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Abstract

English version

TMDs (Tuned Mass Dampers) are renowned for vibration control under dynamic
loading, and aim at maintaining the acceleration of the main structure below the
thresholds defined by guidelines. They are particularly essential when it comes to
lightweight and slender structures such as modern footbridges, where "lock-in" effects
may manifest under the loading of pedestrians, and create situations of discomfort.
Belonging to the category of passive control devices, the TMDs offer the advantage
to not require external power supply. Their applicability is nevertheless limited for
economic and aesthetic reasons essentially, when large mass ratio is demanded. Also,
when simplified approaches are adopted that neglect the modal coupling, requiring
the association of a damper to each structural mode.

This work examines the feasibility of damping two frequency-nearby modes of
vibration with a single TMD, when a MDOF system is subjected to crowd excitation.
Considering the crowd motions as a stationary phenomenon, stochastic tools are
engaged so as to extract directly the steady-state of the response. The variables of
the problem (acceleration, displacement and loading) are treated as random variables,
characterized by their PSDs (Power Spectral Densities). The design of the TMD
is then founded on the minimization of the response’s variance until meeting the
comfort criteria. The modal coupling is considered and pointed out by analytical
expressions derived thanks to perturbation methods. These techniques are also
essential to determine the TMD’s optimal parameters : mass ratio, tuning ratio and
damping ratio.

Keywords – TMD design, Modal coupling, Perturbation techniques, Random
stochastic variables
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Version française

Les AMA (Amortisseurs à Masse Accordée) sont renommés pour le contrôle des
vibrations sous chargement dynamique, maintenant l’accélération de la structure
principale en dessous des seuils prédéfinis par les guides. Ils sont particulièrement
essentiels lorsqu’il s’agit de structures légères et élancées, comme le sont les passerelles
modernes. Particulièrement, lorsque les effets de "lock-in" peuvent se manifester
sous le chargement des piétons, et créer des situations d’inconfort. Appartenant à
la catégorie des amortisseurs de type passif, les TMD offent l’avantage de n’exiger
aucune alimentation externe. Néanmoins, leur applicabilité reste limitée pour des
raisons essentiellement économiques et esthétiques lorsqu’un grand rapport de masse
est requis. Elle est également limitée lors de l’adoption d’approches simplifiées qui
négligent le couplage modal, nécessitant l’association d’un amortisseur à chaque
mode structurel.

Ce travail examine la faisabilité d’amortir deux modes de vibration de fréquences
propres voisines, avec un seul TMD attaché à un système MDOF soumis à l’excitation
d’une foule. Considérant les mouvements de foule comme un phénomène stationnaire,
des outils de type stochastique sont engagés de manière à extraire directement la
réponse de la structure. Les variables du problème (accélération, déplacement et
chargement) sont traitées comme des variables aléatoires, caractérisées par leurs DSP
(Densités Spectrales de Puissance). Le dimensionnement du TMD reposera ensuite
sur la minimisation de la variance de la réponse, jusqu’à atteindre les critères de
confort. Le couplage modal est pris en compte et mis en évidence par des expressions
analytiques obtenues grâce à des méthodes par perturbation. Ces techniques sont
également essentielles pour déterminer les paramètres optimaux du TMD : masse,
fréquence propre et coefficient d’amortissement.

Mots-clés – Dimensionnement du TMD, Couplage modal, Méthodes par
perturbation, Variables aléatoires
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1 Introduction

1.1 Contextualization

The vibrations are by definition periodic movements occurring around an equilibrium
position, characterized by a frequency. In the construction field, these movements
are undesirable, especially when it comes to low frequencies. Indeed, the (1 to 10 Hz)
range is considered as the most threatening, leading to considerable displacements
which current constructions are seriously sensitive. It is more critical for lightweight
structures as the vibration frequency can match the resonant frequencies. The
footbridges serve as a good example of structures subjected to vibration issues, the
source of disturbance can appear under wind, seismic or crowd loading engendering
significant lateral and vertical displacements and accelerations, resulting in safety
problems.

In the recent years, the discomfort occasioned constitutes a topic of growing concern,
because of the conception of sophisticated bridges where the aesthetic aspect and the
environmental integration constitute essential features especially in urban context.
More slenderness and bigger spans are requested, motivating a flexible behavior of
the footbridges, and a bigger ratio live loads over permanent loads.

The disposition of external dampers is aimed to limit the vibrations undergone by the
primary system. These devices are characterized by a mass, a damping (viscosity) and
a spring (stiffness), and are placed at the position where the maximum displacement
is reached. The damper has its natural frequency adjusted with the fundamental
mode of the vibrating structure. This tuning allows the transfer of the vibrating
energy to the absorber. The transmitted energy is higher when the added mass is
increased, which contributes to reduce more the discomfort.

The discomfort is generally expressed in terms of acceleration, thresholds are given
by guidelines like Hivoss [4] and Sétra [8], to avoid phenomenons like the Lock-in
effect. This effect is related to lateral vibrations, that occurs when there is a partial
synchronization between the pedestrian motion and the footbridge motion. The
well-known illustration of this phenomenon is given by the Millenium bridge in
London the day of its inauguration on the 10th of June 2000, where 2000 pedestrians
were walking on it at the same time, inducing significant and increasing displacements
in the lateral direction.

The structural modes can be found very close in the frequency domain. A classical
solution is to dedicate a damper for each mode, giving birth to a non-optimal solution.
Indeed, since the implemented equipment is significant and thus expensive in terms
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of labour as well. It is also not slender and not optimal regarding the weight added
on the supposed lightweight structure. The damping devices are thus designed
on the basis of simplified assumptions not taking into account modal coupling. A
considerable number of practical cases call for the consideration of the interaction of
multiple structural modes of the mutual influence of several dampers. For instance,
structures with close natural frequencies, where the mentioned assumptions are not
valid for the design of the dampers.

The numerical tool based on the finite element method, is nowadays developed to
include the damping devices in the modelling phase. It constitutes the privileged
solution when it comes to problems of this complexity. However, the increase of the
number of elements and parameters can be time and memory consuming, also the
understanding of the results can no more still intuitive. The development of the
analytic tool based on mathematical methods, can provide approached results, giving
a first idea of the quantity and the mass of the dampers needed. The feasibility of a
solution is evaluated quickly, without having to go through a complete modelling of
the structure, which is costly in terms of time and investment. The use of analytic
forms, how accurate they may get, makes also possible the understanding of the real
dynamics behind a structure.

1.2 Motivation

The appreciation of the modal coupling raises the capacity to simultaneously dampen
a number of vibration modes with a lower number of dampers, which is different
from traditional damping strategies. This work aims attention to 2DOF (2 Degree-
Of-Freedom) structures, and examines the ability of a single damper to dampen both
structural modes at the same time.

Figure 1.1: FRF of a damped system
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The figure above illustrates well the phenomenon of modal coupling. The transfer
functions in the first and second mode present 2 bumps in the right of the natural
frequencies. It is observed that the position of the right bump of the first transfer
function, coincides with the left bump of the second. Meaning two things : First,
the damper tuned to the first mode, have also an effect on its neighbour, which is
not the case in an uncoupled situation. Second, that the transfer functions have a
common pole coming from the implementation of the damper.

A first investigation has been carried out by Loore [5] where the influence of the
modal coupling is studied in a MDOF (Multi-Degree-Of-Freedom) structure under
a deterministic approach. A simplified and completely analytic expression of the
transfer function of the damped system is established. The strategy implemented is
to verify that the nodal transfer function admits its optimum values (θ∗∗1 , θ∗∗2 ) below
comfort limits (θ1, θ2), involving conditions to be fulfilled (Figure 1.2).

Figure 1.2: Strategy of Loore [5]

Meanwhile, the current document suggests a spectral analysis, involving a stochastic
approach for the optimum design of the TMD (Tuned Mass Damper). The crowd
loading is assimilated to a simple stationary stochastic process (such as a white
noise), the response (acceleration or displacement) is treated as random variable,
characterized by its PSD (Power Spectral Densities). The study is in this case,
interested in keeping the variance of the response below the thresholds, and not
concern the transfer function. The purpose is to reach expressions that are light and
meaningful, where the influence of the TMD’s parameters appears clearly.

1.3 Organization of the text

This work provides a solution to the questions outlined above, while meeting the
practical need for simple analytic formulations. The development of the analytic
model is employed for the investigation and the development of new results.

The content is divided into 3 main parts :
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The first section introduces the spectral model established, with the analytic
treatment of the stochastic operators allowing to link the response of the structure
(displacement and acceleration) to the wideband excitation applied to it.

The second section provides a presentation of the technology of passive dampers
as TMDs with its main characteristics, moving on to the determination of the modal
properties after the implementation to the main structure. The idea is to develop
thanks to a perturbation method analytic formulations for the natural frequencies
and the damping ratio of the damped system, evidencing the interaction of the
structural modes.

The third section gathers the results of the first and second section, to produce
a method that predicts the serviceability state of the footbridge. The method is
subjected to a validation procedure through an example of a real-life structure. The
performance of the TMD in the vibration mitigation is then discussed in function of
its mass, position and frequency ratio.
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2 Dynamic analysis with stochastic
methods

The idea is to develop the stochastic tools necessary for the resolution of the equation
of motion, where the walking action is treated like a random variable, as the
walking characteristics remains a specificity of the single pedestrian. A spectral
analysis is performed where the random variables are characterized by their PSD1

(Power Spectral Density). Going from the crowd excitation treated as a stationary
phenomenon, the purpose is to figure out easily the steady-state of the structure,
and reach the cumulants of the response such as the variance. The variance is no
other than the result of the integral of the spectra considered in a frequency domain.

