scale tests and large-scale tests. The tests considered for 
this thesis work are an example of full-scale tests on compact reinforced concrete footing 
without shear reinforcement. As Uzel stated, the literature reveals that there is a lack of tests 
where the support introduces tension to a member subjected to uniformly distributed loads, thus 
the purpose of the experimental research is also the study of shear behavior of large footings 
where the support force introduces tension to the member. [3] 
Concluding, the literature review shows few available experiments data for the one-way shear 
in large concrete footings and limited researches development regarding this topic. 
 
 
2.4 Large-scale test specimens 
 
For the objective of this research the large-scale test specimen (called AF) by Professor Uzel 
are used, in addition the test AF1 UN100 by Bogdan Podgorniak-Stanik was chosen as 
reference test for the creation of successive FEM analysis and parametric study. 
All the full-scale tests were loaded by a set of hydraulic jacks which simulates the uniformly 
distributed loads from the soil. The tests were designed to represent a strip of a footing member 
subjected to point load and uniformly distributed loads. They contained only longitudinal 
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reinforcement and were casted from normal density concrete. Concrete strength for most of the 
specimens was around 30 MPa, which is widely used for footings in practice. [3] 
Regarding the longitudinal reinforcement, the ratio of steel reinforcement varies and generally 
the diameter of the bar was 30 mm. 
In Figure 2.5 it is possible to observe all the large-scale tests designed for the experimental 
program, the specimens were created to detect the behavior of the members under different load 
conditions, geometry and configurations. The elements underlined in red are the ones 
considered for the following extension of a Two-Parametric Kinematic Theory for footings 
because they satisfy the assumption of deep compact footing subjected to one-point load along 
the symmetry axis of the member and uniformly distributed loads on the bottom. The selection 
procedure will be explained in the subsequent sections. Note that AF6 apparently does not 
satisfy the previously mentioned assumption because of the two vertical loads, instead of one 
applied along the symmetry axis, but by making some considerations and studying just the ends 
of the footings the test can produce remarkable results for the following analysis. 
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Figure 2.5: Large-scale test specimens (Adapted from Uzel, 2003 [3]) 

All the considered specimens have a longitudinal reinforcement ratio equal to 0.76%, except 
AF13, which has 2.16%. They have all a length L of 6 m, except AF11, which has L = 4 m. 
From Figure 2.6 to Figure 2.10 all the considered specimens are shown in details. 
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Figure 2.6: Specimen AF1 UN100 (Uzel, 2003 [3]) 
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Figure 2.7: Specimen AF3 (Uzel, 2003 [3]) 
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Figure 2.8: Specimen AF6 (Uzel, 2003 [3]) 
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Figure 2.9: Specimen AF11 (Uzel, 2003 [3]) 
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Figure 2.10: Specimen AF13 (Uzel, 2003 [3]) 

 
The specimen AF1, AF3 and AF6 were subjected to C-type loading (defined deeply in 2.4.1 
Test set-up and loading procedure) in which the sample is pushed up towards the supports by 
hydraulic jacks spaced at 250 mm. The specimen AF11 was tested in the same way except for 
the fact that the hydraulic jacks are spaced of 125 mm. 
The elongation of the longitudinal reinforcement was measured by strain gauges placed along 
the steel bars itself in many locations determined according to the loading conditions and 
support places. In order to measure the shear deformations, sets of two LVDT (Linear Variable 
Differential Transformer Transducers) transducers, placed diagonally on the face of the 
specimen, were used and mounted at the anticipated crack locations. 
Furthermore, Zurich targets were glued on the face of the specimen in order to create a grid of 
measurements points for the surface strains. 
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2.4.1 Test set-up and loading procedure 
 
Generally, footings are subjected to column loadings and the selected specimens from the 
experimental results of Uzel, described before, are all tested as Compression-type loaded (C-
type loading). The specimens were subjected to uniform loading by hydraulic jacks equally 
spaced along the bottom part of the member and, thanks to the Baldwin testing machine, the 
footings were restrained in order to avoid vertical displacements and reproduce the column 
load. The total applied load was directly read from the load cell of the Baldwin testing machine. 
The jacks were positioned on steel plates and steel bearing plates were positioned between the 
jack ram and the specimen (detail B in Figure 2.11). A layer of Teflon was placed in order to 
remove the friction force. 
By following the scheme of C-type loading, the specimens were pushed by hydraulic jacks until 
they were no longer sit from the support frames. Once the specimens started to float on the 
jacks, the supports were lowered, and the Baldwin testing machine was locked against vertical 
movement. [3] 
For each specimen observations, data and results were collected from the transducers 
continuously during the loading phases; then the load-deflection diagrams (total applied load 
versus the characteristic displacement) were provided and the failure loads were measured. All 
the notes assembled during the different load stages are important and necessary (i.e. the 
formation of new diagonal cracks and widening of previous cracks) in order to make hypothesis 
regarding the failure mode, then to confirm by analytical methods. The load stages were 
determined by observing the diagonal cracks formation, generally the first load stage 
corresponded to the first sign of flexural cracking. The load increment between the load stages 
was lowered around the predicted failure load. At each new load stage, the new formed cracks 
were marked on the specimen and their width compared with measurement gauges. Finally, 
also the distance between the cracks and the Zurich targets were measured in order to have 
information about the surface deformations. The vertical, the lateral and the diagonal strains 
were computed by the changing of distance between the vertically, horizontally and diagonally 
placed target, respectively. 
It is necessary to mention the constitutive laws used for materials (shown in Figure 3.8 and 
Figure 3.9) and to underline that the concrete strength value is the strength of the test day. 
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Figure 2.11: C-type loading set-up for specimen AF11 (Uzel, 2003 [3]) 
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2.4.2 Deflection 
 
The vertical deflection of the specimen, measured by using 10 LVDT (Linear Variable 
Differential Transformer Transducers) transducers mounted in five different positions, is 
calculated based on the readings taken from three different locations in which two transducers 
were located. The vertical displacement at each location is the mean value between the values 
given by the north and the south transducers. Finally, the deflection of the considered specimen 
is computed according to the support and load configuration. 
 
 

2.4.3 Shear deformations 
 
The shear deformation, measured by using LVDT transducers placed diagonally on the face of 
the specimen, is calculated as the difference between the measured elongation (D1) and 
shortening (D2) along the diagonal of the panel divided by the initial diagonal length: 
 

𝛾 =
𝐷1 − 𝐷2
;𝐿<= + 𝐿?=

 

 

 
Figure 2.12: Shear deformation (Uzel, 2003 [3]) 

 
 

2.4.4 Zurich Targets 
 
As it is possible to observe in the third part of Figure 2.6, Figure 2.7, Figure 2.8, Figure 2.9 and 
Figure 2.10 and as previously mentioned, additional Zurich Targets were glued on one face of 
the samples forming a grid of points in which the surface strain was measured. The initial 
readings, during load stage zero, were taken from the measurement equipment and Zurich 
Targets. A special gauge was used to record the spacing between the Zurich Targets. Then, the 
first load was generally taken where the first signs of flexural cracking were observed. The 
following load stages were taken at loads when new cracks formed or when previously formed 
crack widened or their length increased. The load increment between the load stages was 
lowered toward the estimated failure load of each sample. During the loading phases, the data 
were collected using the previously mentioned LVDT transducers and strain gauges. After the 
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reaching of each load stage, the peak load at that particular stage was decreased of 10% in order 
to stabilize the sample. At the end of each load stage the data were collected, and the new cracks 
formed were marked on the face of the specimen, photographs and recordings were also taken. 
The vertical, horizontal and diagonal distances between the Zurich Targets were measured by 
the specific gauges. 
Surface deformations were measured by means of gauges on the created grid of Zurich Targets. 
The vertical and the lateral strains were then calculated based on the change in distance between 
vertically and horizontally placed targets. The diagonal strains were computed in the change of 
diagonal distance between the targets. 
The strain measurements of the last load stage for the considered specimens are shown below. 
The specimen AF1 UN100 is not represented because it was not performed by Uzel (2003). 
 
 

 
Figure 2.13: Shear strain measured at the Zurich Targets for the last load stage for sample AF3 [3] 
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Figure 2.14: Shear strain measured at the Zurich Targets for the last load stage for sample AF6 [3] 

 

 
Figure 2.15: Shear strain measured at the Zurich Targets for the last load stage for sample AF11 [3] 

 

 
Figure 2.16: Shear strain measured at the Zurich Targets for the last load stage for sample AF13 [3] 
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2.4.5 Crack diagrams at failure 
 
At each load stage, cracks were marked directly on both sides of the samples. Their widths were 
measured by means of a comparator gauge at a consistent location for all the load stages and 
also marked on the specimens [3]. 
The crack pattern for the last load stage of the considered samples are shown below by means 
of photos and plots.  
 

 
Figure 2.17: Crack diagram at failure for sample AF1 [10] 

 
 

 
Figure 2.18: Crack diagram at failure for sample AF3 [3]  
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Figure 2.19: Crack diagram at failure for sample AF6 [3] 

 

 
Figure 2.20: Crack diagram at failure for sample AF11 [3] 
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Figure 2.21: Crack diagram at failure for sample AF13 [3] 

 
 
2.5 Summary and results of the considered tests 
 
Footings can be considered as large beams supported by the soil in the bottom part of the 
member, therefore, the loading and the support condition introduce transverse clamping into 
the footings. Generally, the Codes prescriptions and the sectional models do not take into 
account the positive effects of clamping stresses on the shear capacity of the footings and most 
of the times these approaches are too conservative. In particular, from the experiments research 
of Uzel it is possible to observe that the clamping stresses decrease rapidly as the L0/d ratio 
increases and hence, the shear stress at failure decreases accordingly. This is the reason why 
the specimens with higher L0/d ratios (analyzing the whole research work conducted for the 
Uzel’s PhD Thesis and not only the sample considered for this specific work) failed at a lower 
shear stress than their companions. [3] 
 
All the specimens failed in shear due to the rapid formation of a large number of diagonal 
cracks, except AF11 which had a flexural failure. The performed shear tests do not involve 
bond failures of the longitudinal bars, the slip of the longitudinal bars was in fact monitored 
during the tests. The obtained results for the considered tests conducted by Uzel are displayed 
in Table 2.1. 
 

Specimen 
Concrete Geometry Deflection Longitudinal 

Strain 
Failure 
Load 

fc’ [MPa] L0 [mm] d [mm] L0/d 𝛥 [mm] 𝜀BCDE [mm/m] P [kN] 
AF1 UN100 43 2925 925 3.16 11.6 1.99 1186 

AF3 27.3 2925 617 4.74 15.4 2.56 541 
AF6 32.2 1815* 617 2.94 15.0 2.11 1298 
AF11 36.2 1850 925 2.00 11.0 9.69 2645 
AF13 35.7 2925 865 3.38 12.4 1.36 1857 

Table 2.1: Summary of the considered experimental results 

 
*For AF6 considering just the external side. 
 
L0 and d shown in Table 2.1. are illustrated in Figure 2.22. Precisely L0 = (L-lb)/2, lb is the 
length of the loading plate and d is the effective depth. 
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Figure 2.22: General typology of the considered footings and nomenclature [3] 

 
 
Additional tests with different Boundary Conditions 
 
As already mentioned, the database for the validation of the 2PKT was created for the simplest 
case of compact footing loading conditions: one vertical load along the symmetry axis of the 
member and uniformly distributed loads along the whole length of the footings in the bottom 
side of the considered footing’s strip. 
For the following parametric analysis (Chapter 5), thus the sensibility study, the tests resumed 
in Table 2.1 are considered because they suit with the initial hypothesis of one vertical load 
coming from the column and uniformly distributed loading over the whole overhang. Samples 
AF7 and AF11r will be involved subsequently in order to validate the Finite Element Modelling 
of the tests under different hypothesis (such as the uniformly distributed load in the bottom part 
of the footing just in the ends displayed in Figure 2.23). Hence, the characteristics of those two 
additional specimens are presented in Table 2.2. 
 

Specimen 
Concrete Geometry Deflection Longitudinal 

Strain 
Failure 
Load 

fc’ [MPa] L0 [mm] d [mm] L0/d 𝛥 [mm] 𝜀BCDE [mm/m] P [kN] 
AF7 33.8 2925 925 3.16 11.8 1.82 713 

AF11-r1 36.2 1850 925 2.00 9.4 2.03* 1408 
Table 2.2: Additional sample test data 

 
*Actual strain value is equal to the sum of this value and the residual plastic strain (4.55x10-3) 

 
Specimen AF11 had a flexural failure before any indication of shear failure, therefore it was re-
tested as AF11-r1 with the same geometrical characteristics, but under different loading 
conditions (as shown in Figure 2.23). With this loading set-up, before reaching failure, the 
maximum loading capacity of the hydraulic system was reached. 
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Figure 2.23: Loading set-up for additional specimen AF7 and AF11-r1 [3] 

 
 
2.6 Conclusions 
 
In the literature, tests that follow the required assumptions (no shear reinforcement, uniformly 
distributed pressure from the soil, one vertical point load coming from the column of the 
footing) are not available. Therefore, large-scale experimental tests are needed in order to create 
a larger database and validate the extended 2PKT (Two-Parameter Kinematic Theory) for shear 
behavior in deep footings. This will constitute the next step in the developing research 
connected to the treated topic. In order to prove the theory as well and its efficiency, FEM 
simulations are validated against Uzel’s tests and consequently a parametric study is developed 
by including the created Finite Elements Models. Therefore, the parametric study is a 
simulation of real laboratory tests and a first approach to possible future laboratory applications; 
all these created models will add to the database for footing tests. Finally, it is necessary to 
mention that also the Richart’s tests are included in the final database of footings (as shown in 
in Table A.1), without forgetting their peculiarity and their differences with respect to properly 
large-scale tests. 
The complete footings database is shown in Appendix 1, also the FEM models are displayed as 
modifications of the original Uzel’s tests, but the modelling phase will investigated in next 
chapetrs. 
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3. Modelling approaches 
 
 
3.1 Introduction 
 
Shear failure in structural concrete members is generally a complex problem that has been 
investigated during the last century. The fact that makes even more difficult to predict the 
failure modes is that often the concrete elements fail in brittle ways, which can cause big 
consequences. Recently, many approaches were developed including the Modified 
Compression Field Theory (Vecchio and Collins, 1986) and Strut and Tie Models. These 
methods provide consistent and reliable prediction of the ultimate resistance. It is demonstrated 
that the traditional American Code ACI can be too permissive, in particular for members with 
deep cross-sections, high concrete strengths, or high stress levels in the longitudinal 
reinforcement.  
Before analyzing and developing the modelling approach for footings with Finite Element 
Analysis (FEA), it is necessary to understand the researches developed to progress rational 
models for the shear behavior of reinforced concrete beams. The Modified Compression Field 
Theory (MCFT) (Vecchio and Collins, 1986) is a rational method and the sectional models 
based on the MCFT are capable of predicting accurately the shear behavior of reinforced 
concrete footings, this was verified thanks to experimental data of simply supported slender 
beams under point loads. It is necessary to specify that the behavior of one-way shear for 
uniformly loaded sustained footings is different, thus more investigations are required. 
The MCFT, together with the Distributed Stress Field Model (DSFT) (Vecchio, 2000), is an 
analytical model for predicting the response of reinforced concrete elements subject to in-plane 
normal and shear stresses. 
The used software to model the footings and to perform FEA (Finite Element Analysis) is 
VecTor2, developed following the Modified Compression Field Theory (MCFT) (Vecchio and 
Collins, 1986). 
In this chapter, also the Two-Parameter Kinematic Theory (2PKT) (Mihaylov, 2013) for shear 
behavior in deep concrete beams is deepen. It represents a possible kinematic theory for shear 
behavior also in concrete compact footings. 
 
 
3.2 Finite Element Models (FEM) 
 
One of the models in the literature is the Modified Compression Field Theory (MCFT) (Vecchio 
and Collins, 1986), experimental researches regarding simply supported slender beams 
subjected to concentrated loads are verified using the MCFT, which predicts the shear behavior 
of reinforced elements in accurate way. The verified predictions for beams are quite different 
with respect to the footings model, for one-way shear behavior in compact footings the loads 
and support conditions change. Therefore, there is a need to adapt the theory and validate its 
prediction for the considered specific case. 
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The non-linear finite element analysis (NLFEA) considers non-linear deformations and 
redistribution of stresses in the compact footing. Therefore, the transverse clamping stress 
distribution is not equal to the one computed with linear assumptions. 
As it is possible to observe in Figure 3.1, the non-linear finite element analysis was 
implemented on footings subjected to point loads (from the column) and uniformly distributed 
loads (which reproduce the pressure from the soil). The objective is to obtain and reproduce the 
experimental tests in a reliable and realistic way. 
As explained in Chapter 1, in reality the reaction given by the soil is not uniformly distributed, 
but it depends on the type of the material of the soil foundation. The non-linear finite element 
analysis will be performed considering the uniform soil pressure, as it was assumed for the 
experimental tests. 
 

 
Figure 3.1: Typical beams subjected to point load and uniformly distributed loads (Adapted from Uzel, 2003 [3]) 

 
 

3.2.1 Modified Compression Field Theory (MCFT) (Vecchio and Collins, 1986) 
 
The MCFT (Vecchio and Collins, 1986) is an analytical model for predicting the load-
deformation response of reinforced concrete membrane elements subjected to shear and normal 
stresses (Figure 3.2). [7]  
The theory was developed by observing the response of a large number of reinforced concrete 
elements loaded in pure shear or in shear combined with axial stress. While such tests were 
more difficult to perform, they gave experimental results that clearly illustrated the fundamental 
behavior of reinforced concrete in shear. [8] 
The theory determines: 

• the average and local strains and stresses of the concrete and reinforcement; 
• the widths and orientation of cracks throughout the load-deformation response of the 

element; 
• the failure mode of the element (based on the previous information). 

 
The problem addressed by the MCFT is to predict the relationships between the axial and shear 
stresses applied to a membrane element (see Figure 3.3 and Figure 3.4 for membrane element 
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test) and the resulting axial and shear strains. The most accurate, but most complex, of these 
models involves representing the structure as an array of biaxial elements and then conducting 
a non-linear finite element analysis. This model gives accurate results both in flexural regions 
and in disturbed regions where high clamping stresses can significantly increase shear strength. 
If one assumes that plane sections remain plane and that the vertical clamping stresses are 
negligibly small, one can model a beam section as a vertical stack of biaxial elements. [8] 
 

 
Figure 3.2: Reinforced concrete membrane element subject to in-plane stresses (Adapted from VecTor2 Manual, [7]) 

 
 

 
Figure 3.3: Membrane element test 
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Figure 3.4: Specimen after failure [9] 

 
The MCFT models cracked concrete as an orthotropic material, it is treated as a solid continuum 
with cracks distributed over the membrane element. The smeared cracks spontaneously 
reorient, remaining coaxial with the changing direction of the principal concrete compressive 
stress field. The smeared rotating crack approach is consistent with the distributed and twisting 
crack patterns observed in many reinforced concrete structures. 
While cracks are smeared and the relationships are formulated in terms of average stresses and 
strains, a critical aspect of the MCFT is the consideration of local strain and stress conditions 
at cracks. 
 