This chapter aims attention in the first place to the displacement, going through
the development of the analytic approximation of its variance, armed with the
methods developed by Denoël ([1] and [10]). Secondly, the focus is translated to the
acceleration, maintaining the same reasoning with the integration of some adaptations,
to find the variance as final outcome. The validity of the analytic results is discussed
comparing it with numerical integration’s result. The resolution is possible in both
time and frequency domain, the transition from one to another simply requires a
Fourier Transformation. The establishment of the equations is done in the time
domain first, then in the frequency domain.

2.1 Analytic resolution of the equation of motion

2.1.1 Time domain

The time domain is much more attractive when it comes to a deterministic approach.
Indeed, the solicitation is generally given in function of the time.

M{ẍ(t)}+ C{ẋ(t)}+K{x(t)} = {p(t)} (2.1)

For the resolution of the equation of motion, a step-by-step approach is used. The
time is discretized into finite intervals, in which relationships exist between the
displacements, the velocities and accelerations. The goal is to simplify the implicit
relationships between the different variables.

Starting from integration methods that are based on approximations of integrals

1The PSD of a signal describes its mean-square value in function of the frequency, such that
the magnitude is normalized to a single hertz bandwidth. It gives the image of the frequency
distribution of the energy contained in the process.
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(Equation (2.2) and (2.3)), simple analytic expression can be derived of {ẍ(t)} that
allows to solve the equation in an explicit way (found in [2]).

{ẋ}t+∆t = {ẋ}t +

∫ t+∆t

t

{ẍ}t+∆t dt (2.2)

{x}t+∆t = {x}t +

∫ t+∆t

t

{ẋ}t+∆t dt (2.3)

At the beginning of the step, {x}t, {ẋ}t and {ẍ}t are considered as known. As it is
a stable and quite precise method, the Newmark method is chosen which is based on
the assumption :

{ẋ}t+∆t = {ẋ}t + [(1− δ){ẍ}t + δ{ẍ}t+∆t] ·∆t (2.4)

{x}t+∆t = {x}t + [(1/2− α){ẍ}t + α{ẍ}t+∆t] ·∆t2 (2.5)

M{ẍ}t+∆t + C{ẋ}t+∆t +K{x}t+∆t = {p}t+∆t (2.6)

As the variables {x}t+∆t and {ẋ}t+∆t are expressed in function of {ẍ}t+∆t, the latter
remains the only unknown of the problem. Thanks to the equation of motion
expressed at t+ ∆t, and the replacement of {x}t+∆t and {ẋ}t+∆t by their expressions
above, the variables can be computed at the end of the step. Considering 3 equations
per degree of freedom, 3N relationships are derived for the N degrees of freedom
problem.

A constant acceleration corresponds to the couple (α, δ) = (1
4
, 1

2
), while the linear

acceleration is considered in the case of (α, δ) = (1
6
, 1

2
). The first scheme is chosen,

since it is recommended for its performances in terms of stability and precision.

The modal decomposition is written : {x(t)} = [Φ]{q(t)}, the replacement in (2.1)
gives an equation of equilibrium that has the same physical meaning, but this
expressed in a modal basis :

M [Φ]{q̈(t)}+ C[Φ]{q̇(t)}+K[Φ]{q(t)} = {p(t)} (2.7)

The components of the combination of the natural modes are contained in the
vector {q(t)}. The modes φj such that Φ = [φ1φ2 ... φN ], are normalized for a
unitary maximum (maxj|φj,i| = 1), the coefficients become the modal amplitudes.
Multiplying the Equation (2.1) by [Φ]T means that the equations are projected
in the modes’ basis, which makes appear the generalized matrix M∗ = [Φ]TM [Φ],
C∗ = [Φ]TC[Φ], and K∗ = [Φ]TK[Φ], as well as the generalized force {p∗} = [Φ]T{p}.

The modal decomposition offers to convert the problem from 1 equation of N
unknowns to a problem of N equations of 1 unknown, the problem is said "uncoupled".
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Another advantage is that it allows to work with diagonal matrices (it is automatically
the case for M∗ and K∗, but not for C∗ where assumptions have to be made).

M∗{q̈(t)}+ C∗{q(t)}+K∗{q(t)} = {p∗(t)} (2.8)

Stepping back to the modal decomposition :

{x(t)} = [Φ]{q(t)} =

∫ t

0

[h(t− τ)]{p(τ)} dτ (2.9)

The solicitation is represented by a PSD, the variables {ẍ(t)}, {ẋ(t)}, {x(t)} and
{p∗(t)} become random processes, and get characterized by their PSDM .

To compute the mean of the signal, the operator E[ ] is introduced in order to detect
the regularities and repeated profiles in the output process {x(t)} through the time.

E[{x(t1)}{x(t2)}T ] =

∫ t1

0

∫ t2

0

[h(t1 − τ1)] E[{p(τ1)}{p(τ2)}T ] [h(t2 − τ2)]T dτ1dτ2

(2.10)
This is therefore the definition of the auto-correlation function. It represents the
temporal mean of the product of the signal by itself shifted by a time ∆t = t2 − t1.

As long as the process is stationary, it is possible to replace E[{p(τ1)}{p(τ2)}T ] by
the auto-correlation function Rp(∆τ).

Rx(t1, t2) =

∫ t1

0

∫ t2

0

[h(t1 − τ1)] Rp(∆τ) [h(t2 − τ2)]T dτ1dτ2 (2.11)

Fourier’s transformation serve as the link between Rx(τ) and its associated PSD
Sx(ω), like it stated by the theorem of Wiener-Khintchine here below :

Sx(ω) =
1

2π

∫ +∞

−∞
Rx(τ) · e−iωtdτ ; Rx(τ) =

∫ +∞

−∞
Sx(ω) · eiωtdω (2.12)

A very important result that emerges from those equations is that : when τ equals 0,
the auto-correlation function becomes equal to the squared variance of the process
considered. It is also the area below the curve of Sx = fct(ω).

Rx(0) =

∫ +∞

−∞
Sx(ω) · dω = σ2

x (2.13)

Going back to (2.11), and considering a white noise as an input, the PSD Sx(ω) =

S0 = cst, the auto-correlation function associated is a Dirac impulsion centered at
the origin : Rp(∆τ) = 2πS0δ(∆τ). The introduction of the Dirac function, simplifies
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the equation to a single integral :

Rx(t1, t2) =

∫ t1

0

[h(t1 − τ1)] Rp [h(t2 − τ1)] dτ1 (2.14)

σ2
x(t) = Rx(0) = Rx(t, t) = Rp

∫ t

0

[h(t− τ)]2 dτ (2.15)

For a simple oscillator, the variance of the displacement x is written :

σ2
x(t) =

Rp

4ξω3m2
[1− e−2ξωt(

1

1− ξ2
− ξ2

1− ξ2
cos(2ωdt) +

ξ2√
1− ξ2

sin(2ωdt))] (2.16)

At the permanent stage (when t→ +∞), the variance tends to a constant value :

σ2
x =

Rp

4ξω3m2
=

S0

K∗2m,m
· πω

2ξ
(2.17)

The variance is expressed in function of the physical parameters of the problem,
where the external force represents the motor of the acceleration against the stiffness
and the damping ratio that are supposed to limit it.

2.1.2 Frequency domain

In practice, the frequency domain remains more interesting, owing to the simplicity
of the link between the input Q(ω) and the output P (ω), where the convolution
corresponds to a multiplication. However, the representation of instationary
mechanisms in the frequency domain is much more complicated than in the time
domain. The following investigation concerns exclusively the stationary problems.

Q(ω) =

∫ +∞

−∞
q(t) · e−iωt dt ; P (ω) =

∫ +∞

−∞
p(t) · e−iωt dt (2.18)

The velocity and the acceleration are derived from the displacement as following :

Q̇(ω) = (iω)Q(ω) and Q̈(ω) = (iω)2Q(ω) = −ω2 ·Q(ω)

The FRF is then expressed as the ratio of the output of the problem over it’s input
H(ω) = Q(ω)/P (ω), the development leads to the equation 4.4.

H(ω) = (−Mω2 + iωC +K)−1 (2.19)

Pre-multiplying the Equation (2.1) by [Φ]T , converts from nodal expressed in
function of {x} to modal basis in function of {q}, with {x} = [Φ]{q}. Generalized
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matrix M∗, C∗, and K∗ make their appearance, as well as the generalized force {P ∗},
and H∗(ω) :

M∗{Q̈(ω)}+ C∗{Q̇(ω)}+K∗{Q(ω)} = {P ∗(ω)} (2.20)

H∗(ω) = (−M∗ω2 + iωC∗ +K∗)−1 (2.21)

Owing to Property 12, with the consideration of the link between {P ∗} and {P}
written in a vectorial form, the PSDM of the generalized forces is naturally obtained
from the PSDM of the nodal forces :

{P ∗} = [Φ]T{P} ⇒ [Sp∗ ] = [Φ]T [Sp][Φ] (2.22)

Using Property 23, the PSDM associated to the displacement can be derived, where
all the components of (2.24) are henceforth known :

Q(ω) = H∗(ω) · P ∗(ω)⇒ [Sq] = H∗(ω) · [Sp∗ ] ·H∗(ω)
T

(2.23)

[Sq] =


Sq1,1 Sq1,2 · · · Sq1,M
Sq2,1 Sq2,2 · · · Sq2,M
...