Assumptions of the MCFT [7]: 

• uniformly distributed reinforcement; 
• uniformly distributed and rotating cracks; 
• uniformly applied shear and normal stresses; 
• unique stress state for each strain state, without consideration of strain history; 
• strains and stresses are averaged over a distance including several cracks; 
• orientations of principal strain, θε, and orientations of principal stress, θσ, are the same; 
• perfect bond of materials, between reinforcement and concrete; 
• independent constitutive relationships for concrete and reinforcement; 
• negligible shear stresses in reinforcement. 
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Therefore, the hypothesis that change in the non-linear field and in particular in MCFT with 
respect to the linear assumption are the improved tension and compression response of concrete 
and the non-linear behavior of concrete and reinforcement. 
The compatibility relationships pertain to the average strains in the concrete and reinforcement 
components (Figure 3.5). Due to the perfect bond hypothesis, it follows that average strains 
experienced by the concrete are equally experienced by the reinforcement. Therefore, the 
average strains in the concrete, εc, and reinforcement, εs, will be the same. 
 

 
Figure 3.5: Average concrete strains due to average stress-strain response of concrete (Adapted from VecTor2 Manual, [7]) 

 

 
Figure 3.6: Modified Compression Field Model – Summary table [8] 
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Equilibrium equations, geometric conditions and stress-strain relationships used in the MCFT 
are summarized in Figure 3.6. 
The central simplifying assumption of the theory is that the average direction of principal 
compressive stress in the cracked concrete corresponds to the average direction of principal 
compressive strain and the critical cracks are also inclined in this direction. In addition, in order 
to consider average stresses and average strains in the cracked concrete and the relationships 
between them, the theory considers how the stresses are transferred across the critical cracks. 
As an example, an element which does not contain shear reinforcement (ρ = 0%), such as 
footing elements considered for this study, and is subjected to shear and uniaxial tension in the 
x direction must transmit a shear stress, vci, across the crack interface, which is equal to the 
applied shear stress, v. The ability of the crack to transmit this shear stress depends on the width 
of the crack (w), the maximum aggregate size (ag), and the concrete strength (fc’). 
 
 

3.2.2 Disturbed Stress Field Model (DSFM) (Vecchio, 2000) 
 
The DSFM (Vecchio, 2000) integrates the MCFT in predicting the response of certain structures 
and loading scenarios. In lightly reinforced elements, where crack shear slip is significant, the 
rotation of the principal stress field tends to lag the greater rotation of the principal strain field. 
The MCFT generally underestimates the shear stiffness and strength, partly because the 
concrete compression response calibrated for the MCFT is overly softened for the effect of 
principal tensile strains. [7] 
The DSFM expands the compatibility relationships of the MCFT to include crack shear slip 
deformations. The strains due to these deformations are distinguished from the strains of the 
concrete continuum due to stress. The DSFM decouples the orientation of the principal stress 
field from that of the principal strain field, resulting in a smeared delayed rotating-crack model. 
Moreover, by explicitly calculating crack slip deformations, the DSFM eliminates the crack 
shear check as required by the MCFT. Constitutive relationships for concrete and reinforcement 
are also refined.  
 
While the MCFT assumes that principal strain and principal stress axes remain coaxial, the 
evidence demonstrates the principal strain field generally changes inclination at a larger rate 
than the principal stress field, resulting in a differential lag between the principal strain and 
principal stress axes. 
This phenomenon is due to the manner in which the strain and stress fields are determined. The 
measured strains are total strains, which are attributable to straining of the concrete continuum 
in response to applied stresses as shown in Figure 3.5 and discontinuous shear slip is shown in 
Figure 3.7. Concrete stresses are attributable only to the continuum straining in response to 
applied stresses. [7] 
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Figure 3.7: Deformation due to crack shear slip (Adapted from VecTor2 Manual, [7]) 

 
 

3.2.3 VecTor2 
 
VecTor is a non-linear finite element program developed at the University of Toronto by 
researchers studying reinforced concrete behavior and applications of the finite element 
method. In particular, VecTor2 is a non-linear finite element software for the analysis of two-
dimensional reinforced concrete membrane structures (University of Toronto, 1990). The 
original version is known as TRIX. This development has coincided with experimental tests to 
validate the ability of VecTor2 to predict the load-deformation response of a variety of 
reinforced concrete structures exhibiting well-distributed cracking when subject to short-term 
static monotonic, cyclic and reverse cyclic loading. [7] 
The theoretical bases of VecTor2 are the Modified Compression Field Theory (Vecchio and 
Collins, 1986) and the Disturbed Stress Field Model (Vecchio, 2000), deepen in previous 
sections. VecTor2 models cracked concrete as an orthotropic material with smeared, rotating 
cracks. The program utilizes an incremental total load (introducing multiplying factors), 
iterative secant stiffness algorithm to produce a non-linear solution. 
Some developments have incorporated alternative constitutive models for a variety of second-
order effects including compression softening, tension stiffening, tension softening, and tension 
splitting. Also, the capabilities of modelling concrete expansion and confinement, cyclic 
loading and hysteretic response, construction and loading chronology for repair applications, 
bond slip, crack shear slip deformations, reinforcement dowel action, reinforcement buckling, 
and crack allocation processes. [7] 
Finite element models constructed for VecTor2 use a fine mesh of low-powered elements, 
which suits to reinforced concrete structures, that require a relatively fine mesh to model 
reinforcement detailing and local crack patterns.  
Then, the software Augustus provides graphical post-processing capabilities for the analysis 
results obtained with VecTor2. 
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3.2.4 General layout of Finite Element Mesh 
 
Finite Elements Models of footings are possible with program VecTor2 and only half of the 
length of the footing can be represented due to the element’s symmetry (Figure 3.10). 
Thus, the appropriate restraints were used along the symmetry axis in order to prevent 
displacement along the horizontal axis (x-axis). In the bottom, the uniformly distributed loads 
are displayed. The specimen for the FEM model is loaded from the bottom and, therefore, it is 
restrained on the top where actually during the laboratory test a vertical incremental load is 
applied in correspondence of the column, modelled as a steel bearing plate. Obviously, the total 
load applied on the top during the real test is equal to the sum of the loads applied on the bottom 
for the FEM model. Then, the created model is a load-imposed test (and not imposed 
displacement). Generally, the modelled materials are three: the concrete, the steel for the 
loading plate and the reinforcement longitudinal steel (truss member). The constitutive laws for 
the materials are represented below in Figure 3.8 and Figure 3.9. 

 
Figure 3.8: Concrete constitutive law 

 
Figure 3.9: Steel constitutive law 

 
Once defined the properties and the types of materials, the footings are modelled by creating 
the number of regions, finally the mesh is generated, and the number of elements varies for the 
different length L tested. 
In Figure 3.10, it is possible to observe an example of footings modelled following what it is 
explained above using VecTor2 software. 
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Figure 3.10: Example of footing modelled with VecTor2 (Adapted from Uzel, 2003 [3]) 

 
This modelling phase of members is part of previous works performed by Uzel. In her study, it 
was observed that the non-linear finite element analysis with dense mesh (880 elements) gives 
a failure loads that is about 47% less with respect to the one obtained with less dense mesh (220 
elements). However, as the results from the analysis with less dense mesh are in good agreement 
with the experimental results, it is concluded that this mesh density is the more appropriate to 
use. [3] 
The results obtained from her models and the experimental tests will be useful in the succeeding 
parts of the thesis. The procedure the get the best results, compatible and comparable with the 
results obtained by tests, required basically four different set of analysis. For each step the 
options regarding the modelling of materials and crack width behavior were improved until the 
fourth set of analysis which provided the best results, thus the more reliable and realistic ones. 
The first set of analyses was performed with coarse mesh, crack width check called “Advanced 
w-vci check” with different maximum crack width for distinctive specimens. Then, the second 
set of analyses was performed both coarse and dense mesh with different options for models: 
option 1 with crack stress control “Advanced (Lee, 2009)” and crack width check “Agg/2,5 
max crack width”; while for option 2 crack stress control “Basic (MCFT/DSFM) and crack 
width check “No check”. The advanced option regards “Attard & Setung” compression pre- 
and post- peak, “Montoya/Ottosen” confined strength and “Gan-Vecchio” confined concrete. 
The third set of analyses is a dense mesh with bearing material defined under the plate, the 
chosen option is basic. The fourth set of analyses produces the best results, VecTor2 files are 
the same with respect to the third set, but with updated .exe file. It was observed that defining 
bearing material under the loading plate does not work as effectively as increasing the concrete 
strength of elements under the plate, consequently the performed final solution was the 
introduction of another material, high strength concrete, right below the steel loading plate. 
As shown in Figure 3.10, the FEM model is created by imposing loads on the bottom, thus 
simulating the soil loads, and restraining the top, where the footing column transmits the load 
to the foundation itself. The total maximum load, for equilibrium, is the same on the top and on 
the bottom of the footing. In order to get the best results, the model is set with different concrete 
material (fc = 70 MPa) under the steel bearing plate, even if during the laboratory tests, the 
samples were composed of the same concrete type everywhere, with this assumption the results 



Kinematics-Based Modelling of Compact Footings 

 

 
 
Master Thesis – Giorgia Spada 
 

52 

obtained with the non-linear finite element analysis are a good approximation of tests results. 
The main problem that brings to this final solution of different concrete strength was the fact 
that right under the plate there were a bad approximation of strain and cracks. 
 
Summarizing, the suggestions for Finite Element Modelling for footings are: 

• representation of half of the structure thank to the symmetry of the element; 
• choice of the proper restraints along the symmetry axis and in proximity of the steel 

plate (in order to have incremental and uniformly distributed load in the bottom side of 
the element); 

• basic options for the choice of the models; 
• dense mesh option; 
• definition of an additional type of material: bearing material defined under the plate 

with higher concrete strength in order to reproduce accurately in this portion the strain 
and the crack distribution. 

 
The prescriptions and the suggestions explained above and given by Uzel will be useful and 
necessary also further on during the thesis work in order to validate Finite Element Analysis of 
the created models and enlarge the database of footings with Finite Element Models. 
 

 
Figure 3.11: Job definition on VecTor2 
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Figure 3.12: Options setting on VecTor2 

 

 
Figure 3.13: Mesh and materials areas on VecTor2 

 
In Figure 3.11 and Figure 3.12 the job definition and the options setting on VecTor2 are 
respectively illustrated. In particular, in Figure 3.12, it is possible to understand the model used 
for concrete, pre- and post- peak behaviour, tension and compression softening, tension 
stiffening, confinement and crack control; dowel action and buckling for the steel. 
Then, the Figure 3.13 represents the model of the beam AF1 UN100, it possible to observe the 
displayed loads, the restraints, the chosen mesh and the different types of materials. In fact, as 
previously mentioned, the pink part is the actual concrete with the real concrete strength, the 
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light-blue part is the high strength concrete, the blue truss is the longitudinal bottom 
reinforcement and the red rectangular on the top is the restrained steel loading plate. 
 
 
3.3 Two-Parameter Kinematic Theory (2PKT) for Shear Behaviour of deep 
beams 
 
 

3.3.1 General 
 
The Two-Parameter Kinematic Theory (2PKT) (Mihaylov, 2013), validated with a large 
amount of experimental results, is a kinematic model for deep beams accomplished of defining 
the deformed shape of those members in terms of two parameters, two degrees of freedom: the 
average strain in the bottom reinforcement, 𝜀F,4HE, and the vertical displacement of the critical 
loading zone, ∆J. By combining the theory with the equilibrium equations and the stress-strain 
relationships, it is possible to predict the shear strength and the deformation patterns at shear 
failure. Remarkable is the prediction of how the shear strength components (and also the 
deformation patterns, crack width, maximum deflection, displacement field for deep beams) 
vary with different a/d ratios, where a is the shear span and d is the effective depth. Thus, it is 
evident a significant size effect for the shear strength of deep beams. The transition from deep 
beams to slender beams occurs at an a/d of approximately 2.3. 
Before going into details of the theory, it is necessary to clarify the hypothesis and the main 
assumption of deep beams. First of all, the statement “plane sections remain plane” [Hooke, 
1678] is no more valid for deep beams. The shear strain becomes dominant and the deformation 
pattern becomes more complex. Thus, for such members a different approach is required. 
 
 

3.3.2 Kinematics of deep beams 
 
The model assumes that the critical crack extends from the inner edge of the support to the far 
edge of the tributary area of the loading plate responsible for the shear force V. The concrete 
above the critical crack is modelled as a single rigid block, while the concrete below is 
represented by a series of rigid radial struts. The regions of the model on each side of the critical 
crack are connected by the critical loading zone (CLZ) at the top of the section, by the bottom 
flexural reinforcement and by the stirrups. The elongation of the bottom reinforcement causes 
the rigid radial struts to rotate about the loading point and the crack to widen. [4] 
Both degrees of freedom cause tensile strain in the transverse reinforcement. By increasing the 
shear-to-span ratio (a/d), the angle of critical crack (𝛼L) should be taken smaller than the angle 
𝜃 of the crack developed in the uniform stress field (calculated from the MCFT or taken equal 
to 35°). The formulae reported below represent the horizontal and vertical displacement of each 
point of the concrete beam expressed by assuming the previously mentioned Degrees of 
Freedom (DOFs). 
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Points below the main diagonal crack: 
 

𝛿<(𝑥, 𝑧) = 𝜀F,4HE ∙ 𝑥      (1) 
 

𝛿T(𝑥, 𝑧) = 𝜀F,4HE ∙
<U

VWT
      (2) 

 
Points above the critical crack: 
 

𝛿<(𝑥, 𝑧) = 𝜀F,4HE ∙ (ℎ − 𝑧) ∙ cot	(𝛼)    (3) 
 
𝛿T(𝑥, 𝑧) = 𝜀F,4HE ∙ 𝑥 ∙ cot(𝛼) + ∆J    (4) 

 
The x-axis and z-axis are represented in Figure 3.14. Then, in Figure 3.15, the deformed shape 
of the entire surface of a tested deep beam (Specimen S1C) is represented in order to 
demonstrate and validate the prediction of the equations. The white circles indicate the 
displacement predictions by the 2PKT model with respect to the location of the targets and the 
measurements during the laboratory tests (the positioning of Zurich Targets was done also by 
Uzel for the same reason). For the sample in the picture it is possible to notice that 27 out of 28 
targets are accurately predicted. 
 
The explained kinematic model can also be utilized to estimate the width of the critical diagonal 
cracks: 
 

𝑤 = ∆J ∙ cos(𝛼B) +
^_,`abBc
= def(gh)

 (at mid-span)   (5) 

 
Where 𝑙i is the length of the bottom reinforcement whose elongation contributes to the width 
of the critical crack. It is assumed that 𝑙i is equal to the distance between the node that develop 
in the longitudinal bars near the support (see Figure 3.14). 
 
 



Kinematics-Based Modelling of Compact Footings 

 

 
 
Master Thesis – Giorgia Spada 
 

56 

 
Figure 3.14: Kinematic model for deep beams [4] 

 
Figure 3.15: Deformation pattern at failure of Specimen S1C (Scale Factor = 30) [4] 
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3.3.3 Critical Loading Zone (CLZ) 
 
At the base of the developing of the Two-Parameter Kinematic Theory, there is the Critical 
Loading Zone (CLZ). As it was possible to observe from numerous laboratory tests, this zone 
failed due to high diagonal compressive stresses as the spalled concrete and the cracks 
orientation showed. Therefore, an analytical method was advanced in order to calculate the 
dimension of CLZ. It is important to notice that the zone of concrete above the critical diagonal 
crack is exemplified as an elastic cantilever fixed in one end and loaded in the opposite side 
(Figure 3.16). the assumptions are that plane sections perpendicular to the bottom face of the 
cantilever remain plane and the tip section is subjected to uniform compressive stresses. 
The analysis showed that the compressive stress along the bottom edge of the cantilever reaches 
its maximum value at a distance of 1.5𝑙jLkcos	(𝛼) from the tip section and returns to the applied 
stress at a distance of 3𝑙jLkcos	(𝛼) from the same section (where 𝑙jLk is the effective width of 
the loading plate). This result is used to define a triangular critical loading zone with a bottom 
length of 3lb1ecos(𝛼) and a top vertex located opposite to the location of the maximum 
compressive stress. [4] 
In Figure 3.16, by relating images (a) and (b), it is also possible to observe that the chosen 
geometry reasonably agrees with the test result (in the picture the Specimen SC1 is represented). 
In order to obtain accurate results for specimens loaded with very small loading plates, 𝑙jLk 
should not be taken less than 3ag (where ag is the maximum size of coarse aggregate). 
As Mihaylov states “knowing the geometry of the critical loading zone, the ultimate shear 
displacement ∆J can be calculated by assuming values for the average strains along the bottom 
and top sides of this zone (refer to Figure 3.16 (c)). As the zone fails due to combined moment 
and compression, the bottom strain is assumed equal to –0.0035 and the top strain is assumed 
equal to zero.” 
 

∆J= 0.0105𝑙jLkcot	(𝛼)    (6) 
 
Considering the triangle of forces shown in Figure 3.16 (c), the shear strength of the critical 
loading zone is as follow: 
 

𝑉mno = 𝑘𝑓4HE𝑏𝑙jLk𝑠𝑖𝑛=(𝛼)    (7) 
 
Where 𝑘 is the crack shape coefficient, it accounts that for slender beams the critical diagonal 
crack is not straight but has an S-shape and approaches the loading plate at a very flat angle. It 
is suggested that 𝑘 = 1 for beams with cot	(𝛼) ≤ 2 and 𝑘 = 0 with cot	(𝛼) ≥ 2.5, with a linear 
transition for intermediate values of cot	(𝛼). [4] 
By the use of tests, it is possible to demonstrate that a significant part of the shear in deep beams 
is carried by mechanisms other than diagonal compression in the CLZ. 
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Figure 3.16: Modelling of CLZ [4] 

 
 

3.3.4 Shear strength calculation in deep beams 
 
Due to the displacement ∆J, the critical diagonal crack moves down and opens (slip 
displacement). The slip, due to aggregate interlock forces, will produce substantial shear 
stresses that will contribute to the shear capacity resistance of the element. 
As shown in Figure 3.14 (a) in detail B, the bottom longitudinal bars in deep beams are 
subjected to double curvature near the support and thus will resist shear by dowel action. [4] 
Therefore, the shear resistance of deep beams is calculated as follow: 
 

𝑉 = 𝑉mno + 𝑉Jw + 𝑉x + 𝑉5    (8) 
 
Where 𝑉mno, 𝑉Jw, 𝑉x, 𝑉5 are respectively the shear forces resisted by the CLZ, by the aggregate 
interlock, by stirrups and by dowel action. 
The shear resistance provided by aggregate interlock is: 
 

𝑉Jw =
y.Lz;{|}

y.~L� U��
������

𝑏𝑑     (9) 
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Where 𝑎Ek is the effective aggregate size equal to 𝑎E for 𝑓′J < 60	𝑀𝑃𝑎 and zero for 𝑓′J >
70	𝑀𝑃𝑎, with linear transition for intermediate values. The crack width 𝑤 is computed using 
equation (5). 
 