... . . . ...
SqM,1

SqM,2
· · · SqM,M

 (2.24)

2.2 Developments for the displacement

The field of study is limited to linear stationary problems, the developments are thus
conducted in the frequency domain. On account of the direct computation of the
steady-state, by means of a simple multiplication. Besides, the stochastic loading is
already expressed in this domain, which is encouraging to maintain it.

2.2.1 Determination of the variance

In the case of a uncoupled system, each mode is treated separately : the relationship
between the mass, stiffness and damping are simple. The correspondent FRF matrix
is diagonal, and offers a single-peak curve when represented in function of ω, a result
similar to an SDOF (Single-Degree-Of-Freedom) system.

2Property 1 : Knowing [Sx] the PSD associated to the random process {x(t)}, the PSD [Sy]
of the random process {y(t)} defined by : {y(t)} = [Z]{x(t)} is also known : [Sy] = [Z][Sx][Z]T

3Property 2 : Knowing [Sx] the PSD associated to the random process {X(ω)} and the transfer
matrix [H(ω)], the PSD [Sy] of the random process {Y (ω)} defined by : {Y (Ω)} = [H(ω)]{X(ω)}
is also known : [Sy] = [H(ω)][Sx][H(ω)]T
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The variance of the displacement in the mode m is obtained by the integration of
the PSD component Sqm,m(ω) :

σ2
qm,m

=

∫ +∞

−∞
Sqm,m(ω) dω =

∫ +∞

−∞
|H∗m,m(ω)|2 · Sp∗m,m

(ω) dω (2.25)

With :
H∗m,m(ω) =

1

K∗m,m
· 1

1− ( ω
ωm

)2 + 2iξ∗ ω
ωm

(2.26)

Given a generalized loading approximated to a white-noise, Sp∗m,m
(ω) becomes a

constant, guiding to the following simplification :

σ2
qm,m

= Sp∗m,m

∫ +∞

−∞
|H∗m,m(ω)|2 dω (2.27)

Owing to a perturbation method, the previous integral can be approximated to a
simple analytic expression, which avoids heavy numerical integration, like it can be
operated in time domain reasoning (The demonstration is available in Appendix
A1).

σ2
qm,m

=
Sp∗m,m

K∗2m,m
· πωm

2ξ∗
(2.28)

2.2.2 Determination of the covariance

When it comes to a coupled system, the S∗p which is a M × M matrix, contains :

• Diagonal components S∗pm,m
representing the independent modal contributions,

as if the modal responses were uncoupled in the natural modes’ basis (like in
(2.28)).

• Non-diagonal components S∗pm,n
representing the interactions between different

modes.

The covariance σqm,n associated is computed as the integral of Sqm,n(ω) :

σqm,n =

∫ +∞

−∞
Sqm,n(ω) dω =

∫ +∞

−∞
H∗m,m(ω) · Sp∗m,n

(ω) ·H∗n,n(ω) dω (2.29)

Assuming a white-noise approximation of the generalized loading, the following
simplification is suggested :

σqm,n = Sp∗m,n

∫ +∞

−∞
H∗m,m(ω) ·H∗n,n(ω) dω (2.30)

Similarly to the formulae (2.28), a perturbation technique is employed in order to
find an explicit equation describing the covariance in function of the parameters of
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the system (The demonstration is available in Appendix A2) :

σqm,n =
1

K∗m,mK
∗
n,n

Re
(Sp∗m,n

(ωm) + Sp∗m,n
(ωn)

2

ωm + ωn
2

π(ξ∗ − iε)
2(ε2 + ξ∗2)

)
(2.31)

Where ε = ωm−ωn

ωm+ωn
∈ [−1; 1] represents a dimensionless unit that measures the distance

between the modal frequencies m and n. Sp∗m,n
(ω) is a real constant, it can be derived

a simpler relationship (2.28). The replacement of ωn by ωm recapture the expression
of the modal variance σ2

qm,m
(2.28).

σqm,n =
Sp∗m,n

K∗m,mK
∗
n,n

ωm + ωn
2

πξ∗

2(ε2 + ξ∗2)
(2.32)

Stepping back to the modal decomposition, the nodal displacement x is written :

x = φq =
n∑
i=1

φi,xqi (2.33)

The variance is expressed as the mean of x2, evidencing a combination of the modal
quantities found in (2.28) and (2.32) :

σ2
x = E[x2] =

n∑
i=1

φ2
i,xσ

2
qi

+ 2
n∑
i=1

n∑
j 6=i

φi,x φj,xσqi,j (2.34)

2.2.3 Correction of the uncoupled approach

The uncoupled approach based on neglecting non-diagonal components, provides
a rough approximation of the exact behaviour of the system, since the modal
coupling is not taken into account. The interest in this section is to include it in the
analysis, without the need to inverse the complete matrices, thanks to the use of the
developments furnished by [9]. Before that, it is important to restate the arguments
engendering M∗ and K∗ diagonal matrices.

The generalized matrices : M∗ = [Φ]TM [Φ] and K∗ = [Φ]TK[Φ], such that : M∗
i,j =

φTi Mφj , K∗i,j = φTi Kφj , and φj the normalized natural modes. A normalization for a
unitary maximum is adopted : maxj|φj,i| = 1. Those natural modes are orthogonal
via mass and stiffness matrices. This postulate can be demonstrated considering two
different modes i and j, with distinct natural pulsations ωi 6= ωj.

Starting from the modal relationships, the next step is to make appear the generalized
matrices. A pre-multiplication by φTj is made for the first equation, and by φTi for
the second equation. The subtraction member-to-member of those equations gives
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(2.35): Kφi = ω2
iMφi

Kφj = ω2
jMφj

⇒

φTj Kφi = ω2
i φ

T
jMφi

φTi Kφj = ω2
jφ

T
i Mφj

φTj Kφi − φTi Kφj = ω2
i φ

T
jMφi − ω2

jφ
T
i Mφj (2.35)

Focusing on the LHS of the equation (2.35), the transpose of the first term gives
its neighbour : (φTj Kφi)

T = φTi Kφj. Differently, considering that φTj Kφi is a scalar,
φTj Kφi is equal to its transpose. Employing the same reasoning for the RHS gives :

0 = (ω2
i − ω2

j )φ
T
jMφi (2.36)

Finally, for (i 6= j) : φTjMφi = φTi Mφj = 0, this induces φTj Kφi = φTi Kφj = 0 from
(2.35).

The matrices M∗ and K∗ are thus diagonal, however nothing can be stated for C∗.

A non-diagonal generalized damping matrix prohibit the decoupling of modal
equations. The most common way to deal with this matter, is to neglect the
off-diagonal components. One of the other ways is decompose the damping matrix
to an exclusively diagonal matrix and an off-diagonal matrix.

An asymptotic expansion of the FRF is proposed by [9]. It is an intermediate
approach between 2 cases : the case where the FRF is approximated to a diagonal
matrix (decoupling assumption), and the case considering the inversion of a non-
diagonal matrix.

The normalization used of the M∗ and M∗ matrices in the aforementioned method, is
done through the mass matrix such as : [Φ]TM [Φ] = I. The following developments
are the adaptation of the method to our case, where a unitary maximum normalization
is chosen.

Going from the equation of motion expressed in the modal basis, the factorization
by M∗ in the expression of the FRF gives :

H∗(ω) = (−Iω2 + iωD + Ω)−1M∗−1 (2.37)

Where : D = M∗−1C∗ and Ω = M∗−1K∗.

The generalized damping matrix D is established as the sum of a diagonal matrix
Dd and an off-diagonal matrix D0 providing :

H∗(ω) = (Jd + J0)−1M∗−1 (2.38)
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Where : Jd = −Iω2 + iωDd + Ω and J0 = iωD0.

(2.38) becomes (2.39) after the factorization by Hd
∗ = Jd

−1 :

H∗(ω) = (I + Jd
−1 J0)−1Hd

∗ M∗−1 (2.39)

→ To be able to find an approximate expression of (I + Jd
−1 J0)

−1

via an expansion methoda. First, it is required to demonstrate that
the quantity Jd

−1 J0 is one order inferior than I.

Jd
−1

J0 = iω(Ω− Iω2 + iωDd)
−1D0 (2.40)

The factorization by iωDd inside the parenthesis gives :

Jd
−1

J0 = (
1

iω
Dd
−1(Ω− Iω2) + I)−1Dd

−1D0 (2.41)

Otherwise, from the definition of the diagonality index : ρ(D) =

max(|eig Dd
−1D0|), that represents the biggest eigenvalue of Dd

−1D0, it can
be written that : Dd

−1D0 = ΨλΨ−1. Where λ is a diagonal matrix containing
the eigenvalues, and Ψ containing the eigenvectors.
If the maximum eigenvalue is small, all the others are small. In other words, for
a diagonality index of order ε, it can be written that : λ = εΛ, with Λ = ord(1)

;
The substitution of Dd

−1D0 leads to the following expression :

Jd
−1

J0 = ε(
1

iω
Dd
−1(Ω− Iω2) + I)−1ΨΛΨ−1 (2.42)

The squared natural frequencies are collected in the diagonal of Ω. Therefore
at the resonance : Ω− Iω2 ' 0 leading to the wanted result :

Jd
−1

J0 = εΨΛΨ−1 (2.43)

aExplanatory example: 1
x being a known quantity, the goal is to compute 1

x+y for
y << x :

1

x+ y
=

1

x

1

1 + y
x

=
1

x

1

1 + ε
' 1

x
(1− ε)

Thanks to this result, it is possible to access an approximated expression of H∗ called
Hc
∗. The c-index stands for correction as it is an enrichment of the diagonal FRF

matrix assumption :
Hc
∗(ω) = (I −Hd

∗ J0)Hd
∗ M∗−1 (2.44)
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The response Qc is then computed by post-multiplying by the generalized forces P ∗,
such that P ∗bis = M∗−1P ∗:

Qc = Hd
∗ P ∗bis︸ ︷︷ ︸
Q

d

+H∗d J0(

Q
d︷ ︸︸ ︷

Hd
∗ P ∗bis)︸ ︷︷ ︸

∆Q

(2.45)

Q
d
representing the response corresponding to the uncoupled approach, completed

by a residual ∆Q computed in function of the first term, where J0Qd
represents

modal forces.

The PSDM of the corrected response is the result of the combination of the pure
contributions of Q

d
and ∆Q, adding to it the terms of interaction :

SQc = SQd
+ S∆Q + SQd∆Q + S∆QQd

(2.46)

The development of each of these terms is suggested below :

SQd
= E[Qd

2] = Hd
∗ [Sp∗bis ] Hd

∗T

S∆Q = E[∆Q2] = Hd
∗ J0 Hd

∗ [Sp∗bis ] Hd
∗T J0

T
Hd
∗T

SQd∆Q = E[Qd ∆Q
T

] = Hd
∗ [Sp∗bis ] Hd

∗TJ0
T
Hd
∗T

S∆QQd
= E[∆Q Q

d

T
] = Hd

∗ J0 Hd
∗ [Sp∗bis ] Hd

∗T

[Sp∗bis ] = M∗−1 [Sp∗ ] [M∗−1]T

2.2.4 Comparison with numerical integration

This new approach is supposed to offer a better approximation, due to the enrichment
of the uncoupled model manifested by the presence of the residual term.

It is considered an SDOF structure of mass M equipped with a damper of mass m,
such that the mass ratio of µTMD = m/M = 5%.

The components of the PSD are illustrated in the following figure. For each
component, three curves are displayed : the ’Exact’ plot represents the coupled
system, the ’Diagonal’ plot corresponds to the uncoupled approximation, and the
’Corrected’ plot speaks for the asymptotic approximation method.
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Figure 2.1: PSD of the displacement in the different configurations for µTMD = 5%

The corrected plot reproduces better the shape of the exact solution, the amplitude
is also well approximated. The variance corresponding to the area under the curve, is
naturally more accurate than the diagonal result, as it is showed in the Figure 2.3.

It is noticed a drop of the ampltiude of the PSD’s peak (and thus the variance),
for an increasing mass ratio. The added mass brings more damping to the system,
which can explain this tendency. Indeed, the literature get along to reveal that the
damping ratio of the damper is an increasing function of the mass ratio, for the case
of a random excitation 4. The equivalent damping being a linear combination of the
structural damping ratio and the damping ratio provided by the TMD5, it is verified
by the formula (2.28) that the more important is the damping ratio, the lower is the
variance.

Figure 2.2: Evolution of SQ1,1 for different values of the ratio mass µTMD

4The propositions of the literature are presented in the next chapter
5This statement is also be demonstrated further in the document in the next chapter
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The analytic expressions of the variance coming from (2.32) and (2.28) are constructed
on the uncoupled approach. They are thus an approximation the ’Diagonal’ curves
seen above. The relative error of the analytic variance with respect to the numerical
variance, is displayed in the following figure in function of the mass ratio. It doesn’t
exceed 2.5% for a ratio mass of 5%.

Figure 2.3: Evolution of the variance

Figure 2.4: Evolution of the relative error of the variance obtained analytically
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2.3 Application for acceleration

The design of the dampers is usually made according to the comfort criteria expressed
in terms of acceleration. The previous derivations concerned the approximation of
the variance of the displacement, the aim here is to attain the variance of the the
acceleration.

By using the Fourier transformation, the properties developed concerning the auto-
correlation functions, linking the displacement to the acceleration, can be translated
in terms of PSD.

Rẍẍ(∆t) =
d4Rxx(∆t)

d∆t4
=⇒ Sẍẍ(ω) = ω4Sxx(ω) (2.47)

Those properties can be useful to compute the spectral moments, that are defined
by :

mi =

∫ +∞

−∞
|ω|iSx,x(ω)dω (2.48)

Where the order (i = 0) corresponds to the variance of the displacement, the order
(i = 2) to the variance of the velocity, and the order (i = 4) to the variance the
acceleration. When the spectral densities of the design quantities are established, the
process usually consists of calculating the spectral moments, that offer the advantage
of being simpler to interpret. Moreover, they don’t contain too much information,
contrary to the PSDs that are big memory consumers. As soon as the spectral
moments are computed, it is advised to get rid of the PSDs as soon as possible.

2.3.1 Determination of the variance

The variance of the acceleration in the mode m is provided by :

σ2
q̈m,m

=

∫ +∞

−∞
Sq̈m,m(ω) dω =

∫ +∞

−∞
ω4 · |H∗m,m(ω)|2 · Sp∗m,m

(ω) dω (2.49)

Assuming a white-noise approximation, the previous equation becomes simpler :

σ2
q̈m,m

= Sp∗m,m

∫ +∞

−∞
ω4 · |H∗m,m(ω)|2 dω (2.50)

The function |H∗m,m(ω)|2 decreases with 1/ω4, according to (2.26). The multiplication
by ω4 reveals an indeterminacy (limω→+∞ ω4|H(ω)|2 ∼ ω4

ω4 → 1 6= 0) represented by
a constant value for ω >>, which impedes the computation of the integral.

The equation is developed, and written in function of the dimensionless variable
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Ω = ω/ωm.

σ2
q̈m,m

=
Sp∗m,m

ωm

M∗2
m,m

∫ +∞

−∞

Ω4

1 + 2(2ξ∗2 − 1)Ω2 + Ω4
dΩ (2.51)

Adding and subtracting the quantity 1 + 2(2ξ∗2 − 1)Ω2 guide to the distinction of
two terms where one of them isn’t integrable.

σ2
q̈m,m

=
Sp∗m,m

ωm

M∗2
m,m

∫ +∞

−∞
1− 1 + 2(2ξ∗2 − 1)Ω2

1 + 2(2ξ∗2 − 1)Ω2 + Ω4
dΩ (2.52)

To get rid of the indeterminacy of the first integral, a solution would be to use a
white noise defined on a limited band [−ωmax, ωmax], instead of an infinite white
noise. While the second integral is computed using Cauchy’s residue theorem, since
the rational fraction fulfills the applicability conditions 6. Each integral is treated
separately, generating an analytic expression of the variance :

σ2
q̈m,m

=
Sp∗m,m

ωm

M∗2
m,m

(∫ ωmax

−ωmax

1 dΩ−
∫ +∞

−∞

1 + 2(2ξ∗2 − 1)Ω2

1 + 2(2ξ∗2 − 1)Ω2 + Ω4
dΩ
)

σ2
q̈m,m

=
Sp∗m,m

M∗2
m,m

(2ωmax +
πωm
2ξ∗

) (2.53)

2.3.2 Determination of the covariance

In parallel, going from the defintion of the covariance of the acceleration provided by
the next equation, the purpose is to attain a simple formulation :

σq̈m,n =

∫ +∞

−∞
Sq̈m,n(ω) dω =

∫ +∞

−∞
H∗m,m(ω) · (ω4Sp∗m,n

(ω)) ·H∗n,n(ω) dω (2.54)

Assuming a white-noise approximation of the generalized loading, the following
simplification is suggested :

σ..
qm,n

= Sp∗m,n

∫ +∞

−∞
ω4H∗m,m(ω)H∗n,n(ω) dω (2.55)

The function to integer delivers the same indeterminacy as for the variance where
: limω→+∞ ω4H∗m,m(ω)H∗n,n(ω) ∼ ω4

ω4 → 1 6= 0. The same strategy is employed in
order to identify the integrable part of the function, and integrate the other part on
a limited domain.

6Applicability conditions of Cauchy’s residue theorem : The denominator’s polynomial admits
complex poles, and is two degrees higher than the numerator’s polynomial.
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The substitution of the transfer matrices by their expressions provides :

σ..
qm,n

=
Sp∗m,n

K∗mK
∗
n

∫ +∞

−∞

ω4

(1− ( ω
ωm

)2 + 2iξ∗ ω
ωm

)(1− ( ω
ωn

)2 − 2iξ∗ ω
ωn

)
dω (2.56)

The denominator is simplified introducing the variable : D(Hi) = (1− ( ω
ωi

)2 +2iξ∗ ω
ωi

).

The addition and subtraction of the quantity ω2
mω

2
nD(Hm)D(Hn), make appear a

non-integrable term. Whereas the integrability of the other term needs also to be
checked.