The shear capacity produced by the stirrups’ contribution is equal to the following formula. 
 

𝑉x = 𝜌H𝑏(𝑑𝑐𝑜𝑡𝛼L − 𝑙y − 1.5𝑙jLk)𝑓H ≥ 0   (10) 
 
Where (𝑑𝑐𝑜𝑡𝛼L − 𝑙y − 1.5𝑙jLk) indicates the length along the shear span within which the 
diagonal critical crack is wide enough to cause significant tension in the stirrups. The stress in 
the stirrups is calculated by assuming elastic-perfectly plastic behavior of the steel. 
 

𝑓H = 𝐸x𝜀H ≤ 𝑓?H    (11) 
 
Where 𝜀H, the transverse strain at the middle of the shear span, is derived from the kinematic 
model. 
 

𝜀H =
L

y.�5
(∆J + 0.25𝜀F,4HE𝑑𝑐𝑜𝑡=𝛼L) ≈

L.�∆}
y.�5

   (12) 
 
The shear resisted by the dowel action of the bottom reinforcement is computed as follow. 
 

𝑉5 = 𝑛j𝑓?k
5�
�

~Bc
     (13) 

 
Where 𝑛j is the number of longitudinal steel bars, 𝑑j is the diameter of the bars. The formula 
(13) is derived under the assumption that the dowels of length 𝑙i = 𝑙y + 𝑑(𝑐𝑜𝑡𝛼 + 𝑐𝑜𝑡𝛼L) in 
which 𝑙y = 1.5(ℎ − 𝑑)𝑐𝑜𝑡𝛼L ≥ 𝑠�4<, work in double curvature with plastic hinges created at 
the ends. The moment capacity of the hinges is computed with an effective yield strength 𝑓?k ≤
500	𝑀𝑃𝑎 in order to account for the tension effect of the bar. The limit of 500	𝑀𝑃𝑎 accounts 
for the fact that the transverse displacement at the dowel might not be sufficiently large to cause 
plastic hinges in bars with high yield strength. 
 
The previous equations are derived by assuming that the element fails along the critical diagonal 
crack, but beams with large amount of stirrups may fail by crushing of concrete along a steep 
section near the load (sliding shear failure). 
The 2PKT method has been developed to apply to members with short shear spans where the 
shear strength predicted by this method will exceed the shear strength predicted by sectional 
design procedures intended for longer spans. [4] 
It is observed from experimental tests and calculations that when a/d increases, the angle of the 
critical crack decreases, therefore, the stirrup contribution Vs will be larger. In addition, the 
shape of the critical loading zone becomes slenderer: strength and its stiffness will both 
decrease. As consequence of the stiffness reduction, the diagonal critical crack will be wider 
and, thus, when a/d increases, the aggregate interlock contribution Vci decreases. 
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An important motivation for the development of the 2PKT model was the need for a better 
understanding of the size effect in deep beams. The question is whether very large beams will 
fail at lower shear stresses than geometrically similar, smaller beams. [4] 
For beams without stirrups, so without the contribution of shear resistance Vs, it is predicted 
that the size effect in deep beams is caused mainly by aggregate interlock. With the increment 
of the dimension of the concrete element, the CLZ will be more deformed and therefore the 
diagonal cracks will be wider. This produces a substantial reduction of transmitted shear 
stresses across the cracks. The 2PKT and the database of tests collected by Mihaylov denotes 
that the supplement of stirrups might not exclude the size effect in deep beams. 
 
 

3.3.5 Overview of solution procedure 
 
Degree of freedom ∆J is obtained by assuming that the CLZ is at failure under diagonal 
compressive stresses; while 𝜀F,4HE is obtained as illustrated in Figure 3.17. The thick black line 
in the plot shows the relationship between 𝜀F,4HE and the applied shear V, while the red line 
represents the shear resistance which decreases with increasing strains. As already mentioned, 
this resistance consists of four components: shear carried in the CLZ (VCLZ), aggregate interlock 
component (Vci), stirrups component (Vs) and dowel action of the bottom longitudinal 
reinforcement (Vd). It is possible to observe that the reduction of shear resistance is caused by 
the weakening of aggregate interlock and dowel action shear components, while component 
related to the Critical Loading Zone is not influenced by 𝜀F,4HE .  
The force resisted by the dowels decreases with increasing the strain. The longer the bars, the 
longer the lever arm of the dowels and the less the dowel effect is. At one point, the dowel 
action will have no effect when the bars have yielded. The yielding strain is given by: 
 

𝜀? =
{�
��
= 3.26 ∙ 10W~    (14) 

 
Also, the aggregate interlock is affected by the strain in the bottom longitudinal reinforcement: 
by increasing the strain wider cracks will form and the aggregate interlock forces will decrease. 
In the example in Figure 3.17, the component Vs is almost constant because ∆J= 0.41	𝑚𝑚 is 
sufficient to yield the stirrups even when 𝜀F,4HE is zero. Therefore, the solution of the equations 
of the 2PKT correspond to the intersection point of the black and red lines which relates to the 
equilibrium point for shear forces. This graphical representation of the 2PKT is similar to that 
used by Muttoni in a critical shear crack theory for punching of slabs [29]. As the equations of 
the model are not suitable for a closed-form solution, the shear strength is found by an iterative 
solution procedure. With the predicted DOFs, the 2PKT can also be used to evaluate the 
deformation patterns of the beam near shear failure, including crack widths, deflections, and 
the complete displacement field of the beam. It should be noted that in the 2PKT the flexural 
reinforcement is assumed to behave linearly, while yielding of the reinforcement can be taken 
into account by performing a flexural strength calculation based on code provisions. The final 
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predicted failure load will be the minimum load obtained from a 2PKT shear calculation and a 
standard flexural strength calculation. 
In the case of Figure 3.17, the member considered is a deep beam subjected to rotational 
moment at one end. Therefore, from the equilibrium of moment, the shear force 𝑉 can be 
calculated as follows: 
 

𝑉 = �∙y.�5
4

     (15) 
 
 
where 𝑇 is the tension in the bottom longitudinal reinforcement, 0.9𝑑 is the assumed lever arm 
between the compression force 𝐶 and 𝑇, and 𝑎 is the shear span. 
 

 
Figure 3.17: Components of shear resistance and equilibrium at peak load [4] 

 
 
3.4 Sectional shear analysis 
 
Sectional models are analytical procedures to predict the response of reinforced concrete beams 
in which it is assumed that plane sections remain plane after bending. Engineering beam theory 
studies the response of the member section-by-section and does not account for the local effects 
caused by the support and loading configuration. Therefore, Schlaich, Schäfer and Jennewein 
(1987) called “beam region” the part of the element in which the assumptions of engineering 
beam theory are accurate; while “disturbed region” is the part in which the stress distributions 
are influenced by the support and loading setting. Analysis based on sectional models are 
suitable to predict the behavior of beam regions, but not accurate for disturbed regions. 
Specifically, for the latest regions, analysis methods based on strut-and-tie methods or non-
linear finite element models are able to predict the flow of forces of these regions. The strut-
and-tie model is developed in the next section; while the FEM is deepened in 3.2 Finite Element 
Models (FEM). 
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Generally, in using the sectional analysis approach, the problem of determining the response of 
a reinforced concrete structure subjected to given loads is divided into two tasks.  
First, the sectional forces at various locations in the structure caused by the applied loads are 
determined. This step is usually performed assuming that the structure remains linearly-elastic. 
Then the response of a local section to the sectional forces is determined. In this second step, 
which is the sectional analysis, the non-linear characteristics of cracked reinforced concrete are 
taken into account. [26] 
The assumptions for the shear sectional analysis are that plane sections remain plane, thus, a 
straight line drawn on the element before deformation will still be a straight line after 
deformation, and no significant net stress in the transverse direction. Therefore, the concrete 
force and the steel force balance each other at every point across the depth of the element. These 
assumptions are respected when the analysis is being performed a distance away from the 
support and the load point. In fact, nearby to the load and to the reactions, there is a transverse 
clamping stress from the application of the load itself, which produces a local increment of the 
strength. Therefore, this is one cause of short beams are markedly stronger in shear than long 
beams with the same cross section. 
 
The 𝛽-method is a simple hand-calculation developed by Collins and Mitchell in 1991, it is 
based on the Modified Compression Field Theory (MCFT) (Vecchio and Collins, 1986) and 
forms the basis of shear design methods for reinforced concrete elements in current design 
codes. In fact, the general procedure of the ACI318-11 and AASHTO LRFD specifications for 
shear is shown in Figure 3.18. Specifically, AASHTO LRFD provides a hand-based shear-
design procedure derived from the simplified MCFT. The nominal shear capacity is taken as 
the sum of a concrete component and a shear-reinforcement component (for non-prestressed 
concrete elements). 
 

 
Figure 3.18: Sectional shear design provision for non-prestressed elements [25] 

 
Concluding, the loading and support conditions induce transverse clamping stresses into deep 
beams and footing type beams. These stresses are not accounted by sectional models; therefore, 
it is not suggested to use them to predict the response of disturbed regions. In fact, the shear 
strength predictions for beams with a/d less than about 2 are extremely conservative. In deep 
beams, significant transverse clamping stresses are induced by the loading and support 
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conditions. It is believed that there is a need for more general sectional analysis method. Uzel 
presented a new approach to sectional analysis in order to predict the shear behaviour. [3]  
 
 
Simple expressions for clamping stress distributions 
 
Simple expressions for clamping stress distributions for beams subjected to uniformly 
distributed loads on the bottom and point load on the top are developed by Uzel also thanks to 
non-linear finite element analysis.  
It is observed that the clamping stresses due to the point load disperse over a length c and the 
value of clamping stresses decreases when moving away from the load. [3] Moreover, the value 
of clamping stresses due to the applied uniformly distributed load is equal to the applied stress 
and decreases linearly over the height of the beam.  
In Figure 3.19 (a) it is possible to observe the assumed clamping stress distribution along the 
overhang of a footing due to the point load. 
The dispersion length c can be approximated as half of the distance from the point zero shear 
to the face of the column but not greater than 1.5h. 
 

𝑐 = 𝐿y/2 ≤ 1.5ℎ    (16) 
 
The highest clamping stress 𝜎T at section that is 𝐿x away from the face of the column can be 
calculated as: 
 

𝜎T =
7
4j
¡ =.�

y.¢�£¤�}
− 0.5¥ 						0 < 𝐿x < 𝑐    (17) 

 
𝜎T = 0																𝐿x ≥ 𝑐    (18) 

 
Where 𝑉 is the shear force calculated at the face column, 𝑏 is the width of the beam and 𝑎 is 
calculated as: 
 

𝑎 = B��=n¦
£

     (19) 
 
The value of ℎT for a section at distance 𝐿x away from the end of the bearing plate is: 
 

ℎT = ℎ(1 − n�
J
)    (20) 

 
Figure 3.19 (b) shows the clamping stress distribution due to the uniformly distributed load, the 
clamping stress is equal to: 
 

𝜎T =
§
jn

     (21) 
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Where 𝑃 is the total column load, 𝑏 is the width of the beam and 𝐿 is the total length of the 
beam. 
 
The total clamping stress distribution is given by superimposing the two cases of point load and 
uniformly distributed load. It is possible to obtain the distribution of clamping stresses over the 
height of the section assuming a linear distribution and that at the boundaries the clamping 
stresses should be equal to zero where no external force is applied. 
 

 
Figure 3.19: Clamping stress distributions along the overhang of a footing. (a) due to the point load; (b) due to the uniformly 

distributed load; (c) due to the combined action of the previous [3] 
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3.5 Strut-and-tie models (STM) 
 
Many researches have been made to predict the behavior of disturbed regions, in particular, 
strut-and-tie methods were developed. 
Ritter (1899) developed a truss model to explain the resistance in shear of cracked reinforced 
concrete beams. This model consists of horizontal compression and tension chords, vertical 
tension ties and compression diagonals inclined at 45° to the longitudinal direction. Ritter’s 
model was in 1909 refined by Mörsch and Goodrich by replacing the discrete diagonal 
compressive struts with a continuous field of diagonal compression. It is necessary to specify 
that these early models neglected the tensile stresses in the cracked concrete and assumed that 
after cracking the diagonal compression stresses would remain at 45°.  
Leonhardt (1965) found that the inclination of the diagonal struts varies depending on cross-
section and the properties of the shear reinforcement. He suggested consequent tensile forces 
in the principal tension direction along with tensile forces of stirrup. He also found that a 
constant amount of shear is resisted by the concrete.  
Rogowsky and MacGregor (1986) empirically demonstrated that the tension force in the bottom 
chord decreases towards the support due to a series of diagonal strut members. Truss models 
were then developed by Schlaich and Weischede (1982) and Schlaich et al. (1987), they defined 
B- and D-regions and proposed to develop strut-and-tie models (STM) for use in D-region as 
shown in Figure 3.20. Then, they generalized the truss analogy in order to apply the strut-and-
tie model to each part of any structure. 
 

 
Figure 3.20: Stress trajectories, B- and D-regions (Schlaich et al. 1987) 

 
For solutions of these two regions, it was suggested that the B-region could be modelled by 
beam theory and the D-region by a strut-and-tie model (STM). These two regions need to be 
compatible. The sectional forces on the boundaries of B-regions form the input forces to the 
STM to calculate internal forces in the D-regions. [12] 
Concrete struts could be subjected to bidirectional strains, compressive strains in the strut 
direction and tensile strains in the perpendicular direction. Collins and Mitchell (1986) 
described the approach (see also paragraph 3.2.1 Modified Compression Field Theory (MCFT) 
(Vecchio and Collins, 1986)) using equilibrium conditions, strain compatibility, and material 
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stress-strain relationships. They demonstrated the crushing strength of a compressive strut with 
respect to the orientation of a tension tie passing through the strut based on the softening effect 
of concrete due to transverse tensile straining. [12] They modelled the internal flow of forced 
in distributed regions using compressive struts to represent the concrete uniaxial compression, 
tension ties to model the principal reinforcement and nodal zones which represent the part of 
concrete subjected to multidirectional stresses where the strut and tie meets. [3] The model 
considering the strain conditions of the concrete and the reinforcement in the vicinity of the 
strut is in use by the Canadian Code CSA Standard A23.3 (CSA, 1984) and the AASHTO 
LRFD (AASHTO, 1994).  
 

 
Figure 3.21: Truss model, Strut and tie model for a deep beam (Collins and Mitchell 1986) 

 

 
Figure 3.22: Flow of forces, Strut and tie model for a deep beam (Collins and Mitchell 1986) 

 
It is demonstrated by the 2PKT that AASHTO29 strut-and-tie model, which does not account 
for the size effect, provides an approximate lower bound to the predictions of the 2PKT method. 
For these beams, the ACI strut-and-tie model, which also neglects the size effect, produces 
similar predictions. [4] 
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STM for footings 
 
In a strut-and-tie model the struts represent concrete stress fields with prevailing compression 
in the direction of the strut. Accordingly, the ties normally represent one or several layers of 
tensile reinforcement. However, model ties can occasionally also stand for concrete tensile 
stress fields.  
This method implies that the structure is designed according to the lower bound theorem of the 
theory of plasticity. However, since structural materials, in particular concrete, permit only 
limited plastic deformations, the internal structural system (the strut-and-tie model) has to be 
chosen in a way that the deformation capacity is not exceeded at any point, before the assumed 
state of stress is reached in the rest of the structure. [33] 
 
It is interesting to mention that Adebar and Zhou developed a simple rational design method, 
strut-and-tie model, for deep pile caps in which the maximum bearing stress is considered a 
better indicator of shear strength than the “shear stress” on any prescribed critical section. In 
deep pile caps the shear stress is concentrated in zones (compression struts) between the column 
and piles, and is not uniform over the height, which makes it difficult to calculate a meaningful 
shear stress. The procedure suggested is based on the proposition proposed by Schlaich et al. 
that an entire D-region of a concrete structure can be considered safe if the maximum bearing 
stress is maintained below a certain limit. [34] 
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4. Extended 2PKT for footings 
 
 
4.1 Introduction 
 
As it is seen and explained in previous chapters, generally, footings are large beams supported 
by the soil. The loading and the support conditions induce significant clamping stresses into 
these elements. Shear design procedures based on sectional models and code prescriptions do 
not take into account the beneficial effects of the clamping stresses on the shear capacity of the 
member. Therefore, new models and theories are needed in order to capture the shear behavior 
of concrete compact footings. In Chapter 3 some theories regarding the strength provision of 
such elements were explained and, in particular, the two-Parameter Kinematic Theory (2PKT) 
for shear behavior in deep beams developed by Mihaylov (2013) was explicated. By means of 
the 2PKT it is possible to predict the shear failure load, the crack widths near failure, and the 
complete deformed shapes of diagonally cracked point-loaded deep beams subjected to single 
curvature. The two parameters involved in the models are the ultimate vertical displacement of 
CLZ (Critical Loading Zone) and the average tensile strain in the longitudinal reinforcement 
on the flexural tension side. The theory allows to consider the size effect for deep beams; 
therefore, the obtained shear provisions are more accurate with respect to code’s ones based on 
sectional models. In fact, the beam’s mechanism of shear resistance strictly depends on the size 
of the element itself. A slender beam is a structural member with a shear span-depth ratio, a/d, 
greater than 2.3 and its behavior is consistent with “plane sections remain plane” and shear 
resistance is attributed to the ability of the cross section to transfer shear across a diagonal crack. 
While for deep beams the statement is no more valid, the shear strain becomes dominant and 
the deformation pattern becomes more complex. Shear resistance is attributable to stirrups 
contribute, aggregate interlock of concrete of the primary diagonal crack, dowel action of 
longitudinal reinforcement and shear capacity of the CLZ. 
The extension of the 2PKT for shear behavior in concrete compact footings represents the main 
objective for this research and the principal topic of the current chapter. 
Thus, the loading conditions and the shear resistance contributions are adapted to the practice 
of footings. It is necessary to remind the main assumptions for the considered elements: the 
one-way shear behavior is studied taking into account a strip of footing subjected to one vertical 
point load coming from the column of the superstructure and uniformly distributed load (UDL) 
which represents the soil pressure. In practice the pressure transmitted by the soil is not 
uniformly distributed along the length of the member, but it depends on the material type of the 
soil foundation. A simplified assumption allows to consider it as uniform. 
In the following sections the main factors that contribute to shear resistance are explicated and 
the uniformly distributed load in the bottom part of the footing is now included in the theory. 
After the extension of the theory for footings, the following step in next chapter will be the 
validation of the theory by means of real tests and FEM analysis validated against real 
laboratory tests results. 
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4.2 2PKT adapted for shear behaviour of footings 
 
The extended two-Parameter Kinematic Theory (2PKT) for footings is an expansion of the 
2PKT developed by Mihaylov (2013), able to predict the whole force-displacement response of 
a deep beam under shear behavior. The two-Parameter Kinematic Theory (2PKT) adapted to 
compact concrete footings is capable of predicting the shear failure load, the crack widths near 
failure, and the complete deformed shapes of diagonally cracked point-loaded elements 
sustained by uniform soil pressure. At the basis of the theory there is the modeling of the Critical 
Loading Zone (CLZ). As for the 2PKT for beams, the CLZ is the most stressed area of concrete 
near the point of load application. The two parameters of the theory (two Degrees of Freedom, 
2DOFs) are: the ultimate vertical displacement of the CLZ and the average tensile strain in the 
longitudinal reinforcement on the flexural tension side.  
The extended 2PKT for footings, as the theory developed for beams, in addition to the kinematic 
conditions, includes equations for equilibrium and stress-strain relationships for the materials. 
The 2PKT estimates the components of shear resistance, evaluated at failure. 
 