σ..
qm,n

=
Sp∗m,n

K∗mK
∗
n

∫ +∞

−∞
ω2
mω

2
n +

ω4 − ω2
mω

2
nD(Hm)D(Hn)

D(Hm)D(Hn)
dω

=
Sp∗m,n

K∗mK
∗
n

(∫ ωmax

−ωmax

ω2
mω

2
ndω +

∫ +∞

−∞

ω4 − ω2
mω

2
nD(Hm)D(Hn)

D(Hm)D(Hn)
dω︸ ︷︷ ︸

I2

)
(2.57)

The polynomial’s numerator is of degree 3, as it appears in the following expansion.
I2 is therefore integrable, as the denominator is of degree 4.

ω4 − ω2
mω

2
nD(Hm)D(Hn) = 2iξ∗(ωm − ωn)ω3 + (ω2

m + ω2
n − 4ξ∗2ωmωn)ω2

+2iξ∗ωmωn(ωm + ωn)ω − ω2
mω

2
n (2.58)

In order to focus on both natural frequencies ωm and ωn simultaneously, a strained
coordinate ω(η) is introduced, centered on the mean :

ω =
ωm + ωn

2
+ η (ωn − ωm) =

ωm + ωn
2

(1 + 2εη)

With : η = ord(1), and ε = ωn−ωm

ωm+ωn
a small dimensionless unit that measures the gap

between natural frequencies.

In favor of considering a same order of magnitude for the natural frequencies, it is
assumed ε2 << 1. The numerator, in turn, is approximated to the first order. The
simplifications guide to the following form of I2 :

I2 =
1

4

(ωm + ωn
2

)4
∫ +∞

−∞

1

4η2ε2 + (ξ∗ + iε)2
dη =

1

4

(ωm + ωn
2

)4 π(ξ∗ − iε)
2ε(ε2 + ξ∗2)

(2.59)
(2.57) becomes after simplification :

σ..
qm,n

=
Sp∗m,n

K∗mK
∗
n

(
2ωmaxω

2
mω

2
n +

1

4

(ωm + ωn
2

)4 π(ξ∗ − iε)
2ε(ε2 + ξ∗2)

)
(2.60)
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Stepping back to the modal decomposition, the nodal displacement x is written :

{ ..x} = φ{
..
q} (2.61)

The variance is expressed as the mean of x2, evidencing a combination of the modal
quantities found in (2.28) and (2.32) :

σ2
..
x = E[

..
x

2
] =

n∑
i=1

φ2
i,xσ

2
..
qi

+ 2
n∑
i=1

n∑
j 6=i

φi,x φj,xσ..
qi,j

(2.62)

2.3.3 Comparison with numerical integration

The following figure displays the components of the PSD in the frequency domain.
The ’Corrected’ curve is associated to the rectification of the uncoupled approach in
accordance with the method [9], after one iteration. It shows a better approximation
of the ’Exact’ curve associated to the coupled approach, in terms of shape and
amplitude.

Figure 2.5: PSD of the acceleration for µTMD = 0.05 in the different configurations

With a simple integration on the frequency domain, the modal variances are achieved



2.3 Application for acceleration 21

Figure 2.6: Evolution of the variance in function of the mass ratio

Figure 2.7: Relative error of the analytic expression with respect to the numerical
result

For small values of the mass ratio, the accuracy of the analytic approximation of
the covariance is questioned. The bandwidth ωmax has an influence on the result. In
fact, the wider the band the more the curve is shifted downward, and thus the more
accurate is the result of the analytic approximation.
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Figure 2.8: Relative error of the analytic expression of σq̈1,2 with respect to the
numerical result for increasing values of the bandwidth of the white noise
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3 Approximation of the modal properties

This chapter is destined to the dynamic analysis of damped structures considering
the coupling effect, and its repercussion on the complexity of the equations. When
applying the results of the previous chapter on such structures, it turns out that
the analytic expression of variance involves parameters that are not all intuitively
obtained, such as the natural frequencies of the damped system, or its equivalent
damping ratio. The purpose in this chapter is to seek analytic derivations of those
parameters, in order to find a completely explicit form of the variance, involving the
mass of the damper, that is crucial for the design.

The first part of the chapter is dedicated to the presentation of the concept of Tuned
Mass Damper (TMD), as an example of passive dampers and classical solution
to current footbridges. The aim here is to understand and recall the theoretical
foundations of damping techniques, which will serve as basis for the developments
that will follow.

The second part is consecrated to the analysis of a dynamical system equipped with
a TMD. The purpose is to perform an analytic treatment of an SDOF structure as
a first step, to be then interested by the transcription of the developments to an
MDOF system. The damper’s mass considered as a small quantity with respect to
the modal masses, a perturbation method is developed using dimensionless variables,
that aims to attain analytically the modal characteristics of the coupled system.

3.1 Concept of TMD

The TMD concept was first discovered by Frahm in 1909, to reduce the movement
of boats when they were subjected to sea waves. In 1928, a theory was presented
in a paper proposed by Ormondroyd and Den Hartog. It suggests the addition of a
viscous component in parallel with the spring to permit an absorption of the kinetic
energy. Detailed discussion of optimal settings and damping came after in Den
Hartog’s book on mechanical vibrations.

3.1.1 Description of the TMD

The tuned-mass damper is a device consisting of a heavy mass, a spring and a viscous
damper. It is installed at the localized points of the structure in order to reduce its
response to dynamic loads. When the vibration outpace vibration comfort limits,
the installation of a TMD can be seen as a passive counterweight mechanism for
the structure. In other words, when the structure starts to vibrate, the TMD is
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excited by the movement, its mass remains always opposed to the movement of the
structure, which damps gradually the vibratory movement of the structure. The
design of the TMD lies in the tuning of the mass, stiffness and damping of the TMD
to the primary structure’s dynamic characteristics.

Figure 3.1: Tuned Mass Damper scheme
http://web.mit.edu/jorloff/www/jmoapplets/secondorder/TunedMassDamper.html

The properties of the coupled system are proposed below :

Mass m1

Stiffness k1

Main structure Damping c1

Natural pulsation ωn =
√
k1/m1

Damping ratio ξ1 = c1/2
√
k1m1

Mass m2

Stiffness k2

Damping c2

TMD Natural pulsation ωTMD =
√
k2/m2

Damping ratio ξ2 = c2/2
√
k2m2

Mass ratio µTMD = m2/m1

Tuning αTMD = ωTMD/ωn

Table 3.1: Properties of the system structure-TMD

3.1.2 Performance of the TMD

The nominal performance of a TMD is to reduce vibration levels commanded by a
single mode. This is why for an MDOF system, the modes are generally decoupled:
each mode is treated separately, the damper is tuned to a limited frequency scope
surrounding the natural frequency of the mode in question. The TMD is placed
where the mode’s amplitude is maximum.
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3.1.2.1 Tuning :

The TMD’s mass is much inferior than the mass of the structure. Generally, the ratio
mass µTMD does not exceed 5% for footbridges. Den Hartog [3] provides the optimal
rates for the damping ratio ξTMD and the tuning αTMD for a given added mass,
minimising the FRF (Frequency Response Function). Its adjustment is compared
to the ones suggested by Fujino [13], Sadek [7] and Waburton [11], for a random
excitation (Figure 3.2). All the models describe the same tendency : ξTMD is a
growing function of the ratio mass, and αTMD a decreasing one. The variation of
αTMD is not significant, confirming that the TMD covers a limited frequency scope.

Figure 3.2: Optimum values for the tuning ratio and the damping ratio of the
TMD

From the plot of the transfer function, den Hartog’s theory [3] pinpoints the existence
of 2 invariant points, when varying the frequency ratio αTMD, regardless of the value
of the damping ξTMD conferred on it.

The tuning ratio αTMD is selected so that these 2 fixed points have identical ordinates.
Subsequently, the damping ratio ξTMD can be set to obtain horizontal tangents. The
two bumps are decreased equally below the fixed points. The effect of TMD on the
transfer function is thus optimized. This model is valid when the structural damping
is very small, even neglected. The method gives birth to the following optimal couple
of parameters :

αTMD = 1
1+µ

ξTMD =
√

3µ
8(1+µ)

(3.1)
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Figure 3.3: Setting of αTMD according to den Hartog’s method

3.1.2.2 Deficiency :

A major disadvantage of TMD is its high sensitivity to "detuning". Even if the
damper is initially perfectly adjusted, if the frequency of the bridge vary during time,
a deregulation is engendered, and the effectiveness of the TMD is jeopardized. Several
factors may be the initiator of this problem, such as for instance, the variability
of the pedestrian load, or the variability of the structure’s properties over time.
Consequently, it is important in the design to check the fit of the TMD for a given
frequency range rather than a single target frequency.
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3.2 Effect of a damper on a SDOF system

→ The elementary model for a structure with a tuned vibration damper, is
a 2DOF system. It is used here to develop the theoretical background. The
matrix of mass and stiffness are given below :
For the sole purpose of lightening the expressions, a new notation is used for the
TMD parameters : mTMD = m ; kTMD = k ; cTMD = c ; µTMD = µ ; ωTMD = ωT

; ξTMD = ξd

M =

[
M 0

0 m

]
; K =

[
K + k −k
−k k

]
(3.2)

3.2.1 Approximation of the natural frequencies

For a primary system subjected to vibrations, the installation of the TMD follows
the law : the greater the added mass, the smaller is the amplitude of the response.
Besides, another result is observed : when increasing the mass, the transfer function
goes from a single-peak curve to a 2-bumps curve as it seen in Figure 3.4. The idea
is to investigate the location of the bumps, which amounts to the research of the
natural frequencies of the coupled system.