The 2PKT, computes four different shear resistant forces capable of giving contribution to the 
total shear resistance: 

• VCLZ is the shear contribution given by the Critical Loading Zone (CLZ); 
• Vci is the shear carried by the aggregate interlock; 
• Vd is the shear contribution given by the dowel effect; 
• Vs is the shear carried by transverse reinforcement (stirrups). 

All shear contributions are calculated as a function of ∆J and when summed, they provide the 
total shear resisted by the member.  
 
While, the extended 2PKT for footings, estimates two different shear resistant forces capable 
of giving contribution to the total shear resistance: 

• VCLZ is the shear contribution given by the Critical Loading Zone (CLZ); 
• Vci is the shear carried by the aggregate interlock. 

In this case the contribution of the stirrups is not considered because generally the footings are 
built without shear reinforcement and the dowel action effect is neglected in order to obtain 
conservative results, in fact, in practice, these elements are predisposed of light longitudinal 
reinforcement. 
 
In Figure 4.1 it is possible to observe the general footing without stirrups and only with the 
longitudinal bottom reinforcement, it is subjected to a vertical point-load in correspondence of 
the symmetry axis and it is also sustained by uniform soil pressure. In order to extend the theory, 
some assumptions are performed. First of all, the uniform soil pressure below the main diagonal 
does not change the 2PKT calculations (of length 𝑙j~ = 𝐿 − 𝑙j= = ℎ𝑐𝑜𝑡𝛼L), in fact, this part 
was not considered also in the original theory for beams, but it affects 𝑃, thus: 
 

𝑃 = 7U¨©ª
B�U

𝐿     (22) 
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The remaining distributed load is supposed as concentrated in order to attribute it at the 2PKT 
for beams, in fact 𝑉=§«� is predicted by the 2PKT at failure. 
Therefore, the shear strength of the critical loading zone is, similarly to the one for beams, as 
follow: 
 

𝑉mno = 𝑘𝑓4HE𝑏𝑙jLk𝑠𝑖𝑛=(𝛼L) = 𝑘 ∙ 1.43𝑓Jy.z𝑏𝑙jLk𝑠𝑖𝑛=(𝛼L)  (23) 
 
Where 𝑘 is the crack shape coefficient, for footings 𝑘 = 1 because 𝑐𝑜𝑡(𝛼L) ≤ 2. 
 

 
Figure 4.1: Adapted 2PKT for footings 

The shear span 𝑎 is equal to: 
 

𝑎 = 𝐿 − B�U
=

     (24) 
 
The procedure of calculations and the formulae are exactly the ones explicated for the 2PKT 
for beams in paragraph 3.3 Two-Parameter Kinematic Theory (2PKT) for Shear Behaviour. 
The part above the main diagonal crack of inclination 𝛼L is considered again a rigid block. 
Below are shown the formulae that change for the 2PKT for footings compared to the original 
2PKT for beams. 
 

𝑙j= = 𝐿 − 𝑎 ∙ 𝑐𝑜𝑡𝛼L    (25) 
 

𝑡𝑎𝑛𝛼L = 𝑡𝑎𝑛𝛼 = L.£5
U¤
� W

h��
U

→ 	𝛼L = arctan ¡ L.£5
U¤
� W

h��
U

¥  (26) 
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𝑙i = 𝑙y + 𝑠�4< → 	𝑙i = 2𝑙y = 2𝑠�4<   (27) 
 
Where 𝑙j= is the length of the part of the uniform soil pressure that affect the 2PKT calculations; 
𝑡𝑎𝑛𝛼L is derived from footings punching tests [28] and 𝑙i is the length of the bottom 
reinforcement whose elongation contributes to the width of the diagonal critical crack, 𝑙y is the 
length of the heavily cracked zone at the bottom of the critical crack and 𝑠�4< is the spacing of 
the radial cracks at the bottom of the section. 
 
The extended theory is evaluated for footings without shear reinforcement; thus, the final shear 
capacity will have two contributions: the shear resisted by aggregate interlock (𝑉Jw) and the 
strength of the Critical Loading Zone (𝑉mno). The shear resisted by the dowel action (𝑉5) was 
not taken into account: the low amount of reinforcement produces a negligible shear resistance. 
In fact, in practice the footings are lightly reinforced large beams, therefore, in order to obtain 
conservative shear predictions, the dowel action effect is not taken into account. 
 

𝑉 = 𝑉mno + 𝑉Jw     (28) 
 
The procedure calculation is iterative and below the main steps are explicated. 
 
The crack width is computed as follow: 
 

𝑤 = ΔJ𝑐𝑜𝑠𝛼L +
Bc^_

=xwDg�
    (29) 

 
Where 𝜀F is the average between the left 𝜀±,n and right 𝜀F,² strain with respect to the diagonal 
crack side. 
 

𝑉Jw = ³ H}a
F4Dg�

+ 𝑛Jw´ 𝑏𝑑    (30) 

 

Where 𝑣Jw =
y.Lz;{}

y.~L� U��
�����

 and 𝑛Jw = 0. 

 
The iterative procedure computes the shear demand at the end of iteration 1: 
 

𝑉� = ��¶�^_
4

𝑧     (31) 
 
At the end of iteration 1, if  𝑉� < 𝑉, then the new 𝜀±,n is equal to 𝜀F, otherwise 𝜀±,n does not 
change; if 𝑉� < 𝑉, then the new 𝜀F,² is equal to 𝜀F,², otherwise 𝜀F does not change. 
The iteration 2 starts again from equation (29) computing 𝑤′ and the last iteration ends when 
𝑉 = 𝑉� with an error equal to zero (𝑉 − 𝑉� = 0). 
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4.3 Solution procedure 
 
As for the general 2PKT for deep beams, also in the extended 2PKT for footings, degree of 
freedom ∆J is obtained by assuming that the CLZ is at failure under diagonal compressive 
stresses, while DOF 𝜀F,4HE is obtained as illustrated in Figure 3.17. The thick black line in the 
plot shows the relationship between 𝜀F,4HE and the applied shear V, while the red line represents 
the shear resistance which decreases with increasing strains. In the case of footings, the 
resistance consists of two components: shear carried in the CLZ (VCLZ) and aggregate interlock 
component (Vci).  
 
The solution of the equations of the 2PKT correspond to the intersection point of the black and 
red lines which relates to the equilibrium point for shear forces. This graphical representation 
of the 2PKT is similar to that used by Muttoni in a critical shear crack theory for punching of 
slabs [29]. As the equations of the model are not suitable for a closed-form solution, the shear 
strength is found by an iterative solution procedure.  
 
Since 𝑉 needs to be resisted by the two shear contributions mentioned above, the following 
equation must be respected: 
 

𝑉mno + 𝑉Jw =
�∙y.�5
4

     (32) 
 
where 𝑇 is the tension in the bottom longitudinal reinforcement, 0.9𝑑 is the assumed lever arm 
between the compression force 𝐶 and 𝑇, and 𝑎 is the shear span. 
 
Since this theory aims to predict the shear resistance for any value of displacement, the shear 
contributions are calculated as function of the two computed DOFs. The shear carried by the 
Critical Loading Zone (CLZ) is defined as a function of the vertical displacement ΔJ of the CLZ 
in Figure 4.2. It is necessary to specify that the CLZ has a width that depends on the effective 
width of the loading plate. The concrete in this zone is subjected to high compressive stresses 
and fails when the maximum strain reaches the crushing limit of 3.5×10−3. The strain profile in 
the CLZ is assumed to vary linearly from zero to 𝜀�4< as shown in Figure 4.2.  
 

 
Figure 4.2: Critical Loading Zone [4] 
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Figure 4.3: Components of shear resistance for footings and equilibrium at peak load 

 
Considering now the two components that will constitute the actual shear strength prediction 
for footings (Figure 4.3), the aggregate interlock is affected by the strain in the bottom 
longitudinal reinforcement: by increasing the strain, wider cracks will form. Consequently, 
wider cracks will also lead to less aggregate interlock forces. Therefore, the curve representing 
the aggregate interlock decreases with the strain increment.  
 
In Figure 4.3, the thick black line represents the shear obtained from moment equilibrium as 
derived in equation (32). The curve is bilinear because of the effect of tension stiffening effect. 
The first part of the curve is stiffer because of the contribution of the concrete matrix around 
the bars which resists tensile forces. The second part represents the contribution of the 
reinforcement only since the concrete around the bars has reached its tensile strength. The 
intersection of the thick black line and the red line, which represents the sum of all the shear 
contributions, allows to compute the strain and the shear force at equilibrium. The intersection 
point requires an iterative procedure of calculations. 
It is possible to represent the final curve for shear behavior of the footing: it is computed by 
repeating the calculations for different values of ΔJ and associating each ΔJ to the correspondent 
value of εt,avg after equilibrium.  
 
The shear resistance components, thus Critical Loading Zone and aggregate interlock for 
footings without shear reinforcement, calculate that, generally, the main shear contribution for 
footings is principally produced by the aggregate interlock mechanism. In fact, increasing the 
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dimension of the element, the Critical Loading Zone deforms more, and the diagonal cracks are 
wider, therefore the shear stresses transmitted throughout the cracks reduces. 
Generally, the CLZ provides the second most important shear resistance, therefore, the failure 
of the element is driven by the failure of the CLZ. This was the basic hypothesis for the 2PKT 
and the extended 2PKT for footings maintain the same assumption. It means that the concrete 
in the critical loading zone crushes.  
 
 
4.4 Flexure 
 
It should be noted that in the 2PKT the flexural reinforcement is assumed to behave linearly, 
while yielding of the reinforcement can be taken into account by performing a flexural strength 
calculation based on typical code provisions. The final predicted failure load will be the 
minimum load obtained from a 2PKT shear calculation and a standard flexural strength 
calculation. 
Therefore, the shear strength predicted by the extended 2PKT must be compared to the flexural 
calculations. Thus, also the flexural failure should be evaluated and, as consequence, the 
minimum between the 2PKT shear strength prediction and the flexural strength prediction will 
be the actual strength. The general procedure for flexural calculations is displayed below. 
 
Calculation of the neutral axis of the section: 𝑥 = ¶�{�

y.z{}j
     (33) 

 
Calculation of the ultimate bending moment: 𝑀 = 𝐴x𝑓?(𝑑 − 0.4𝑥) [kNm]  (34) 
 

Calculation of the ultimate load: 𝑃 = 𝑀/ ³n
U

£
´    [kN/m]  (35) 

 

Check for yielding of the steel: ^�
^�
=

W{}¸�
¹}¸
º ∙<

¹�
»�

> 1    [-]  (36) 

 
 
4.5 Conclusions 
 
As previously mentioned, the actual strength for concrete footings is given by checking the 
failure mode, thus, comparing the shear failure load computed with the 2PKT and the flexural 
strength prediction. The minimum between these two strengths will be the failure load: 
 

𝑃¼ = 𝑚𝑖𝑛½𝑃=§«�; 𝑃{Bk<¿    (37) 
 
The scope of this chapter was the development of the 2PKT for footings, adapting the loading 
conditions and the shear resistance contributions that interest this member with respect to the 
ones for beams. In fact, the main factors that contribute to shear resistance are the shear forces 
resisted by the critical loading zone and by aggregate interlock. The stirrups contribute is not 
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present because one of the main assumptions is to consider footings without shear 
reinforcement, which in practice is respected. Then, footings have generally low longitudinal 
reinforcement ratio, therefore, the dowel action is neglected in order to obtain conservative 
results and remain on safe side. The uniformly distributed load in the bottom part of the footing 
affects the vertical applied load P just for the rigid block above the main diagonal crack; while 
the uniformly distributed load in the part below the main diagonal crack is not considered by 
the theory, as it was for the 2PKT for deep beams. With the predicted DOFs, as for the 2PKT 
for shear behavior in deep beams, the extended 2PKT for concrete footings can also be used to 
evaluate the deformation patterns of the beam near shear failure, including crack widths, 
deflections, and the complete displacement field of the footing. 
In the next chapter the extended 2PKT for footings is validated thanks to laboratory tests and 
Finite Element Models validated against real tests. Therefore, the calculations for the database 
of footings are implemented, the procedure is iterative (the complete last step for the iteration 
is displayed in the Appendix 3). 
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5. Validation of models and parametric study 
 
 
5.1 Introduction 
 
Once the 2PKT has been adapted to shear behavior for large compact footings, the next step is 
the validation of the theory and the model by means of laboratory tests. Due to the lack of 
significative and adequate tests in the literature suitable for the made hypothesis, a non-linear 
finite element analysis is performed. It is important to specify the assumptions adopted for these 
concrete members: large-scale specimen without stirrups with uniformly distributed soil 
pressure and a point-load along the geometrical axis coming from the column of the 
superstructure. 
In addition to experimental tests and to the creation of a proper database, it is necessary to 
develop and deepen the knowledge regarding one-way shear behavior of large compact footings 
by finding a general trend, varying some characteristic parameters and understanding their 
influence, then, by proposing an analytical model and comparing the predictions with the results 
obtained by tests.  
First of all, it is necessary to validate the FEM, therefore the Uzel’s tests are reproduced using 
the program VecTor2 and the predicted failure loads are compared with the actual ones. After 
the validation of the FEM approach, it is possible to compute the shear strength provisions for 
Uzel’s tests by means of the adapted 2PKT. Finally, in order to enlarge the database of footings 
and further demonstrate the validity and the efficiency of the 2PKT, a parametric study is 
computed. The objective is to validate the analytical model finding a tendency for the compact 
footings with the mentioned characteristics, in particular by varying the longitudinal 
reinforcement ratio, the compressive strength and the length of the footing.  
 
 
5.2 Strength predictions 
 
 

5.2.1 FEM strength predictions 
 
Non-linear finite element models of footings subjected to uniformly distributed loads and point-
load from the column are modelled by using the program VecTor2 as specified and illustrated 
in Chapter 3 (section 3.2.4 General layout of Finite Element Mesh). 
The obtained results are shown in Table 5.1, and the experimental-to-predicted strength is 
computed in the last column. As it is possible to observe the mean value is 1.02 and the 
coefficient of variation (CoV) is 6%. Thus, the achieved results are reliable, and the FEM 
approach is validated. Consequently, it is possible to create, starting from these models based 
on real tests, other samples changing some parameters. 
For Uzel’s tests, also load-displacement charts are produced and the comparison of FEM 
prediction with respect to the experiment results is shown in Appendix 4. 
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 Test 

FEM 
(kN) 

Ratio 
Uzel Total Load Exp/Pred 

 (kN) (-) 
UN100 1186 1149 1,03 

AF3 541 494 1,09 
AF6 1298 1398 0,93 
AF7 713 739 0,96 
AF11 2645 2448 1,08 

AF11-r1 1408 1335 1,05 
AF13 1857 1848 1,00 

  Avg 1,02 
  CoV 0,06 

Table 5.1: FEM strength prediction for Uzel's tests 

 
 

5.2.2 2PKT strength predictions 
 
The 2PKT predictions for the Uzel’s tests (2003) are shown in Table 5.2 and the experimental-
to-predicted strength is displayed in the last column. It is necessary to specify that in the 
following chart, only shear is taken into account, obviously the sample may failure in flexure 
therefore in next paragraph (5.2.3 Flexural calculations), flexure is evaluated and then in section 
5.2.4 Comparison of results), the failure mode is determined taking the smallest computed 
failure load between shear and flexure. The 2PKT predictions are calculated by following the 
prescriptions in Chapter 4 for extended 2PKT for concrete footings. 
The results obtained by 2PKT predictions are quite good except for the sample AF11-r1 which 
fails in flexure, as it is stated by Uzel, during the laboratory tests. For four of the considered 
samples the prediction is conservative, thus on safe side. For AF13 the prediction is quite far 
from the measured strength during the test, even if it is conservative, it is necessary to analyze 
this value because it is too conservative. Sample AF13 has longitudinal reinforcement ratio 
almost three times with respect to the other considered specimens, therefore the dowel action 
might be a non-negligible component. More detailed calculations and explanations regarding 
AF13 are developed in Appendix 3. 
 
The same procedure is performed also for the previously mentioned Richardt’s tests (2.3 Tests 
in the literature), again only the shear failure is evaluated applying the 2PKT method, but 
observing the results, the failure loads is largely overestimated, thus probably the flexural load 
will be smaller in those cases and the flexural calculations will produce better results. The 2PKT 
overestimates the actual test load. It is necessary to repeat that Richart’s tests are not properly 
large-scale tests. In Table 5.3, all the tests are presented, but not always they are suitable with 
the conducted analysis of the shear behavior of footings, this is why the obtained results are not 
reliable in this case. 
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The complete chart with data of the specimens is displayed in Appendix 1 and the 2PKT 
calculations are shown in Appendix 2. 
 