Figure 3.4: Evolution of the transfer function for an increasing mass ratio µTMD

The analytic development is based on the perturbation method, which consists in
the use of the power series expansion of ε, a dimensionless parameter supposed
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small, that plays the role of a "scale". The physical parameters are expressed in
function of this entity, which transform the variables to extended coordinates. These
quantities are essential for the capture of the behavior of the system in the vicinity
of the resonance. The result of this development permits the comparison of the
contributions of the different parameters, where the parameters that have small
effect are spotted and eliminated. The method furnishes equations that are lighter
and more explicit, favorable for direct interpretations of the different phenomena
involved.

As a starting point, some assumptions have to be made on the order of magnitudes
of the different parameters :

• The mass ratio : µ = ord(ε2) ;

• The damping ratio of the damper : ξTMD = ord(ε) ;

• The tuning ratio of the damper : α = ord(ε) (α = ωTMD/Ω : ratio of the
natural frequency of the TMD over the natural frequency of the structure) ;

Those assumptions are translated below in order to establish rescaled expressions of
the damper’s characteristics. New variables are introduced like µ1 and ν2 that are
both of order 1 ;
m = µ M = (ε2µ1)M

ωTMD = (1 + εν2)Ω

k = mω2
TMD = ε2µ1(1 + 2εν2)K

Therefore, with taking (M = 1 and K = 1) in the sole purpose to lighten the
equations, (3.2) become :

M =

[
1 0

0 ε2µ1

]
; K =

[
1 + ε2µ1(1 + 2εν2) −ε2µ1(1 + 2εν2)

−ε2µ1(1 + 2εν2) ε2µ1(1 + 2εν2)

]
(3.3)

The objective is to look for the natural frequencies and modes associated to the
previous mass and stiffness matrix. Before the resolution of the eigenvalues problem
ω2Mφ = Kφ, the mode vector has to be introduced in a way that the structural and
TMD terms have the same order of magnitude.

The mode vector is expressed φ = [φs φTMD]T , where the structural vector
φs = ord(1) and φTMD = ord(1/ε). A new variable φ′ = [φ′s φ

′
TMD]T is introduced in

order to keep the consistency of the dimensionless development.

φ =

[
φs

φTMD

]
=

[
1 0

0 1/ε

][
φ′s

φ′TMD

]
=

[
1 0

0 1/ε

]
φ′ (3.4)
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The change of the basis guide to the transformation of the mass and stiffness matrix
:

M̃ =

[
1 0

0 1/ε

]
M

[
1 0

0 1/ε

]
=

[
1 0

0 µ1

]
︸ ︷︷ ︸

M0

(3.5)

K̃ =

[
1 0

0 1/ε

]
K

[
1 0

0 1/ε

]

=

[
1 0

0 µ1

]
︸ ︷︷ ︸

K0

+

[
0 −µ1

−µ1 2ν2µ1

]
︸ ︷︷ ︸

K1

ε+

[
µ1 −2ν2µ1

−2ν2µ1 0

]
︸ ︷︷ ︸

K2

ε2 (3.6)

Stepping back to the resolution of the eigenvalues problem :

ω2Mφ = Kφ⇔ λM̃φ′ = K̃φ′ ⇔ (K̃ − λM̃)φ′ = 0 (3.7)

A new dimensionless variable is introduced : λ = ω2/Ω2, the power series development
is limited to the order ε1 : λ = λ0 + ελ1. Similarly, the rescaled mode φ′ is developed
: φ′ = φ0 + εφ1. The replacement of M and K gives :

• Order ε0 :

(K0 − λ0M0)φ0 = 0 (3.8)

• Order ε1 :

(K0 − λ0M0)φ1 = −(K1 − λ1M0)φ0 (3.9)

The result of f(λ0) = |K0 − λ0M0| = 0 : λ0 = {1, 1}

A particular outcome is noticed : the matrix (K0 − λ0M0) is nil, the system is
undetermined and the mode shapes φ0 can’t be computed at this stage.

Moving on to (3.9), the LHS being equal to zero, as a result of the previous
equation, the RHS is equal to zero as well, which leads after the resolution of :
λ2

1 − 2ν2λ1 − µ1 = 0 : λ1 = ν2 ±
√
ν2

2 + µ1

This new system represents an uncommon case where the mode shapes associated to
the order ε0, are derived from the system expressed with the eigenvalues associated
to the next order. The substitution of λ0 and λ1 gives :

λ = 1 + ε(ν2 ±
√
ν2

2 + µ1) (3.10)
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To present a notation that is habitual to the reader, a transformation of the
dimensionless expression is proposed, involving the physical variables :

ω = Ω ·
√
α±

√
(α− 1)2 + µ (3.11)

For small values of µ, and as α = 1/(1+µ) (a result from the analytical developments
of [3] and [13]), α is pretty close to the unity. Thus, the term (α−1)2 can be neglected,
simplifying the previous expression to :

ω = Ω ·
√

1±√µ (3.12)

This expression is simpler, stating that the more µ is higher, the more ω moves
away from Ω, like it is confirmed by the Figure 3.5. Besides, this figure shows
the analytic expressions ((3.11) and (3.12)) compared to the eingenvalues computed
numerically. The den Hartog adjustment provides more precision especially for high
values of µ. The Figure 3.6, highlights the increasing tendency of the relative error
with respect to the mass ratio, that reaches 2.2% for µ = 0.05.

Figure 3.5: Evolution of the analytical expression in function of µ, and comparison
with the numerical eigenvalues solution (R for Right, L for Left)
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Figure 3.6: Relative error between analytical expression (3.11) and numerical
eigenvalues solution in function of µTMD (R for Right, L for Left)

3.2.2 Approximation of the equivalent damping

The purpose of this section is to find an analytic approximation of the equivalent
damping after the generalization of the matrices.

For a 2DOF system, composed by a SDOF structure coupled with a TMD, and
tuned with den Hartog’s adjustment : it is noticed that the equivalent damping ξeq
coincides perfectly to the mean value of ξs and ξTMD. This observation is supported
by the analytic expression found by [6] for small values of µTMD:

ξeq =
(1 + µ)αξTMD + ξs

2
√
α

(3.13)

In the case of a Den Hartog adjustment [3], the expression can be simplified. Indeed,
considering α = 1/(1 + µ), it is found that :

ξeq =
1

2

√
1 + µ (ξTMD + ξs) (3.14)

The asymptotic expansion gives a simpler form, showing that for small values of
µTMD (∼ 0), the equivalent damping ratio tends to the mean value of ξ and ξTMD.

ξeq =
1

2
(1 +

µ

2
) (ξTMD + ξs) (3.15)

A perturbation method is built in order to approximate the previous expression, or
at least to reach the same result when µ is small. The strategy is to begin by making
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explicit the dimensionless expression of the modal generalized damping C∗, that is
directly linked to the damping ratio.

Given the dimensionless form of the eigenvalues found in the Section 3.2.1, the
replacement of λ1 in the system (K1 − λ1M0)φ0 = 0 leads to the determination of
the eigenvectors φ0 :

Φ0 =

[
−µ1
λ11

−µ1
λ21

1 1

]
(3.16)

With : λ1
1 = ν2 +

√
ν2

2 + µ1 and λ2
1 = ν2 −

√
ν2

2 + µ1

The equivalent damping matrix Ξ∗ represents the damping ratio associated to the
matrices projected on the modes. The diagonal components symbolize the modal
damping ratios, while the non-diagonal components speak for the coupling damping
ratios.

Ξ∗ =

[
ξ∗1,1 ξ∗1,2
ξ∗2,1 ξ∗2,2

]
(3.17)

3.2.2.1 Modal damping ratios

Employing the matrices established in (3.5) and (3.6), the generalized matrices can
be computed. The projection in the modes φi0 = [−µ1

λi1
1]T provides the diagonal

components of the generalized matrices :M∗
i,i = φi0

T
M0 φ

i
0 = (µ1

λi1
)2 + µ1

K∗i,i = φi0
T
K0 φ

i
0 = (µ1

λi1
)2 + µ1

The damping matrix C is decomposed such that the structural contribution and the
contribution of the damper are distinguished : C = Cs + Cd

C̃s =

[
1 0

0 1/ε

][
2ξs 0

0 0

][
1 0

0 1/ε

]
=

[
2ξs 0

0 0

]
︸ ︷︷ ︸

Cs,0

(3.18)

C̃d =

[
1 0

0 1/ε

]
2µ1(1 + εν2)ξTMD

[
ε2 −ε2

−ε2 ε2

][
1 0

0 1/ε

]

C̃d =

[
1 0

0 2µ1ξTMD

]
︸ ︷︷ ︸

Cd,0

+

[
0 −2µ1ξTMD

−2µ1ξTMD 2µ1ν2ξTMD

]
︸ ︷︷ ︸

Cd,1

ε+

[
2µ1ξTMD −2µ1ν2ξTMD

−2µ1ν2ξTMD 0

]
︸ ︷︷ ︸

Cd,2

ε2

(3.19)
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Similarly to M∗
0 and K∗0 , the projection in the modal basis provides :C

∗
s,i,i = φi0

T
Cs,0 φ

i
0 = 2(µ1

λi1
)2ξs

C∗d,i,i = φi0
T
Cd,0 φ

i
0 = 2µ1ξTMD

Going from the definition of the damping ratio, it is possible to extract the first
order approximation as the following :

ξ∗i,i =
C∗s,i,i + C∗d,i,i
2
√
M∗

i,iK
∗
i,i

=
µ1ξs + λi21 ξTMD

µ1 + λi21
(3.20)

This damping ratio constitutes a kind of weighted average of ξs and ξTMD. It is a
good advance since the targeted result is an arithmetic average. Differently, the last
formulation contains two solutions, as it contains the quantity λ1 = ν2 ±

√
ν2

2 + µ1

(a result from 3.10).

To go back to the physical form, ε2 is introduced up and down giving :

ξ∗i,i =
µξs + γξTMD

µ+ γ
(3.21)

With : γ = (ελ1)2 = ((α− 1)±
√

(α− 1)2 + µ)2

The analytic solutions are compared to the exact result procured numerically at
Figure 3.7. Two ways are used to compute ξeq numerically :

• Considering the definition of the modal damping :

C∗i,i = 2
√
K∗i,iM

∗
i,iξeq), where everything is known but ξeq ;

• Considering the definition of the maximum value of the FRF :
max(|H|) = 1/(2K∗i,iξeq)

The blue and red curves associated to the numerical outcome give the exact same
result, this is why they are not distinguishable. The following table compares the
proximity of the different analytic expressions to the numerical result.
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Figure 3.7: Equivalent damping ratio ξeq in function of µTMD (Analytic (+)
represents the analytic solution with a (+) in λ1, Analytic (-) with a (-) in λ1)

Relative error (%) Mode 1 Mode 2
JC Miranda’s solution [6] 1.32 0.07

Mean value ξs+ξTMD

2
1.12 2.34

Analytic (+) 18.28 16.82
Analytic (-) 20.52 21.5

Table 3.2: Relative error with respect to the numerical results for µTMD = 0.05

The analytic curves present a certain symmetry with respect to the numerical value,
as it is showed on Fig. 3.7. It is tempting to suggest that the equivalent damping
ratio is none other than the mean value of the analytic couple ((+) and (−)).

Giving a den Hartog’s adjustment for the TMD, it can be demonstrated. The tuning
ratio α is given in function of µTMD such that α = 1/(1 + µ). The translation into
the dimensionless form is : 1 + εν2 = 1/(1 + ε2µ1). The substitution of ν2 in the
expression of λ2

1 gives :

λ2
1 = 2(

µ1

1 + ε2µ1

)2ε2 + µ1 ∓
µ1

1 + ε2µ1

ε

√
(

µ1

1 + ε2µ1

)2ε2 + µ1

Similarly to its square root, λ2
1 contains two values by reason of the last term. The

truncation right after the first order brings out only one common value as the result
is λ2

1 = µ1. The replacement in (3.20) gives the targeted result : the arithmetic mean
of ξs and ξTMD.
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3.2.2.2 Crossed damping ratios

From the above, and maintaining the same reasoning, the coupling components of
the generalized matrices M and K are derived as follows :M

∗
i,j = φi0

T
M0 φ

j
0 = ( µ1

λi1λ
j
1

) + µ1

K∗i,j = φi0
T
K0 φ

j
0 = ( µ1

λi1λ
j
1

) + µ1

Similarly, the damping matrix non-diagonal elements are defined :C
∗
s,i,j = φi0

T
Cs,0 φ

j
0 = 2( µ1

λi1λ
j
1

)ξs

C∗d,i,j = φi0
T
Cd,0 φ

j
0 = 2µ1ξTMD

The equivalent damping ratio is thus obtained :

ξ∗i,j =
C∗s,i,j + C∗d,i,j
2
√
M∗

i,jK
∗
i,j

=
µ1ξs + λi1λ

j
1ξTMD

µ1 + λi1λ
j
1

(3.22)

3.2.3 Validation of the model

It is questionable to what extent the established optimal expressions lead to the
optimum in terms of minimization of the variance of the response.

Stepping back to the expression (3.21), that can be written in the following form (by
dividing by µ up and down) :

ξ∗i,i =
ξs + (ελ1)2

µ
ξTMD

1 + (ελ1)2

µ

(3.23)

Where :
(ελ1)2

µ
= 1 + 2(

α− 1
√
µ

)2 + 2(
α− 1
√
µ

)

√
(
α− 1
√
µ

)2 + 1)

The equivalent damping can henceforth be displayed in function of a single
dimensional group A = α−1√

µ
.

ξ∗i,i =
ξs + (1 + 2A2 + 2A

√
A2 + 1))ξTMD

1 + (1 + 2A2 + 2A
√
A2 + 1))

(3.24)

To tend to the arithmetic value of ξs and ξTMD, and without considering Den Hartog’s
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adjustment, the following condition has to be fulfilled :

1 + 2A2 + 2A
√
A2 + 1 = 1 (3.25)

The solution of the equation is A = 0, a criteria for α can be extracted : α = 1 . A
criteria that is in accordance with den Hartog adjustment for small values of µ.

The following figure displays the variance of the acceleration in the (α, ξTMD) space
(with a mass ratio of 5%.).

Figure 3.8: Representation of the acceleration’s variance in the (α, ξTMD) space

The ’Corrected’ map corresponds to the uncoupled system rectified with [9], the
result is obtained after three iterations. It converges well toward the adjustment of
Den Hartog (3.1).

For the approached model (’Analytic’ plot), the expressions presented above bring
an almost optimal value for α. The approached model is built considering the modes
uncoupled, it is thus more assimilated to the ’Diagonal’ plot.

In terms of ξTMD, since the adoption of the uncoupled modes hypothesis to procure the
analytical expressions of the variance and covariance of the acceleration (respectively
reminded (3.26). It is noticed that the acceleration is proportional to 1/ξ∗i,i or 1/ξ∗i,j.
Considering the approached expression of the equivalent damping ratio (3.20), the
variance and covariance are thus proportional to ξTMD, the reason behind reaching
the minimum acceleration for the maximum value of ξTMD. The Figure 3.9 confirms
this statement.
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σ
2
q̈i,i

=
Sp∗

i,i

M2
i,i

(2ωmax + πωm

2ξ∗i,i
)

σq̈i,j =
Sp∗

i,j

K∗
i,iK

∗
j,j

(
2ωmaxω

2
i ω

2
j + 1

4

(
ωi+ωj

2

)4 π(ξ∗i,j−iε)
2ε(ε2+ξ∗2i,j)

) (3.26)

Figure 3.9: Evolution of the acceleration’s variance in function of ξTMD

3.2.3.1 Analytic approximation of the corrected response

The addition of the residual term in an iterative way, has led to the convergence
to the exact representation. In what follows, a method based on the developments
performed in the previous chapter, is aimed to demonstrate that the residual term
is an increasing function of ξTMD. Actually, the addition to the diagonal outcome
would permit to identify an optimum value of ξTMD.

As reported before, it is known that :

SQ̈c
= SQ̈d

+ S∆̈Q + SQ̈d∆̈Q + S∆̈QQ̈d

The interaction terms have small impact on SQ̈c
, they are therefore neglected, such

as : SQ̈c
= SQ̈d

+ S∆̈Q. Moving to the variances to get : σQ̈c
= σQ̈d

+ σ∆̈Q.

The residual term ∆̈Q is expressed as a function of ω times Q̈d :

∆̈Q = H∗d(−ωD∗0)Q̈d

Z∗ is a non-diagonal matrix introduced such that :Z∗ = H∗d(−ωD∗0), as H∗d is diagonal
and D∗0 contains only off-diagonal terms of the generalized matrix of damping. Based
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on the Property 27, the PSD can be computed : S∆̈Q = Z∗SQ̈d
Z∗

T

From above, the modal variances are obtained, by replacing

SQ̈d,n,n
(ω) = |H∗n,n(ω)|2Sp̈,n,n :

σ2
¨∆Q,m,m

=

∫ +∞

−∞
S∆̈Q,m,m(ω)dω

= C∗2m,n

∫ +∞

−∞
ω6|H∗m,m(ω)|2SQ̈d,n,n

(ω)dω

= C∗2m,nSp̈,n,n

∫ +∞

−∞
ω6|H∗m,m(ω)|2|H∗n,n(ω)|2dω︸ ︷︷ ︸

I3

(3.27)

As well as the covariances :

σ ¨∆Q,m,n = C∗n,mC
∗
m,nSp̈,m,n

∫ +∞

−∞
ω6|H∗m,m(ω)|2|H∗n,n(ω)|2dω︸ ︷︷ ︸

I3

(3.28)

The denominator is simplified introducing the variable : D(Hi) = (1− ( ω
ωi

)2 +2iξ∗ ω
ωi

).

I3 =

∫ +∞

−∞
ω6|H∗m,m(ω)|2|H∗n,n(ω)|2dω =

1

K∗2m,mK
∗2
n,n

∫ +∞

−∞

ω6

D(Hm)D(Hn)
dω

The polynomial’s numerator is of degree 6, and its the denominator is of degree 8.
Adding and subtracting ω4

mω
4
nD(Hm)D(Hn) allows to get rid of the indeterminacy.

This solution is accompanied by using a white noise defined on a limited band
[−ωmax, ωmax], instead of an infinite white noise.