 Test 
2PKT 
(kN) 

Ratio 
Uzel Total Load Exp/Pred 

 (kN) (-) 
UN100 1186 1203 0,99 

AF3 541 497 1,09 
AF6 1298 1515 0,86 
AF7 713 609 1,17 
AF11 2645 2492 1,06 

AF11-r1 1408 2492 0,56 
AF13 1857 1124 1,65 

  Avg 1,05 
  CoV 0,31 

Table 5.2: 2PKT strength prediction for Uzel's tests 

 
  Test 

2PKT 
(kN/m) 

Ratio 
Richart Total Load Exp/Pred 

  (kN/m) (-) 
501a 639 751 0,85 
501b 616 756 0,81 
502a 898 2109 0,43 
502b 937 2002 0,47 
503a 950 2116 0,45 
503b 892 2087 0,43 
504a 474 456 1,04 
504b 511 468 1,09 
505a 800 1391 0,57 
505b 766 1405 0,55 
506a 730 1300 0,56 
506b 730 1428 0,51 

  Avg 0,65 
  CoV 0,37 

Table 5.3: 2PKT strength prediction for Richart's tests 

 
 

5.2.3 Flexural calculations 
 
In this section, the flexural calculations are performed following the section 4.4 Flexure. In 
Table 5.4 and Table 5.5 the flexural results for Uzel’s tests and Richart’s tests are presented. 
Then they must be compared to the 2PKT prediction for shear failure. 
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 Test Flexural 
Calculations 

(kN) 

Ratio 
Uzel Total Load Exp/Pred 

 (kN) (-) 
UN100 1186 1356 0,87 

AF3 541 511 1,06 
AF6 1298 1523 0,85 
AF7 713 681 1,05 
AF11 2645 2055 1,29 

AF11-r1 1408 2055 0,69 
AF13 1857 2627 0,71 

  Avg 0,93 
  CoV 0,23 

Table 5.4: Flexural prediction for Uzel's tests 

 
  Test Flexural 

Calculations 
(kN/m) 

Ratio 
Richart Total Load Exp/Pred 

  (kN/m) (-) 
501a 639 650 0,98 
501b 616 651 0,95 
502a 898 692 1,30 
502b 937 689 1,36 
503a 950 692 1,37 
503b 892 691 1,29 
504a 474 626 0,76 
504b 511 631 0,81 
505a 800 589 1,36 
505b 766 589 1,30 
506a 730 585 1,25 
506b 730 590 1,24 

  Avg 1,16 
  CoV 0,19 

Table 5.5: Flexural prediction for Richart's tests 

 
 

5.2.4 Comparison of results 
 
In order to check the failure mode, as previously mentioned, the shear failure load computed 
with the 2PKT is compared with the flexural calculation and the minimum one is taken as 
failure load: 
 

𝑃¼ = 𝑚𝑖𝑛½𝑃=§«�; 𝑃{Bk<¿    (37) 
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Applying this to the previous results tables, it is possible to observe in Table 5.6 and Table 5.7 
the comparison of experimental results and 2PKT (including flexural calculations comparison) 
predictions for Uzel’s tests and Richart’s tests, respectively. 
Generally, the achieved results reproduce in a realistic way the actual load and the 2PKT very 
well reproduce the shear failure load and the global test trend. 
As it is possible to observe by comparing the results, the 2PKT well reproduce Uzel’s tests and 
most of the specimens fail in shear; while Richart’s tests are better reproduced by the flexural 
calculations, apart from the series 501 and 504, which are, referring to Richart [2] the only ones 
that fails under diagonal tension, for which in fact the 2PKT predictions are quite precise. 
 
More specific comments are necessary for Uzel’s tests: the strength predictions of the 2PKT 
approach are generally conservative because the average value of the experimental-to-predicted 
ratio is 1.10, but specimen AF11r1 is largely overestimated and AF13 underestimated. 
Specifically, AF11r1 presented some problems during the test and it fails in flexure. On the 
other hand, AF13 has longitudinal reinforcement ratio almost three times with respect to the 
other considered specimens, therefore the dowel action might be a non-negligible component 
(in Appendix 3 this aspect is investigated). 
 
 

  Test 
FEM 
(kN) 

Flexural 
Calculations 

 (kN) 

2PKT 
(kN) 

Final 
(kN) 

Ratio 
 Uzel Total Load  Exp/Pred 

  (kN) (-) 
UN100 1186 1149 1356 1203 1203 0,99 

AF3 541 494 511 497 497 1,09 
AF6 1298 1398 1523 1515 1515 0,86 
AF7 713 739 681 609 609 1,17 
AF11 2645 2448 2055 2492 2055 1,29 

AF11-r1 1408 1335 2055 2492 2055 0,69 
AF13 1857 1848 2627 1124 1124 1,65 

     Avg 1,10 
   

  CoV 0,28 
Table 5.6: Final summarizing table for Uzel’s tests 
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  Test 
2PKT 
(kN/m) 

Flexural 
Calculations 

 (kN/m) 

Final 
(kN/m) 

Ratio 
Richart Total Load  Exp/Pred 

  (kN/m) (-) 
501a 639 758 650 650 0,98 
501b 616 763 651 651 0,95 
502a 898 2109 692 692 1,30 
502b 937 2002 689 689 1,36 
503a 950 2116 692 692 1,37 
503b 892 2087 691 691 1,29 
504a 474 505 626 505 0,94 
504b 511 516 631 516 0,99 
505a 800 1391 589 589 1,36 
505b 766 1405 589 589 1,30 
506a 730 1300 585 585 1,25 
506b 730 1428 590 590 1,24 

    Avg 1,19 
    CoV 0,15 

Table 5.7: Final summarizing table for Richart’s tests 

 
It can be seen that the 2PKT method well reproduce the observation and the measurements 
during the large-scale laboratory tests. In particular, in Figure 5.1, it is possible to observe the 
experimental-to-predicted 2PKT strength for Uzel’s tests, and in Figure 5.2 for the FEM 
modelled tests with different L/d ratios. Apart from AF11r1 and AF13, for what has been 
explained before, the other tests are well reproduced, and the prediction is conservative. In fact, 
the average experimental-to-predicted ratio obtained with the 2PKT calculations is 1.10 and the 
Coefficient of Variation is 28% (Figure 5.1). Similarly, in Figure 5.2, the experimental-to-
predicted ratios for FEM provisions are plotted for Uzel’s tests. It is possible to observe that the 
results are a good approximation of the actual test shear strength, in fact, the values are all 
around 1 (as presented in section 5.2.1 FEM strength predictions). 
The shear resistance components, thus critical loading zone and aggregate interlock for footings 
without shear reinforcement, calculate that the size effect for deep concrete footings is 
principally produced by the aggregate interlock mechanism. In fact, increasing the dimension 
of the element, the critical loading zone deforms more, and the diagonal cracks are wider, 
therefore the shear stresses transmitted throughout the cracks reduces. 
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Figure 5.1: Experimental-to-predicted 2PKT strength provisions 

 
Figure 5.2: Experimental-to-predicted FEM strength provisions 

 
 
5.3 Deformation patterns near failure 
 
A further comparison between the real information obtained during Uzel’s tests and the 2PKT 
provisions is treated in this section. Specifically, it is possible also to compare the deformation 
patterns at failure for the specimens between the actual displacement measured during 
laboratory tests and the 2PKT predictions. 
By using the Principle of Virtual Work (PVW), it is possible to predict the displacement of the 
compact footing imagining it as a truss composed of vertical, horizontal and diagonal elements. 
In fact, during the laboratory tests performed by Uzel (2003) Zurich Targets were placed in 
precise and calculated position along the face of the tested footing. It is possible to observe the 
position of those targets from Figure 2.6 to Figure 2.10. The vertical, horizontal and diagonal 
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distances between the Zurich Targets were measured by the specific gauges. Furthermore, 
surface deformations were measured by means of gauges on the created grid of Zurich Targets. 
The vertical and the lateral strains were then calculated based on the change in distance between 
vertically and horizontally placed targets. The diagonal strains were computed in the change of 
diagonal distance between the targets. 
Knowing the strain at each target, it is possible to compute the displacement, a MatLab code 
[Mihaylov] is created in order to visually observe the displacement of each element of the truss 
and globally note the behavior of the compact footing under each load stage. In the code it is 
necessary to introduce the Scale Factor (SF) in order to be able to observe the displacement of 
each element of the truss system. 
 
The input data for the code are: 

• the coordinates of the Zurich Targets supposing the 2D reference system centred in the 
midpoint of the bottom side of the concrete member; 

• the numbering of each square component of the truss; 
• the triad of numbers clockwise per each triangular element per each row of targets (as 

show in Figure 5.3 and Table 5.8); 
• the restraint condition (1 means no displacement along x-axis and 2 no displacement 

along y-axis) in the matrix of Boundary Condition (BC); 
• the column vector F containing the forces per each load stage (LS); 
• the data collected and measured by strain gauges during the real laboratory test at the 

end of each load stage. 
 
As the PVW states, the displacement Δw can be computed as follow: 
 

Δw =À
𝑁w ∙ 𝑁w∗

𝐸𝐴 𝐿w =À𝑁w∗ ∙ 𝛿w 

 
Where 𝑁w is the axial load applied to the real system, 𝑁w∗ is the unitary axial load applied to the 
virtual system, 𝐴 is the cross-sectional area, 𝐸 is the Young Module and 𝐿w is the length of the 
element i. In particular, �¶

n
 is the stiffness of the element i. 

It is assumed that the displacements are small compared to the dimension of the element. 
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Figure 5.3: Example of mesh and nomenclature 

 
2 11 10 
10 1 2 
3 12 11 
11 2 3 

Table 5.8: Example of meshing 

 
First of all, the actual test displacements per each point of the constructed truss are plotted, in 
Figure 5.4 sample AF11 is displayed with respect to the original position of the truss element. 
A Scale Factor (SF) equal to 30 is used in order to make the deformations visible. A similar 
procedure is done also for AF1 UN 100 (Figure 5.7). 
The extended two-Parameter Kinematic Theory (2PKT) for compact concrete footings is a 
kinematic model depending on two parameters, two degrees of freedom: the average strain in 
the bottom reinforcement, 𝜀F,4HE, and the vertical displacement of the critical loading zone, ∆J. 
With the predicted DOFs, the extended 2PKT can also be used to evaluate the deformation 
patterns of the beam near shear failure, including crack widths, deflections, and the complete 
displacement field. 
Therfore, the previously mentioned Matlab code is implemented in order to compare the 
predicted displacement at failure by the 2PKT and the real test displacement by means of the 
Zurich Targets. The calculation of the predicted displacements is done by following the 
equation from (1) to (4) regarding the position of each point with respect to the main diagonal 
crack, displayed in Figure 5.6 for AF11 and simplified as a straight line. 
For sample AF11, the comparison between the actual displacement measured during the test 
and the 2PKT predictions, represented by blue dots, is shown in Figure 5.5. While for specimen 
AF1 UN100 the procedure is similar and the comparison between test and 2PKT provisions is 
displayed in Figure 5.8. 
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Figure 5.4: Test displacements for specimen AF11 (SF=30) 

 

 
Figure 5.5: Comparison between actual test displacement and 2PKT predictions for AF11 (SF=30) 

 

 
Figure 5.6: Main diagonal crack (simplified as a straight line) 
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Figure 5.7: Test displacements for specimen AF1 UN100 (SF=30) 

 

 
Figure 5.8: Comparison between actual test displacement and 2PKT predictions for AF1 UN100 (SF=30) 

 
By observing Figure 5.5 and Figure 5.8, it is immediately visible the 2PKT predictions for 
displacements at failure. The global trend and displacement behavior are well reproduced by 
the 2PKT. The blue dots are not exactly overlapped to the shape of the real displacement 
tendency, especially for specimen AF11 which is properly called compact footing. The theory 
predicts better AF1 UN100 which is slightly slenderer. Thus, the 2PKT could be improved 
regarding the displacement aspect. 
It is possible to extend the code for each of Uzel’s specimens in order to directly and visually 
compare the results of the 2PKT. In fact, the comparisons between the actual test displacement 
and the 2PKT predictions for samples AF3, AF6, AF11r1 and AF13 are shown below. 
For specimen AF13 it is necessary to specify that the grid of Zurich Targets was not placed 
symmetrically during the laboratory test, thus, Figure 5.12 presents a particular shape. 
 

 
Figure 5.9: Comparison between actual test displacement and 2PKT predictions for AF3 (SF=30) 
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Figure 5.10: Comparison between actual test displacement and 2PKT predictions for AF6 (SF=30) 

 

 
Figure 5.11: Comparison between actual test displacement and 2PKT predictions for AF11-r1 (SF=30) 

 

 
Figure 5.12: Comparison between actual test displacement and 2PKT predictions for AF13 (SF=30) 

 
 
Strain analysis 
 
Moreover using the MatLab code (implemented in 5.3 Deformation patterns near failure), it is 
possible to plot the measured strain within two different target, for example in Figure 5.13 the 
strain measured at the two farther elements versus the load is displayed for sample AF11. The 
strain at failure measured during the test and displayed in the figure is 2.8 and it is exactly the 
same as the one predicted by the 2PKT in the last computational iteration for AF11, as it is 
shown in Table A.3 in Appendix 2: 2PTK Calculations. Therefore, the same comparison 
between measured strain and predicted one is possible by associating Table A.1 containing test 
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data and Table A.3 with the predictions computed by the 2PKT. Also, in terms of strain the 
2PKT very well reproduce the test results, in fact, it is well estimated, a part for specimen AF13 
which is the only Uzel’s test with longitudinal reinforcement ratio almost three times the others. 
In fact, the 2PKT predictions for AF13 are the least accurate and probably this is due to the 
large amount of longitudinal reinforcement which makes not negligible the dowel action 
contribution for shear resistance. Regarding this last topic, more considerations are done in 
Appendix 2: 2PTK Calculations, trying to consider the dowel action for AF13 and for the other 
high reinforced tests used in the following parametric analysis by varying the reinforcement 
ratio.  
 

 
Figure 5.13:Measured strain with respect to total load for AF11 

 
 
5.4 Parametric Analysis 
 
The extended two-Parameter Kinematic Theory (2PKT) for concrete footings is a kinematic 
model depending on two parameters, two degrees of freedom: the average strain in the bottom 
reinforcement, 𝜀F,4HE, and the vertical displacement of the critical loading zone, ∆J. By 
combining the theory with the equilibrium equations and the stress-strain relationships, it is 
possible to predict the shear strength (paragraph 5.2.2 2PKT strength predictions for Uzel’s 
tests), the deformation patterns at shear failure (paragraph 5.3 Deformation patterns near failure 
shows the comparison between tests and 2PKT predictions in terms of displacements and 
deformation configurations), crack width and maximum deflection. 
In order to validate the 2PKT for footings, a parametric analysis is performed. The study is 
introduced with the aim of demonstrating the validity of the Model by varying one parameter 
while keeping constant all the other factors. After the adaptation of the theory to compact 
footings, the parameters included in the parametric study are: the concrete strength fc, the 
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longitudinal reinforcement ratio 𝜌B and the length of the footing L (keeping d, the effective 
depth, constant). The tests contained into the parametric analysis are the ones that follow the 
simple hypothesis of one vertical load coming from the superstructure applied along the 
symmetry axis of the footings and uniformly distributed load along the whole length of the 
footing in the bottom side which reproduces the soil pressure. The details of the considered 
tests are displayed in Table 2.1. In particular, the most interesting samples are AF1 UN100 and 
AF11 due to their similar characteristics regarding the materials, but different L/d ratio and 
therefore peculiar for the analysis of deep compact footings. In fact, sample AF1 has L0/d (shear 
length to effective depth) equal to 3.2 and sample AF11 has L0/d equal to 2.0. For each of the 
specified remarkable sample, the parametric study is achieved. The range of variation of the 
longitudinal reinforcement ratio is from 0.5% to 2%; the range of variation of the concrete 
strength is from 20 MPa to 70 MPa and the L/d deviation is from 0.5 to 4.9. Then, in the same 
chart, the test results from Uzel (2003), the parametric study performed with the non-linear 
finite element models (produced with VecTor2, as illustrated in paragraph 3.2.4 General layout 
of Finite Element Mesh) and the 2PKT results per each FEM model (computed by iterations, 
see the last iteration in Table A.3 in the Appendix 2: 2PTK Calculations) are compared for both 
AF1-UN100 and AF11. The obtained results are three curves for each of the two considered 
specimens in which only one parameter varies, and the other are kept constant. Therefore, the 
parametric analysis is based on the use of non-linear finite element calculations validated 
against experimental results, due to the lack of an extended database for footings in the 
literature. Only by performing this analysis it is possible to validate the 2PKT extended to 
concrete compact footings. 
Generally, the 2PKT well adapt to the test result and to the FEM prevision, but a detailed 
discussion for each parametric study is developed below the graphs.  
 
 

 
Figure 5.14: Parametric study varying the longitudinal reinforcement ratio using test UN100 as model 
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Figure 5.15: Parametric study varying the concrete strength using test UN100 as model 

  
 

 
Figure 5.16: Parametric study varying the L/d ratio using test UN100 as model 

 

 
Figure 5.17: Parametric study varying the longitudinal reinforcement ratio using test AF11 as model 
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Figure 5.18: Parametric study varying the concrete strength using test AF11 as model 

  
 

 
Figure 5.19: Parametric study varying the L/d ratio using test AF11 as model 

 
The parametric analysis based on the specimen AF1 UN100 as model is illustrated in Figure 
5.14, Figure 5.15 and Figure 5.16. In the first image it is possible to observe that the FEM 
models and the 2PKT predictions have a similar trend and the test AF1 UN100 belongs to the 
2PKT prevision. Furthermore, in the figure it is represented also the test AF13 because it has 
similar L/d ratio (3.5 instead of 3.2 of UN100 specimen), but very different longitudinal 
reinforcement ratio (2.16% instead of 0.76% of UN100 sample), the parameter which in this 
case is requested to vary. The test result of AF13 is far from the 2PKT and FEM prevision, the 
fact is quite unexpected also considering the concrete strength which is smaller with respect the 
model used for the parametric study (35.7 MPa instead of 43 MPa for the model). The test 
provides a surprising result which was not predicted by none of the models; a deepen discussion 
regarding the sample AF13 will be developed in the Appendix 2: 2PTK Calculations. 
 
In Figure 5.15 the models, 2PKT and FEM, are perfectly overlapped and the result from test 
experiment belongs to the 2PKT curve. 
In Figure 5.16, again, the 2PKT and the FEM models are coincident and the test results UN100 
belongs to the 2PKT curve. Furthermore, the specimens AF3, AF6 and AF11 are added because 
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they have different L/d, same longitudinal reinforcement ratio and similar concrete strength; 
the sample AF11, among the considered ones, is the only one which is far from the models’ 
curves. Varying the L/d ratio, the sample AF13 is not considered due to its different 
reinforcement ratio (2.16%). Generally, form the graph it is evident that the strength decreases 
by increasing L/d ratio. 
 
The parametric analysis based on specimen AF11 as model is illustrated in Figure 5.17, Figure 
5.18 and Figure 5.19. In the first picture, the longitudinal reinforcement ratio is the parameter 
that is varying and, FEM and 2PKT produce quite similar predictions, but the test results are 
better reproduced by the FEM analysis with respect to the 2PKT. In this case the sample AF13 
is not plotted due to the dissimilar value for the L/d ratio (it is equal to 2.2 for AF11 and 3.5 for 
AF13). 
In Figure 5.18 it is possible to observe the results of the parametric study varying the concrete 
strength, the FEM and 2PKT models are quite similar at the beginning, then by increasing the 
concrete strength they assume a different trend and the average gap between the two predictions 
is 400 kN. The test result for AF11 is unexpectedly higher with respect both forecasts. 
In Figure 5.19 the curves of FEM and 2PKT analysis are overlapped and the compatible test 
results belong to the curves, therefore in this case the calculations adapt the results obtained by 
the performed large-scale tests. 
 
In both Figure 5.15 and Figure 5.18, thus the P-fc curves, it is possible to notice the plateau due 
to the passage from shear failure to the flexural failure. Using AF1 UN100 as model, increasing 
the concrete strength after 55 MPa, the ultimate capacity load remains approximately constant. 
While, using AF11 as model, the flat part of the curve is visible only for the 2PKT and starting 
from lower values of concrete strength, around 40 MPa. 
 
For AF1 UN100 and AF11 models, by increasing the reinforcement ratio from 0.5% to 2%, the 
footing tests fail in shear and the Finite Element Modellings of VecTor2 reproduce very well 
the 2PKT predictions. When the sample has a very low amount of reinforcement, it fails under 
flexure. Then, by varying the concrete strength, it is possible to observe that, by increasing fc 
from 20 MPa to 70 MPa, the tests fail in shear up to a certain point and then the dominant failure 
mode is the flexural one.  
 
Generally, it is observed an increment in the shear stress at failure when the shear span to 
effective depth (a/d) decreases. For elements with low a/d ratio, the internal forces redistribute, 
after the formation of the main diagonal crack. The formation of flexural cracks is followed by 
the development of inclined shear cracks along which a shear deformation occurs, resulting into 
high compression stresses in the concrete strut carrying shear; crushing of the concrete strut 
activates a redistribution of internal forces which eventually leads to failure.  
When a/d is greater than 1.5, the elements develop the main diagonal crack and the stress at 
which it arises is function of the total member depth (compare also Figure A.13 and A.16, then 
Figure  A.31 with A.34 in the Appendix 3). 
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The specimens used as model and FEM specimens created for the parametric analysis are 
summarized in Table 5.9. Only the main data are shown, for detailed database of footings it is 
necessary to consult the Appendix 1. 
Furthermore, in the Appendix 2: 2PTK Calculations, a detailed 2PKT calculations and the last 
iterative step are shown; while in the Appendix 3: FEM results from the parametric study, some 
examples of footings modeled with VecTor2 and some plots are displayed in order to compare 
the results for high and low concrete strength specimens, for high and low reinforcement ratio 
tests, and for slender and deep footings. 
 

Specimen 
Reinforcement Concrete Geometry 

𝜌 [%] fc’ [MPa] L0 [mm] d [mm] L0/d 
AF1 UN100 0.76 43 2925 925 3.16 

Parametric study 0.76 20-70 2925 925 3.16 
Parametric study 0.5-2 43 2925 925 3.16 
Parametric study 0.76 43 850-8850 925 0.5-4.8 

AF11 0.76 36.2 1850 925 2.00 
Parametric study 0.76 20-70 1850 925 2.00 
Parametric study 0.5-2 36.2 1850 925 2.00 
Parametric study 0.76 36.2 850-8850 925 0.5-4.8 

Table 5.9: Summarizing table for the parametric study 

 
Similarly to what was previously done for the 2PKT and FEM strength provisions for Uzel’s 
tests, the experimental-to-predicted ratio is computed and plotted in Figure 5.20 for Uzel’s tests 
and for the finite element models created for the parametric study varying the length of the 
specimens. Generally, the samples crated by varying the L/d parameter are quite overestimated 
by the 2PKT, these values are not far from 1, but they are not on the safe side. Globally the 
average experimental-to-predicted ratio for these specimens is 1.00 and the coefficient of 
variation is 22.3%. 
Finally, the average of the experimental-to-predicted ratio is equal to 1.08 and the coefficient 
of variation is 15.3% considering now the whole non-linear finite element models analysis and 
the experimental results (thus including also Richart’s tests). Moreover, considering only the 
Uzel’s tests predictions and the parametric study by means of the FEA (thus without Richart’s 
tests, by observing the results in Table A.2 in Appendix 2: 2PTK Calculations), the average of 
experimental-to-predicted is 1.04 and the coefficient of variation is 14.2%. The obtained 
product means that the 2PKT precisely reproduce the test results and, in particular, for large-
scale specimens the size effect is taken into account and the results are more accurate with 
respect to code’s shear provisions. 
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Figure 5.20: Experimental-to-predicted 2PKT strength provisions for Uzel’s tests and models created for the parametric 

study 
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6. Conclusions 
 
 
6.1 General overview 
 
This thesis work presents a general overview of concrete compact footings, their possible 
failure modes with special regarding to one-way shear failure (beam action shear), thus, 
considering a strip of the element. The foundations have in fact the purpose to transfer the load 
of the superstructure and its weight to the soil layers. In order to accomplish this, in practice, 
reinforced concrete footings are designed without shear reinforcement (stirrups); therefore, 
these elements are predisposed to brittle failure according to the amount of diagonal cracking 
due to excessive local shear stresses. Then, the footings are analyzed using as starting point 
Uzel’s laboratory tests (the full-scale series) data. It is known that there is a significant size 
effect on shear strength of lightly reinforced slender members without shear reinforcement. 
Thus, it is important to simulate during the test the real size of this kind of elements in order to 
correctly evaluate the influence of the size on the shear behavior of large footings. The size 
effect is generally neglected by codes provision, such as ACI shear provisions, therefore the 
failure shear stress for slender members without shear reinforcement decreases as the thickness 
of the structural member increases; this may be very unconservative for thick members. Due to 
the absence of shear reinforcement, the resistance of the footing is often governed by the 
concrete contribution to shear strength. In fact, the ratio of shear length L0 to the effective depth 
d is typically not very large, when it is low, an alternate force-resisting mechanism consisting 
of diagonal struts and tension ties can create, and this may provide adequate shear resistance 
even for very thick footings. The used tests are loaded by a set of hydraulic jacks which 
simulates the uniformly distributed loads from the soil. It is necessary to denote that the soil 
pressure is assumed uniformly distributed below the footing even though, its pressure is not 
uniform, but it is function of the type of the soil. Specifically, if the foundation soil layers is a 
non-cohesive material (i.e. sand), the soil pressure is maximum at the mid span of the footing 
and minimum at the ends; while, if the soil foundation is composed of cohesive materials (i.e. 
clays), the pressure will be maximum at the extremities and minimum in correspondence of the 
geometrical mid span section. This specification is made in order to clarify that Uzel’s tests 
were modelled to represent a strip of a footing member subjected to point load (simulating the 
load coming from the column footing) and uniformly distributed loads (simplifying the soil 
pressure).  
 
 
6.2 Results and comparison 
 
After the understanding of the performed tests and the obtained results, non-linear finite 
element models of the previously mentioned laboratory tests were performed by Uzel (using 
the program VecTor2) in order to obtain reliable and accurate predictions and reproductions. 
This was a necessary step in order to prove the validity of FEM results and enlarge the database 
of footings. In fact, in the literature, few suitable tests for the presented purpose are available. 
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Therefore, the Finite Element Analysis by using VecTor2 software, was essential after the 
demonstration of its reliability and efficiency with the precedent models of Uzel’s tests, to 
produce other possible footing samples following Uzel’s suggestions and recommendations. 
 
Simultaneously, the understanding of the 2PKT (two-Parameter Kinematic Theory) for shear 
behavior in beams represented the main objective for this research. By means of the 2PKT it is 
possible to predict the shear failure load, the crack widths near failure, and the complete 
deformed shapes of diagonally cracked point-loaded deep beams subjected to single curvature. 
The two parameters involved in the models are: the ultimate vertical displacement of Critical 
Loading Zone (CLZ) and the average tensile strain in the longitudinal reinforcement on the 
flexural tension side. The theory allows to consider the size effect for deep beams the obtained 
shear provisions are more accurate with respect to code’s ones. In fact, the beam’s mechanism 
of shear resistance strictly depends on the size of the element itself. A slender beam is a 
structural member with a shear span-depth ratio, a/d, greater than 2.3 and its behavior is 
consistent with “plane sections remain plane” and shear resistance is attributed to the ability of 
the cross section to transfer shear across a diagonal crack. While for deep beams the statement 
is no more valid, the shear strain becomes dominant and the deformation pattern becomes more 
complex. Shear resistance is attributable to stirrups contribute, aggregate interlock of concrete 
of the primary diagonal crack, dowel action of longitudinal reinforcement and shear capacity 
of the CLZ. 
 
Then, the scope was the development of the 2PKT for footings, adapting the loading conditions 
and the shear resistance contributions that interest this member with respect to the beams. In 
fact, the main factors that contribute to shear resistance are the shear forces resisted by the 
critical loading zone and by aggregate interlock. The stirrups contribute is not present because 
the specimens are without shear reinforcement and the dowel action is neglected in order to 
obtain conservative results. In practice, in fact, concrete compact footings are designed without 
shear reinforcement and with light longitudinal reinforcement. The uniformly distributed load 
in the bottom part of the footing affects the vertical applied load P just for the remaining rigid 
block above the main diagonal crack; while the uniformly distributed load in the part below the 
main diagonal crack remains not considered by the theory. After the extension of the theory for 
footings, the following step was the validation of the theory by means of real tests and FEM 
analysis. The average strength predictions by 2PKT for Uzel’s tests is conservative, the average 
value of experimental-to-predicted ratio is 1.10 and the coefficient of variation is 28%. Apart 
AF11r1 and AF13, the other tests are well reproduced, and the prediction is conservative. The 
peculiarity of AF11r1 is that it fails in flexure and, regarding AF13, it has almost three times 
the longitudinal amount of reinforcement with respect to the other samples. Thus, for AF13 
sample the predictions are too conservative, and the dowel action contribution might not be 
neglected. For Richart’s tests experimental-to-predicted ratio is 1.19 and the coefficient of 
variation is 15%. 
In order to validate the extended 2PKT, starting with the FEM models of the actual tests, some 
parameters are modified, and a parametric study is developed. The parametric analysis by 
varying one of the considered factors per time and keeping constant the others. Precisely, the 



Kinematics-Based Modelling of Compact Footings 
 

 

 
Master Thesis – Giorgia Spada 99 

parameters included in the parametric study are: the concrete strength fc, the longitudinal 
reinforcement ratio 𝜌B and the length of the footing L (keeping d, the effective depth, constant). 
Again, the tests contained into the parametric analysis are the ones that follow the simple 
hypothesis of one vertical load coming from the superstructure and applied along the symmetry 
axis of the footings and uniformly distributed loads along the whole length of the footings in 
the bottom side which reproduce the soil pressure. The parametric study offers reliable results 
thanks to the consistent results obtained by the FEM of Uzel’s tests in which the average 
experimental-to-predicted strength is 1.02 and the Coefficient of Variation is 6%. Considering 
these coherent models as starting point, it is possible to proceed with the parametric analysis. 
Considering AF1 UN100 and AF11 as models for the parametric study, by increasing the 
reinforcement ratio from 0.5% to 2%, the footing tests fail in shear and the Finite Element 
Modellings of VecTor2 reproduce very well the 2PKT predictions. When the sample has a low 
amount of reinforcement, it fails under flexure. Then, by varying the concrete strength, it is 
possible to observe that, by increasing fc from 20 MPa to 70 MPa, the tests fail in shear up to a 
certain point and then the dominant failure mode is the flexural one.  
Then, it is seen an increment in the shear strength at failure when the shear span to effective 
depth ratio decreases. For elements with low shear span-to-effective depth ratio, the internal 
forces redistribute, after the formation of the main diagonal crack. The formation of flexural 
cracks is followed by the development of inclined shear cracks along which a shear deformation 
occurs, resulting into high compression stresses in the concrete strut carrying shear; crushing 
of the concrete strut activates a redistribution of internal forces which eventually leads to 
failure. The developing of the main diagonal crack and the stress at which it arises are function 
of the total member depth. 
 
Based on the use of non-linear finite element calculations proved against experimental results, 
it is possible to validate the 2PKT extended to concrete compact footings. It can be seen that 
the 2PKT method well reproduces the observation and the measurements obtained during the 
large-scale laboratory tests. In fact, the average experimental-to-predicted ratio obtained with 
the 2PKT calculations is 1.04 and the coefficient of variation (CoV) is 14.2% (considering only 
the Uzel’s tests predictions and the parametric study by means of the FEA, thus without 
Richart’s tests). 
Also, in terms of strain the 2PKT very well reproduce test results, apart AF13 which is the only 
Uzel’s test with longitudinal reinforcement ratio almost three times the others. In fact, the 2PKT 
predictions for AF13 are the least accurate and probably this is due to the large amount of 
longitudinal reinforcement which might makes not negligible the dowel action effect for shear 
resistance.  
Furthermore, in order to compare the predicted displacement at failure by the 2PKT and the 
real test displacement by means of the Zurich Targets, a Matlab code is implemented. Also, 
from this side, the global deformation pattern at failure and displacement behavior are well 
reproduced and captured by the 2PKT. The displacement predictions do not exactly overlap to 
the shape of the real test displacement, thus the 2PKT could be improved regarding the 
displacement aspect. 
Finally, it is possible to state that, globally, the obtained results validate the extended 2PKT, in 
particular, for large-scale specimens with respect to medium-scale samples (Richart’s tests). 
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6.3 Future research 
 
Due to the fact that in practice footings may be of substantial thickness and are generally 
constructed without shear reinforcement, the safety of these large members is based on the 
accuracy of shear design provisions. For that reason, this thesis work is just the starting point 
for the validation of the 2PKT because the database based on real tests’ data is composed by 
few specimens. Therefore, the samples obtained by FEM models could be in future real 
laboratory large-scale tests and their results could further demonstrate the shear predictions of 
the theory and, thus, enlarge its validity. 
 
Another interesting topic to develop is the study of non-uniformly distributed load in the bottom 
part of the footing, thus a more realistic approach regarding the pressure given by the soil in the 
contact zone. The study could be related to both, sand and clay type of soil, but, since the 
uniform pressure distribution will result slightly unsafe for rigid footings on clays, most 
attention should be payed to this last kind of soil. Uzel tested some specimens in such a way 
that they were subjected to pressure distribution only in a portion of the footing in order to 
simulate the behavior of footings on cohesive soil (clay). Therefore, it could be interesting to 
develop and study the 2PKT changing the loading configuration in order to take into account 
the real behavior of the contact zone and the not uniformly distributed pressure. 
 
Moreover, since the 2PKT predictions are not good in the same manner for all the specimens, 
it could be interesting in the future to develop the theory taking into account also the 
deliamination along the bottom reinforcement. In fact, in tests by Uzel it is observed that in 
some cases (AF6 and AF13 especially) the main diagonal crack extends to the ends of the 
footings, probably due a not prober anchor of the rebar. The 2PKT does not take into account 
the development of the main diagonal crack in this way, thus could be interesting elaborate on 
this behavior. 
 
Concluding, future research regarding shear behavior of concrete compact footings and the 
extension of the 2PKT should be developed in terms of real laboratory large-scale tests in order 
to prove it and compare its predictions against a greater amount of footing samples that will 
increase the database for this kind of member and, therefore, will confirm, or not, the validity 
of the theory. The real tests should help also in the understanding of the dowel action effect, if 
it is negligible in general or, for a certain amount of longitudinal reinforcement, it plays an 
important and significative role. 
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Appendix 1: Database of footings 
 
 

R
ef

. Name b h a L d ds As 𝝆 fsy 𝜺𝒔𝒚 ftk ag fc Failure 
type  

mm mm mm mm mm mm mm² % MPa ‰ MPa mm MPa - 

Ri
ch

ar
dt

 (1
94

8a
, 1

94
8b

) 

501a 1829 304,8 356 2743 254 16 6400 1,38 425 2,1 721 25,4 25,4 DT 

501b 1829 304,8 356 2743 254 16 6400 1,38 425 2,1 721 25,4 25,7 DT 

502a 1829 457,2 356 2743 406,4 13 3999 0,54 420 2,1 639 25,4 24,3 T/DT 

502b 1829 457,2 356 2743 406,4 13 3999 0,54 420 2,1 639 25,4 22,7 T/DT 

503a 1829 457,2 356 2743 406,4 13 3999 0,54 420 2,1 639 25,4 24,4 T/DT 

503b 1828 457,2 356 2743 406,4 13 3999 0,54 420 2,1 639 25,4 24 T/DT 

504a 1524 304,8 356 3048 254 19 6852 1,77 510 2,6 765 25,4 24,9 DT 

504b 1524 304,8 356 3048 254 19 6852 1,77 510 2,6 765 25,4 25,8 DT 

505a 1524 457,2 356 3048 406,4 16 4200 0,68 425 2,1 721 25,4 25,4 T/DT 

505b 1524 457,2 356 3048 406,4 16 4200 0,68 425 2,1 721 25,4 25,7 T/DT 

506a 1524 457,2 356 3048 406,4 16 4200 0,68 425 2,1 721 25,4 23,1 T/DT 

506b 1524 457,2 356 3048 406,4 16 4200 0,68 425 2,1 721 25,4 26,3 T/DT 

U
ze

l e
t a

l.,
 (2

00
3)

 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 43 S 

AF3 300 670 150 6000 617 30 1400 0,76 475 2,4 621 19 27,3 S 

AF6 300 670 150 6000 617 30 1400 0,76 562 2,8 710 19 32,2 S 

AF7 300 1000 150 6000 925 30 2100 0,76 562 2,8 710 19 33,8 S 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 36,2 F 

AF11r1 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 36,2  

AF13 300 1000 150 6000 865 30 5600 2,16 475 2,4 621 19 35,7 S 

                

V
ar

yi
ng

 𝜌
 

UN100 300 1000 150 6000 925 30 1388 0,5 550 2,8 750 10 43 F 

UN100 300 1000 150 6000 925 30 1665 0,6 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 1943 0,7 550 2,8 750 10 43 S 

UN100 300 1000 150 6000 925 30 2220 0,8 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 2498 0,9 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 2775 1 550 2,8 750 10 43 S 

UN100 300 1000 150 6000 925 30 3053 1,1 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 3330 1,2 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 3608 1,3 550 2,8 750 10 43 S 

UN100 300 1000 150 6000 925 30 3885 1,4 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 4163 1,5 550 2,8 750 10 43 S 

UN100 300 1000 150 6000 925 30 4440 1,6 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 4718 1,7 550 2,8 750 10 43 S 

UN100 300 1000 150 6000 925 30 4995 1,8 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 5273 1,9 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 5550 2 550 2,8 750 10 43 S 

V
ar

yi
ng

 
f c 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 20 S 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 25 
 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 30 S 
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ef

. Name b h a L d ds As 𝝆 fsy 𝜺𝒔𝒚 ftk ag fc Failure 
type  

mm mm mm mm mm mm mm² % MPa ‰ MPa mm MPa - 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 35 
 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 40 S 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 45 
 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 50 S 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 55 
 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 60 F 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 65 
 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 70 F 

V
ar

yi
ng

 L
 

UN100 300 1000 150 1000 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 1500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 1950 925 30 2100 0,76 550 2,8 750 10 43 F 

UN100 300 1000 150 2500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 3000 925 30 2100 0,76 550 2,8 750 10 43 F 

UN100 300 1000 150 3500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 4050 925 30 2100 0,76 550 2,8 750 10 43 F 

UN100 300 1000 150 4500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 5100 925 30 2100 0,76 550 2,8 750 10 43 F 

UN100 300 1000 150 5500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 6000 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 6500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 7000 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 7500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 8000 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 8500 925 30 2100 0,76 550 2,8 750 10 43 
 

UN100 300 1000 150 9000 925 30 2100 0,76 550 2,8 750 10 43 
 

V
ar

yi
ng

 𝜌
 

AF11 300 1000 300 4000 925 30 1388 0,5 562 2,8 710 19 36,2 F 

AF11 300 1000 300 4000 925 30 1665 0,6 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 1943 0,7 562 2,8 710 19 36,2 F 

AF11 300 1000 300 4000 925 30 2220 0,8 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 2498 0,9 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 2775 1 562 2,8 710 19 36,2 F 

AF11 300 1000 300 4000 925 30 3053 1,1 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 3330 1,2 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 3608 1,3 562 2,8 710 19 36,2 F 

AF11 300 1000 300 4000 925 30 3885 1,4 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 4163 1,5 562 2,8 710 19 36,2 F 

AF11 300 1000 300 4000 925 30 4440 1,6 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 4718 1,7 562 2,8 710 19 36,2 S 

AF11 300 1000 300 4000 925 30 4995 1,8 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 5273 1,9 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4000 925 30 5550 2 562 2,8 710 19 36,2 S 
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.  Name b h a L d ds As 𝝆 fsy 𝜺𝒔𝒚 ftk ag fc Failure 
type  

mm mm mm mm mm mm mm² % MPa ‰ MPa mm MPa - 

V
ar

yi
ng

 f c
 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 20 S 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 25 
 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 30 F 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 35 
 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 40 F 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 45 
 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 50 F 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 55 
 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 60 F 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 65 
 

AF11 300 1000 300 4000 925 30 2100 0,76 562 2,8 710 19 70 F 

V
ar

yi
ng

 L
 

AF11 300 1000 300 1000 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 1500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 1950 925 30 2100 0,76 562 2,8 710 19 36,2 S 

AF11 300 1000 300 2500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 3000 925 30 2100 0,76 562 2,8 710 19 36,2 F 

AF11 300 1000 300 3500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 4050 925 30 2100 0,76 562 2,8 710 19 36,2 F 

AF11 300 1000 300 4500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 5100 925 30 2100 0,76 562 2,8 710 19 36,2 F 

AF11 300 1000 300 5500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 6000 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 6500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 7000 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 7500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 8000 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 8500 925 30 2100 0,76 562 2,8 710 19 36,2 
 

AF11 300 1000 300 9000 925 30 2100 0,76 562 2,8 710 19 36,2 
 

Table A.1: Database of footings (tests and parametric study) 

 
 
Legend for the failure mode: 
 
T = tension failure [2] 
DT = diagonal tension [2] 
 
F = flexural failure 
S = shear failure 
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Appendix 2: 2PTK Calculations 
 
 

R
ef

.  Name L/d lb1 Pexp PFEM P P2PKT Psect Pflex Exp/Pred 𝜶𝟏 𝜶 lb1e Vclz 𝚫𝒄 smax Vd,cr Vsh 

  mm kN kN kN kN kN kN (2PKT) ° Rad mm kN mm mm kN kN 

R
ic

ha
rd

t (
19

48
a,

 1
94

8b
)  

501a 5,4 356 1753  1782 2060 1426 1782 0,98 26 0,27 178 455 6,6 161 101 556 

501b 5,4 356 1690  1785 2075 1430 1785 0,95 26 0,27 178 459 6,6 161 101 560 

502a 3,4 356 2464  1898 5786 2093 1898 1,30 38 0,51 178 1419 3,3 207 86 1644 

502b 3,4 356 2571  1891 5493 2044 1891 1,36 38 0,51 178 1339 3,3 207 84 1561 

503a 3,4 356 2607  1899 5803 2096 1899 1,37 38 0,51 178 1424 3,3 207 86 1649 

503b 3,4 356 2446  1897 5726 2083 1897 1,29 38 0,51 178 1403 3,3 207 86 1628 

504a 6,0 356 1446  1390 1390 1180 1908 1,04 23 0,24 178 292 7,5 151 97 367 

504b 6,0 356 1557  1427 1427 1194 1922 1,09 23 0,24 178 301 7,5 151 98 377 

505a 3,8 356 2438  1795 4241 1725 1795 1,36 34 0,46 178 998 3,8 205 91 1183 

505b 3,8 356 2335  1797 4282 1733 1797 1,30 34 0,46 178 1009 3,8 205 91 1195 

506a 3,8 356 2224  1785 3964 1672 1785 1,25 34 0,46 178 926 3,8 205 88 1106 

506b 3,8 356 2224  1799 4352 1745 1799 1,24 34 0,46 178 1027 3,8 205 92 1214 

U
ze

l e
t a

l.,
 (2

00
3)

 UN100 3,2 150 1186 1149 1203 1203 641 1356 0,99 34 0,50 75 150 1,4 224 36 303 

AF3 4,9 150 541 494 497 497 353 511 1,09 24 0,35 75 52 2,2 237 35 125 

AF6 3,1 150 1298 1398 1515 1515 820 1523 0,86 36 0,53 75 132 1,3 237 37 245 

AF11 2,2 300 2645 2448 2055 2493 1076 2055 1,29 48 0,73 150 502 1,8 224 34 677 

AF13 3,5 150 1857 1848 1124 1124 817 2627 1,65 32 0,39 75 83 1,9 151 10 264 

V
ar

yi
ng

 𝜌
 

UN100 3,2 150  972 911 1049 559 911 1,07 34 0,50 75 150 1,4 341 42 265 

UN100 3,2 150   1086 1117 595 1086  34 0,50 75 150 1,4 284 40 282 

UN100 3,2 150  1119 1174 1174 626 1259 0,95 34 0,50 75 150 1,4 243 37 296 

UN100 3,2 150   1221 1221 652 1429  34 0,50 75 150 1,4 213 35 308 

UN100 3,2 150   1260 1260 676 1597  34 0,50 75 150 1,4 189 33 318 

UN100 3,2 150  1296 1293 1293 697 1762 1,00 34 0,50 75 150 1,4 170 31 326 

UN100 3,2 150   1320 1320 717 1925  34 0,50 75 150 1,4 155 29 333 

UN100 3,2 150   1343 1343 734 2085  34 0,50 75 150 1,4 142 27 339 

UN100 3,2 150  1393 1362 1362 750 2244 1,02 34 0,50 75 150 1,4 131 25 344 

UN100 3,2 150   1379 1379 765 2399  34 0,50 75 150 1,4 122 23 348 

UN100 3,2 150  1443 1393 1393 779 2553 1,04 34 0,50 75 150 1,4 114 21 351 

UN100 3,2 150   1405 1405 792 2704  34 0,50 75 150 1,4 106 19 354 

UN100 3,2 150  1539 1415 1415 803 2852 1,09 34 0,50 75 150 1,4 100 17 357 

UN100 3,2 150   1424 1424 814 2998  34 0,50 75 150 1,4 95 15 359 

UN100 3,2 150   1432 1432 825 3142  34 0,50 75 150 1,4 90 13 361 

UN100 3,2 150  1604 1439 1439 835 3283 1,11 34 0,50 75 150 1,4 85 11 363 

V
ar

yi
ng

 f c
 

UN100 3,2 150  794 791 791 490 1276 1,00 34 0,50 75 81 1,4 225 28 200 

UN100 3,2 150   893 893 531 1306  34 0,50 75 97 1,4 225 30 225 

UN100 3,2 150  1021 986 986 566 1326 1,03 34 0,50 75 112 1,4 225 32 249 

UN100 3,2 150   1073 1073 597 1340  34 0,50 75 127 1,4 225 34 271 

UN100 3,2 150  1103 1155 1155 625 1350 0,96 34 0,50 75 142 1,4 225 35 291 

UN100 3,2 150   1233 1233 651 1359  34 0,50 75 156 1,4 225 37 311 
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.  Name L/d lb1 Pexp PFEM P P2PKT Psect Pflex Exp/Pred 𝜶𝟏 𝜶 lb1e Vclz 𝚫𝒄 smax Vd,cr Vsh 

  mm kN kN kN kN kN kN (2PKT) ° Rad mm kN mm mm kN kN 

UN100 3,2 150  1284 1307 1307 675 1365 0,98 34 0,50 75 169 1,4 225 38 330 

UN100 3,2 150   1371 1379 697 1371  34 0,50 75 183 1,4 225 39 348 

UN100 3,2 150  1312 1375 1447 718 1375 0,95 34 0,50 75 196 1,4 225 41 365 

UN100 3,2 150   1379 1514 674 1379  34 0,50 75 209 1,4 225 42 382 

UN100 3,2 150  1348 1382 1579 595 1382 0,98 34 0,50 75 222 1,4 225 43 398 

V
ar

yi
ng

 L
 

UN100 0,5 150   3887 3887 -578 8133  79 1,33 75 615 0,2 225 36 1168 

UN100 0,8 150   3568 3568 -1661 5422  72 1,19 75 561 0,3 225 36 1003 

UN100 1,1 150  2844 3218 3218 -20861 4171 0,88 66 1,07 75 502 0,4 225 36 876 

UN100 1,4 150   2795 2795 2573 3253  60 0,95 75 429 0,6 225 36 743 

UN100 1,6 150  2417 2447 2447 1495 2711 0,99 54 0,85 75 368 0,7 225 36 641 

UN100 1,9 150   2144 2144 1128 2324  50 0,77 75 314 0,8 225 36 556 

UN100 2,2 150  1638 1863 1863 927 2008 0,88 45 0,69 75 264 1,0 225 36 479 

UN100 2,4 150   1669 1669 825 1807  42 0,64 75 230 1,1 225 36 426 

UN100 2,8 150  1359 1453 1453 732 1595 0,94 39 0,57 75 193 1,2 225 36 369 

UN100 3,0 150   1332 1332 687 1479  36 0,54 75 172 1,3 225 36 337 

UN100 3,2 150   1202 1202 641 1356  34 0,50 75 150 1,4 225 36 303 

UN100 3,5 150   1092 1092 605 1251  32 0,47 75 132 1,6 225 36 275 

UN100 3,8 150   997 997 575 1162  30 0,44 75 116 1,7 225 36 250 

UN100 4,1 150   916 916 549 1084  28 0,41 75 103 1,8 225 36 229 

UN100 4,3 150   845 845 527 1017  27 0,39 75 92 1,9 225 36 211 

UN100 4,6 150   784 784 508 957  25 0,36 75 83 2,1 225 36 196 

UN100 4,9 150   730 730 491 904  24 0,35 75 75 2,2 225 36 182 

V
ar

yi
ng

 𝜌
 

AF11 2,2 300  1622 1387 2312 947 1387 1,17 48 0,73 150 502 1,8 341 39 628 

AF11 2,2 300   1650 2393 1004 1650  48 0,73 150 502 1,8 284 37 650 

AF11 2,2 300  2282 1910 2459 1052 1910 1,20 48 0,73 150 502 1,8 243 35 668 

AF11 2,2 300   2165 2514 1093 2165  48 0,73 150 502 1,8 213 33 683 

AF11 2,2 300   2415 2558 1130 2415  48 0,73 150 502 1,8 189 32 695 

AF11 2,2 300  2750 2595 2595 1163 2661 1,06 48 0,73 150 502 1,8 170 30 705 

AF11 2,2 300   2625 2625 1192 2903  48 0,73 150 502 1,8 155 28 713 

AF11 2,2 300   2650 2650 1218 3140  48 0,73 150 502 1,8 142 26 720 

AF11 2,2 300  2750 2671 2671 1242 3372 1,03 48 0,73 150 502 1,8 131 24 725 

AF11 2,2 300   2689 2689 1264 3600  48 0,73 150 502 1,8 122 22 730 

AF11 2,2 300  2750 2704 2704 1285 3824 1,02 48 0,73 150 502 1,8 114 20 734 

AF11 2,2 300   2717 2717 1303 4043  48 0,73 150 502 1,8 106 18 738 

AF11 2,2 300  2750 2728 2728 1321 4258 1,01 48 0,73 150 502 1,8 100 16 741 

AF11 2,2 300   2737 2737 1337 4468  48 0,73 150 502 1,8 95 14 743 

AF11 2,2 300   2746 2746 1352 4673  48 0,73 150 502 1,8 90 12 746 

AF11 2,2 300  2750 2753 2753 1366 4874 1,00 48 0,73 150 502 1,8 85 10 748 

V
ar

yi
ng

 f c
 AF11 2,2 300  1842 1688 1688 868 1951 1,09 48 0,73 150 312 1,8 225 28 458 

AF11 2,2 300   1952 1952 942 1998  48 0,73 150 373 1,8 225 30 530 

AF11 2,2 300  2090 2029 2201 1006 2029 1,03 48 0,73 150 432 1,8 225 32 598 

AF11 2,2 300   2051 2437 1063 2051  48 0,73 150 488 1,8 225 34 662 
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. Name L/d lb1 Pexp PFEM P P2PKT Psect Pflex Exp/Pred 𝜶𝟏 𝜶 lb1e Vclz 𝚫𝒄 smax Vd,cr Vsh 

  mm kN kN kN kN kN kN (2PKT) ° Rad mm kN mm mm kN kN 

AF11 2,2 300  2283 2067 2663 1115 2067 1,10 48 0,73 150 543 1,8 225 35 723 

AF11 2,2 300   2080 2881 1162 2080  48 0,73 150 597 1,8 225 37 782 

AF11 2,2 300  2392 2091 3091 1205 2091 1,14 48 0,73 150 650 1,8 225 38 840 

AF11 2,2 300   2099 3297 1246 2099  48 0,73 150 701 1,8 225 39 895 

AF11 2,2 300  2475 2106 3496 1284 2106 1,18 48 0,73 150 752 1,8 225 41 949 

AF11 2,2 300   2112 3692 1171 2112  48 0,73 150 801 1,8 225 42 1003 

AF11 2,2 300  2475 2117 3883 949 2117 1,17 48 0,73 150 850 1,8 225 43 1054 

V
ar

yi
ng

 L
 

AF11 0,5 300   4549 4549 -538 8220  82 1,40 150 1103 0,3 225 34 1631 

AF11 0,8 300   4474 4474 -1363 5480  75 1,25 150 1023 0,5 225 34 1431 

AF11 1,1 300  3597 4174 4174 -5552 4216 0,86 69 1,13 150 927 0,7 225 34 1261 

AF11 1,4 300   3288 3702 3905 3288  62 0,99 150 799 1,0 225 34 1070 

AF11 1,6 300  2577 2740 3261 1865 2740 0,94 57 0,89 150 688 1,3 225 34 917 

AF11 1,9 300   2349 2852 1328 2349  52 0,80 150 588 1,5 225 34 786 

AF11 2,2 300  1741 2030 2458 1058 2030 0,86 47 0,72 150 494 1,8 225 34 667 

AF11 2,4 300   1827 2182 927 1827  44 0,66 150 429 2,0 225 34 586 

AF11 2,8 300  1265 1612 1873 812 1612 0,78 40 0,60 150 358 2,3 225 34 497 

AF11 3,0 300   1495 1699 757 1495  38 0,56 150 319 2,5 225 34 448 

AF11 3,2 300   1370 1512 702 1370  35 0,52 150 278 2,8 225 34 396 

AF11 3,5 300   1265 1354 659 1265  33 0,48 150 243 3,0 225 34 353 

AF11 3,8 300   1174 1220 624 1174  31 0,45 150 214 3,3 225 34 316 

AF11 4,1 300   1096 1105 594 1096  29 0,42 150 190 3,5 225 34 285 

AF11 4,3 300   1007 1007 569 1028  27 0,40 150 169 3,8 225 34 259 

AF11 4,6 300   922 922 547 967  26 0,37 150 151 4,0 225 34 236 

AF11 4,9 300   848 848 528 913  24 0,35 150 136 4,3 225 34 217 

         Avg. 1,04         

         COV 14,2%         

Table A.2: 2PKT calculations 

 
It is necessary to specify that considering only the Uzel’s tests predictions and the parametric 
study by means of the FEA (thus without Richart’s tests), the average of experimental-to-
predicted is 1.04 and the Coefficient of Variation is 14.2%. While considering also Richart’s 
tests the average is 1.08 and the CoV is 15.3%. 
Note that the Coefficient of Variation represents the ratio of the standard deviation to the mean, 
and it is a useful statistic element for comparing the degree of variation from one data series to 
another, even if the means are drastically different from one another.  
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. Name L/d fc 𝝆 𝜺𝒕 w nci vci Vci Vd Vsh 

  MPa % ‰ mm MPa MPa kN kN kN 

R
ic

ha
rd

t (
19

48
a,

 1
94

8b
) 

501a 5,4 25,4 1,38 1,9 6,7 0,00 0,22 101 0 556 
501b 5,4 25,7 1,38 1,9 6,7 0,00 0,22 101 0 560 
502a 3,4 24,3 0,54 5,5 4,5 0,00 0,30 226 0 1644 
502b 3,4 22,7 0,54 5,2 4,4 0,00 0,30 222 0 1561 
503a 3,4 24,4 0,54 5,5 4,5 0,00 0,30 226 0 1649 
503b 3,4 24 0,54 5,5 4,5 0,00 0,30 225 0 1628 
504a 6,0 24,9 1,77 1,3 7,5 0,00 0,19 75 0 367 
504b 6,0 25,8 1,77 1,3 7,5 0,00 0,20 76 0 377 
505a 3,8 25,4 0,68 4,2 4,7 0,00 0,30 185 0 1183 
505b 3,8 25,7 0,68 4,3 4,7 0,00 0,30 186 0 1195 
506a 3,8 23,1 0,68 4,0 4,6 0,00 0,29 180 0 1106 
506b 3,8 26,3 0,68 4,3 4,7 0,00 0,30 187 0 1214 

U
ze

l e
t a

l.,
 (2

00
3)

 UN100 3,2 43 0,76 1,9 2,0 0,00 0,55 153 0 303 
AF3 4,9 27,3 0,76 1,8 3,0 0,00 0,39 73 0 125 
AF6 3,1 32,2 0,76 2,2 2,0 0,00 0,61 113 0 245 

AF11 2,2 36,2 0,76 2,8 2,1 0,00 0,63 175 0 677 
AF13 3,5 35,7 2,16 0,7 1,8 0,00 0,70 181 0 264 

V
ar

yi
ng

 𝜌
 

UN100 3,2 43 0,5 2,6 2,8 0,00 0,41 115 0 265 
UN100 3,2 43 0,6 2,3 2,4 0,00 0,48 132 0 282 
UN100 3,2 43 0,7 2,1 2,1 0,00 0,53 146 0 296 
UN100 3,2 43 0,8 1,9 1,9 0,00 0,57 158 0 308 
UN100 3,2 43 0,9 1,7 1,8 0,00 0,61 168 0 318 
UN100 3,2 43 1 1,6 1,7 0,00 0,63 176 0 326 
UN100 3,2 43 1,1 1,5 1,6 0,00 0,66 183 0 333 
UN100 3,2 43 1,2 1,4 1,5 0,00 0,68 189 0 339 
UN100 3,2 43 1,3 1,3 1,5 0,00 0,70 194 0 344 
UN100 3,2 43 1,4 1,2 1,5 0,00 0,71 198 0 348 
UN100 3,2 43 1,5 1,1 1,4 0,00 0,73 201 0 351 
UN100 3,2 43 1,6 1,1 1,4 0,00 0,74 204 0 354 
UN100 3,2 43 1,7 1,0 1,4 0,00 0,75 207 0 357 
UN100 3,2 43 1,8 1,0 1,4 0,00 0,75 209 0 359 
UN100 3,2 43 1,9 0,9 1,3 0,00 0,76 211 0 361 
UN100 3,2 43 2 0,9 1,3 0,00 0,77 213 0 363 

V
ar

yi
ng

 f c
 

UN100 3,2 20 0,76 1,3 1,7 0,00 0,43 118 0 200 
UN100 3,2 25 0,76 1,4 1,8 0,00 0,46 128 0 225 
UN100 3,2 30 0,76 1,6 1,8 0,00 0,49 136 0 249 
UN100 3,2 35 0,76 1,7 1,9 0,00 0,52 143 0 271 
UN100 3,2 40 0,76 1,9 1,9 0,00 0,54 150 0 291 
UN100 3,2 45 0,76 2,0 2,0 0,00 0,56 155 0 311 
UN100 3,2 50 0,76 2,1 2,0 0,00 0,58 161 0 330 
UN100 3,2 55 0,76 2,2 2,1 0,00 0,59 165 0 348 
UN100 3,2 60 0,76 2,3 2,1 0,00 0,61 169 0 365 
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. Name L/d fc 𝝆 𝜺𝒕 w nci vci Vci Vd Vsh 

  MPa % ‰ mm MPa MPa kN kN kN 
UN100 3,2 65 0,76 2,5 2,2 0,00 0,62 173 0 382 
UN100 3,2 70 0,76 2,6 2,2 0,00 0,64 177 0 398 

V
ar

yi
ng

 L
 

UN100 0,5 43 0,76 1,2 0,3 0,00 1,99 553 0 1168 
UN100 0,8 43 0,76 1,5 0,5 0,00 1,60 443 0 1003 
UN100 1,1 43 0,76 1,8 0,6 0,00 1,35 374 0 876 
UN100 1,4 43 0,76 1,9 0,8 0,00 1,13 314 0 743 
UN100 1,6 43 0,76 2,0 1,0 0,00 0,98 273 0 641 
UN100 1,9 43 0,76 2,1 1,1 0,00 0,87 242 0 556 
UN100 2,2 43 0,76 2,1 1,3 0,00 0,77 214 0 479 
UN100 2,4 43 0,76 2,0 1,5 0,00 0,71 196 0 426 
UN100 2,8 43 0,76 2,0 1,7 0,00 0,64 176 0 369 
UN100 3,0 43 0,76 2,0 1,8 0,00 0,60 165 0 337 
UN100 3,2 43 0,76 1,9 2,0 0,00 0,55 153 0 303 
UN100 3,5 43 0,76 1,9 2,1 0,00 0,51 143 0 275 
UN100 3,8 43 0,76 1,9 2,3 0,00 0,48 134 0 250 
UN100 4,1 43 0,76 1,8 2,5 0,00 0,45 126 0 229 
UN100 4,3 43 0,76 1,8 2,6 0,00 0,43 119 0 211 
UN100 4,6 43 0,76 1,8 2,8 0,00 0,41 113 0 196 
UN100 4,9 43 0,76 1,8 3,0 0,00 0,39 107 0 182 

V
ar

yi
ng

 𝜌
 

AF11 2,2 36,2 0,5 4,0 3,0 0,00 0,45 126 0 628 
AF11 2,2 36,2 0,6 3,4 2,5 0,00 0,53 148 0 650 
AF11 2,2 36,2 0,7 3,0 2,2 0,00 0,60 166 0 668 
AF11 2,2 36,2 0,8 2,7 2,0 0,00 0,65 181 0 683 
AF11 2,2 36,2 0,9 2,4 1,8 0,00 0,70 193 0 695 
AF11 2,2 36,2 1 2,2 1,7 0,00 0,73 203 0 705 
AF11 2,2 36,2 1,1 2,0 1,6 0,00 0,76 211 0 713 
AF11 2,2 36,2 1,2 1,9 1,6 0,00 0,79 218 0 720 
AF11 2,2 36,2 1,3 1,8 1,5 0,00 0,81 224 0 725 
AF11 2,2 36,2 1,4 1,6 1,5 0,00 0,82 229 0 730 
AF11 2,2 36,2 1,5 1,5 1,4 0,00 0,84 233 0 734 
AF11 2,2 36,2 1,6 1,5 1,4 0,00 0,85 236 0 738 
AF11 2,2 36,2 1,7 1,4 1,4 0,00 0,86 239 0 741 
AF11 2,2 36,2 1,8 1,3 1,4 0,00 0,87 242 0 743 
AF11 2,2 36,2 1,9 1,2 1,3 0,00 0,88 244 0 746 
AF11 2,2 36,2 2 1,2 1,3 0,00 0,89 246 0 748 

V
ar

yi
ng

 f c
 

AF11 2,2 20 0,76 1,9 1,8 0,00 0,53 146 0 458 
AF11 2,2 25 0,76 2,2 1,9 0,00 0,57 157 0 530 
AF11 2,2 30 0,76 2,5 2,0 0,00 0,60 166 0 598 
AF11 2,2 35 0,76 2,8 2,0 0,00 0,62 173 0 662 
AF11 2,2 40 0,76 3,0 2,1 0,00 0,65 180 0 723 
AF11 2,2 45 0,76 3,3 2,2 0,00 0,67 185 0 782 
AF11 2,2 50 0,76 3,5 2,3 0,00 0,68 190 0 840 
AF11 2,2 55 0,76 3,7 2,3 0,00 0,70 194 0 895 
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. Name L/d fc 𝝆 𝜺𝒕 w nci vci Vci Vd Vsh 

  MPa % ‰ mm MPa MPa kN kN kN 
AF11 2,2 60 0,76 4,0 2,4 0,00 0,71 198 0 949 
AF11 2,2 65 0,76 4,2 2,5 0,00 0,72 201 0 1003 
AF11 2,2 70 0,76 4,4 2,5 0,00 0,74 204 0 1054 

V
ar

yi
ng

 L
 

AF11 0,5 36,2 0,76 1,5 0,4 0,00 1,90 528 0 1631 
AF11 0,8 36,2 0,76 2,1 0,6 0,00 1,47 408 0 1431 
AF11 1,1 36,2 0,76 2,5 0,9 0,00 1,20 334 0 1261 
AF11 1,4 36,2 0,76 2,7 1,2 0,00 0,97 270 0 1070 
AF11 1,6 36,2 0,76 2,8 1,5 0,00 0,83 229 0 917 
AF11 1,9 36,2 0,76 2,9 1,8 0,00 0,72 199 0 786 
AF11 2,2 36,2 0,76 2,8 2,1 0,00 0,62 173 0 667 
AF11 2,4 36,2 0,76 2,8 2,4 0,00 0,56 156 0 586 
AF11 2,8 36,2 0,76 2,7 2,7 0,00 0,50 138 0 497 
AF11 3,0 36,2 0,76 2,6 3,0 0,00 0,46 129 0 448 
AF11 3,2 36,2 0,76 2,5 3,3 0,00 0,43 118 0 396 
AF11 3,5 36,2 0,76 2,4 3,5 0,00 0,39 110 0 353 
AF11 3,8 36,2 0,76 2,3 3,8 0,00 0,37 102 0 316 
AF11 4,1 36,2 0,76 2,3 4,1 0,00 0,34 95 0 285 
AF11 4,3 36,2 0,76 2,2 4,4 0,00 0,32 90 0 259 
AF11 4,6 36,2 0,76 2,1 4,7 0,00 0,31 85 0 236 
AF11 4,9 36,2 0,76 2,1 5,0 0,00 0,29 80 0 217 

Table A.3: Last iteration of the 2PKT method 
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Name 𝝆 Exp/Pred Exp/Pred Pexp PFEM Ppred 

 % (2PKT) 
With dowel action 

(2PKT) 
Without dowel action kN kN kN 

With dowel action 
AF13 2,16 1,32 1,65 1857 1848 181 

V
ar

yi
ng

 𝜌
 

UN100 0,5 1,07 1,07  972 911 

UN100 0,7 0,94 0,95  1119 1197 

UN100 1 0,95 1,00  1296 1371 

UN100 1,3 0,91 1,02  1393 1529 

UN100 1,5 0,88 1,04  1443 1637 

UN100 1,7 0,88 1,09  1539 1749 

UN100 2 0,83 1,11  1604 1932 

V
ar

yi
ng

 𝜌
 

AF11 0,5 1,17 1,17  1622 1387 

AF11 0,7 1,20 1,20  2282 1910 

AF11 1 1,04 1,06  2750 2635 

AF11 1,3 0,99 1,03  2750 2791 

AF11 1,5 0,95 1,02  2750 2896 

AF11 1,7 0,92 1,01  2750 3005 

AF11 2 0,86 1,00  2750 3184 
Table A.4: Effect of dowel action increasing the amount of longitudinal reinforcement 

 
In this section of the Appendix, Table A.4, it is possible to analyze the effect of dowel action 
in the tests in which the reinforcement ratio is particularly high. Specifically, it is the case for 
AF13, in which the amount of longitudinal reinforcement is almost three times with respect to 
the other Uzel’s footing tests, and for the FEM models in which the longitudinal reinforcement 
ratio is the parameter that varies. In Table A.4 the comparison between taking into account the 
dowel action or not is displayed. The results show that neglecting the dowel action contribute 
is possible to obtain more precise prediction just for the specific case of specimen AF13. In 
fact, for FEM samples the 2PKT, considering also the dowel action contribute, produces an 
overestimation of the shear strength. Therefore, this is also why the dowel action contribution 
is not taken into account for footing’s strength predictions. Concluding, it might be possible 
that large strength underestimation by the 2PKT for AF13 is a cause inherent in the test itself. 
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Appendix 3: FEM results from the parametric study 
 
 
In this part of the thesis, the FEM results from the parametric analysis are elaborated and 
discussed deeply. 
For both model AF1 UN100 and AF11, crack pattern at failure and stresses in the longitudinal 
reinforcement at failure produced as result of the FEM analysis by VecTor2 are plotted below 
for the limit cases of each parameter. For limit cases it is meant the minimum and maximum 
reinforcement ratio evaluated, the minimum and maximum value for the concrete strength and 
for L/d ratio equal to 1.5 and 3. Moreover, also the curve load-displacement at the end section 
of the footing is illustrated for the same considered specimens. These last graphs can reproduce 
accurately the real laboratory test under the same hypothesis and conditions (as it is possible to 
see in the comparison with the model and the real tests in Appendix 4). 
Analyzing AF1 UN100 as model, from Figures  A.1 and A.2, the failure mode of the specimen 
with 0.5% of reinforcement ratio is flexural failure due to under-reinforced footing, in fact the 
longitudinal reinforcement yields excessively resulting in failure in the concrete compression 
zone. While for the specimen with 2% of reinforcement ratio, in Figures A.4 and A.5, the visible 
failure type is shear diagonal failure (the bar is not yielded). 
Similarly, for model AF11, in Figures A.19, A.20, A.22 and A.23, the specimen with low 
reinforcement ratio fails under flexure condition due to the yielding of the under-dimensioned 
reinforcement; while the specimen with higher reinforcement ratio shows the typical shear 
failure (for footings with low L/d ratio). 
Proceeding into the analysis of the second parameter, the concrete strength, from Figures A.7, 
A.8, A.10 and A.11 for model AF1 UN100 and from Figures A.25, A.26, A.28 and A.29, for 
model AF11, it is possible to observe that in the tests with low concrete strength the failure is 
in shear (diagonal tension failure for AF1 and shear tension failure for AF11); while the samples 
with high concrete strength present flexural failure in AF11 also because the reinforcement are 
yielded, but probably a mix of shear failure and flexural failure in AF11 because the main 
diagonal crack is evident and the bars are not yielded at failure. 
Examining the last parameter, the slenderness (L/d ratio), for model AF1 UN100 the failure 
modes are under shear; while for model AF1 the stocky element presents a mix of shear and 
flexural failure due to both the yielding of the reinforcement and the shear diagonal crack, the 
slender element shows the typical diagonal shear failure. 
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A.1: Combined view of cracks at failure – AF1 UN100 with 𝜌B = 0.5% 

 
A.2: Stresses in the reinforcement at failure – AF1 UN100 with 𝜌B = 0.5% 

 
A.3: Load-Displacement plot for AF1 UN100 with 𝜌B = 0.5% 
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A.4: Combined view of cracks at failure – AF1 UN100 with 𝜌B = 2% 

 
A.5: Stresses in the reinforcement at failure – AF1 UN100 with 𝜌B = 2% 

 
A.6: Load-Displacement plot for AF1 UN100 with 𝜌B = 2% 
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A.7: Combined view of cracks at failure – AF1 UN100 with 𝑓J = 20	𝑀𝑃𝑎 

 
A.8: Stresses in the reinforcement at failure – AF1 UN100 with 𝑓J = 20	𝑀𝑃𝑎 

 
A.9: Load-Displacement plot for AF1 UN100 with 𝑓J = 20	𝑀𝑃𝑎 
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A.10: Combined view of cracks at failure – AF1 UN100 with 𝑓J = 70	𝑀𝑃𝑎 

 
A.11: Stresses in the reinforcement at failure – AF1 UN100 with 𝑓J = 70	𝑀𝑃𝑎 

 
A.12: Load-Displacement plot for AF1 UN100 with 𝑓J = 70	𝑀𝑃𝑎 
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A.13: Combined view of cracks at failure – AF1 UN100 with n

5
= 1.5 

 
A.14: Stresses in the reinforcement at failure – AF1 UN100 with n

5
= 1.5 
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A.15: Load-Displacement plot for AF1 UN100 with n

5
= 1.5 
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A.16: Combined view of cracks at failure – AF1 UN100 with n

5
= 3 

 
A.17: Stresses in the reinforcement at failure – AF1 UN100 with n

5
= 3 

 
A.18: Load-Displacement plot for AF1 UN100 with n

5
= 3 



Kinematics-Based Modelling of Compact Footings 
 

 

 
Master Thesis – Giorgia Spada 123 

 
A.19: Combined view of cracks at failure – AF11 with 𝜌B = 0.5% 

 
A.20: Stresses in the reinforcement at failure – AF11 with 𝜌B = 0.5% 

 
A.21: Load-Displacement plot for AF11 with 𝜌B = 0.5% 
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A.22: Combined view of cracks at failure – AF11 with 𝜌B = 2% 

 
A.23: Stresses in the reinforcement at failure – AF11 with 𝜌B = 2% 

 
A.24: Load-Displacement plot for AF11 with 𝜌B = 2% 
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A.25: Combined view of cracks at failure – AF11 with 𝑓J = 20	𝑀𝑃𝑎 

 
A.26: Stresses in the reinforcement at failure – AF11 with 𝑓J = 20	𝑀𝑃𝑎 

 
A.27: Load-Displacement plot for AF11 with 𝑓J = 20	𝑀𝑃𝑎 
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A.28: Combined view of cracks at failure – AF11 with 𝑓J = 70	𝑀𝑃𝑎 

 
A.29: Stresses in the reinforcement at failure – AF11 with 𝑓J = 70	𝑀𝑃𝑎 

 
A.30: Load-Displacement plot for AF11 with 𝑓J = 70	𝑀𝑃𝑎 
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A.31: Combined view of cracks at failure – AF11 with n

5
= 1.5 

 
A.32: Stresses in the reinforcement at failure – AF11 with n

5
= 1.5 
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A.33: Load-Displacement plot for AF11 with n

5
= 1.5 
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A.34: Combined view of cracks at failure – AF1 UN100 with n

5
= 3 

 
A.35: Stresses in the reinforcement at failure – AF1 UN100 with n

5
= 3 

 
A.36: Load-Displacement plot for AF1 UN100 with n

5
= 3   
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Appendix 4: Load-Displacement Charts 
 
 
In order to validate the parametric study conducted by simulating tests with Non-Linear Finite 
Element Analysis, the load-displacements plots for the Uzel’s tests are shown below. The red 
curve represents the result from the FEM model of the test and the blue one indicates the real 
charge-discharge behavior of the test per each load stage. Generally, it is possible to observe 
that the FEM model well reproduces the global trend of the test during the loading phases, thus 
these graphs represent an additional evidence of the reliability of FEM. Therefore, the 
parametric study conducted by modifying the basic model for the test for just one parameter 
per time, assumes validity and represents many possible real laboratory tests. 
 
 

 
A.37: Load-Displacement plot for specimen AF1 UN100 
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A.38: Load-Displacement plot for specimen AF3 

 
 

 

 
A.39: Load-Displacement plot for specimen AF6 
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A.40: Load-Displacement plot for specimen AF7 

 
 
 

 
A.41: Load-Displacement plot for specimen AF11 
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A.42: Load-Displacement plot for specimen AF11r1 

 
 

 
A.43: Load-Displacement plot for specimen AF13 

 
 