I3 =
1

K∗2m,mK
∗2
n,n

(

∫ +ωmax

−ωmax

ω4
mω

4
ndω +

∫ +∞

−∞

ω6 − ω4
mω

4
nD(Hm)D(Hn)

D(Hm)D(Hn)
dω)︸ ︷︷ ︸

I4

(3.29)

I4 =

∫ +∞

−∞

ω6 − ω4
mω

4
nD(Hm)D(Hn)

D(Hm)D(Hn)
dω

In order to focus on both natural frequencies ωm and ωn simultaneously, a strained

7Property 2 : Knowing [Sx] the PSD associated to the random process {X(ω)} and the transfer
matrix [H(ω)], the PSD [Sy] of the random process {Y (ω)} defined by : {Y (Ω)} = [H(ω)]{X(ω)}
is also known : [Sy] = [H(ω)][Sx][H(ω)]T
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coordinate ω(η) is introduced, centered on the mean :

ω =
ωm + ωn

2
(1 + 2εη)

With : η = ord(1), and ε = ωn−ωm

ωm+ωn
a small dimensionless unit that measures the gap

between natural frequencies.

In favor of considering a same order of magnitude for the natural frequencies, it is
assumed ε2 << 1. The numerator, in turn, is approximated to the first order. The
simplifications guide to the following form of I4 :

I4 = (
ωm + ωn

2
)6 1

16ξ∗2

∫ +∞

−∞

1

2(1 + 4η2)ε2 + ξ2
dη (3.30)

I5 is computed using Cauchy’s residue theorem, since the rational fraction fulfills the
applicability conditions 8. I3 is reconstructed such that : I3 = I4 + I5.

I5 =

∫ +∞

−∞

1

2(1 + 4η2)ε2 + ξ2
dη =

2
√

2πε√
ξ2 + 2ε2

(3.31)

The substitution in (3.27) and (3.28) provides the analytic formulation of the variance
and covariance.

σ2
¨∆Q,m,m

=
C∗2m,nSp̈,n,n

K∗2m,mK
∗2
n,n

(2ωmaxω
4
mω

4
n + (

ωm + ωn
2

)6 1

16ξ∗2
2
√

2πε√
ξ∗2 + 2ε2

) (3.32)

σ ¨∆Q,m,n =
C∗n,mC

∗
m,nSp̈,m,n

K∗2m,mK
∗2
n,n

(2ωmaxω
4
mω

4
n + (

ωm + ωn
2

)6 1

16ξ∗2
2
√

2πε√
ξ∗2 + 2ε2

) (3.33)

The paragraph 3.2.2.2, furnishes the analytic expression of the off-diagonal terms of
C∗, that are by the way proportional to ξTMD : C∗m,n =

2µ21
λm1 λ

n
1
ξs + 2µ1ξTMD

In fine, the nodal variance σ2
ẍ make appear two contributions of ξTMD: ξ2

TMD thanks
to the first term of the modal variance (and covariance too), and 1/ξTMD in the
second term.

8Applicability conditions of Cauchy’s residue theorem : The denominator’s polynomial admits
complex poles, and is two degrees higher than the numerator’s polynomial.
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3.3 Effect of a damper on a MDOF system

3.3.1 Approximation of the natural frequencies

→ A 3DOF system is now treated : a 2DOF structure assembled with a
damper. The matrix of mass and stiffness are given below :

M =

M1 0 0

0 M2 0

0 0 m

 ; K =

K1 0 0

0 K2 0

0 0 0

+ k

 ϕ2
1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1

 (3.34)

The TMD is taken tuned to the first structural mode, which leads to : m = ε2µ1M1

and k = ε2µ1(1 + 2εν2)K1. Dimensionless parameters are introduced to link the two
structural modes : β = Ω2/Ω1 and M2 = M2/M1. The first parameter measures
the distance between the two structural frequencies, its dimensionless form is :
β = 1 + bε, with b = ord(1). This form allows to limit the range of study to values
of the parameter β near 1, and with the objective to attain good approximations for
β reaching 1, 2 at least.

Taking (M1 = 1, K1 = 1), the substitution in 3.34 gives :

M =

1 0 0

0 M2 0

0 0 ε2µ1



K =

1 0 0

0 β2M2 0

0 0 ε2µ1

+ ε2µ1(1 + 2εν2)

 ϕ2
1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1

 (3.35)

In analogy with the system 2 × 2, and in order to maintain a consistency in the
dimensionless development, the matrices are now written in the new eigenvector
basis. The change of basis is operated by the introduction of the matrix A such that
:

A =

1 0 0

0 1 0

0 0 1/ε


The form of the mass and stiffness matrices, after the development of the dimensionless
form gives :
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M̃ = ATM A =

1 0 0

0 M2 0

0 0 µ1


︸ ︷︷ ︸

M0

(3.36)

K̃ = ATK A =

1 0 0

0 M2 0

0 0 µ1


︸ ︷︷ ︸

K0

+

 0 0 −µ1ϕ1

0 2bM2 −µ1ϕ2

−µ1ϕ1 −µ1ϕ2 2ν2


︸ ︷︷ ︸

K1

ε+ ord(ε2) (3.37)

Maintaining the power series expansion of λ = ω2/Ω2 and φ′ limited to the order ε1.
Similarly to the system 2× 2, the eigenvalue problem (K̃ − λM̃)φ′ = 0 gives rise to
2 equations :

• Order ε0 : (K0 − λ0M0)φ0 = 0

f(λ0) = |K0 − λ0M0| = 0 admits as solution λ0 = {1, 1, 1} .

• Order ε1 : (K1 − λ1M0)φ0 = 0

The resolution of the eigenvalue problem f(λ1) = |K1 − λ1M0| = 0 leads to an
equation of 3rd degree :

λ3
1 − 2(b+ ν2)λ2

1 + (4bν2 − µ1(ϕ2
1 +

ϕ2
2

M2

))λ1 + 2µ1ϕ
2
1b = 0 (3.38)

Three solutions are derived, where each one of them represents one of the three
modes. The reconstruction of λ = λ0 + ελ1, and the comparison with the exact
values guide to the association of the values of λ1 with the right modes.

Going from the equation (3.38), and considering the following set of parameters, an
equation of 2nd degree is derived : λ2

1 − 2ν2λ1 − µ1 = 0. This equation is the one
generating the solutions of λ1 in the 2DOF system. The consistency of the equation
is thus verified.

Dataset 1
β M2 ϕ1 ϕ2

1 1 1 0

Table 3.3: Dataset 1

Nevertheless, unlike the 2× 2 system, the analytic form of λ1 is not established in
an explicit way. For now, it is declared as unknown.
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3.3.2 Approximation of the equivalent damping

Based on the dimensionless form of the eigenvalues found in the section 3.3.1, the

replacement of λ1 in the system (K1 − λ1M0)φ0 = 0 leads to the definition of the

eigenvectors matrix Φ0 :

Φ0 =


−µ1ϕ1

λ11
−µ1ϕ1

λ21
−µ1ϕ1

λ31

− µ1ϕ2

(λ11−2b)M2
− µ1ϕ2

(λ21−2b)M2
− µ1ϕ2

(λ31−2b)M2

1 1 1

 (3.39)

Based on that, the generalized matrices can be computed. The projection on each
mode provides diagonal elements :M∗

i,i = φiT0 M0 φ
i
0 = (µ1ϕ1

λi1
)2 + 1

M2
( µ1ϕ2

λi1−2b
)2 + µ1

K∗i,i = φiT0 K0 φ
i
0 = (µ1ϕ1

λi1
)2 + β2

M2
( µ1ϕ2

λi1−2b
)2 + µ1

The damping matrix is decomposed such that the structural contribution and the
contribution of the damper are distinguished :

C̃s = ATCs A =

 2ξs 0 0

0 2M2ξs 0

0 0 0


︸ ︷︷ ︸

Cs,0

+

 0 0 0

0 2bM2ξs 0

0 0 0


︸ ︷︷ ︸

Cs,1

ε+ ord(ε2) (3.40)

C̃d = ATCd A = 2ε2µ1(1 + εν2)ξTMD

 ϕ2
1 ϕ1ϕ2 −1

ε
ϕ1

ϕ1ϕ2 ϕ2
2 −1

ε
ϕ2

−1
ε
ϕ1 −1

ε
ϕ2

1
ε2

 (3.41)

C̃d =

 0 0 0

0 0 0

0 0 2µ1ξTMD


︸ ︷︷ ︸

Cd,0

+

 0 0 −2µ1ξTMDϕ1

0 0 −2µ1ξTMDϕ2

−2µ1ξTMDϕ1 −2µ1ξTMDϕ2 2µ1ν2ξTMD


︸ ︷︷ ︸

Cd,1

ε

+ord(ε2) (3.42)
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Similarly to M∗
i,i and K∗i,i, the projection in the modal basis provides :C

∗
s,i,i = φiT0 Cs,i,i φ

i
0 = 2

(
(µ1ϕ1

λ1
)2 + 1

M2
( µ1ϕ2

λi1−2b
)2
)
ξs

C∗d,i,i = φiT0 Cd,0 φ0 = 2µ1ξTMD

The first order approximation of the damping ratio is subsequently computed :

ξ∗i,i =
C∗s,i,i + C∗d,i,i
2
√
M∗

i,iK
∗
i,i

=
µ1((ϕ1

λi1
)2 + 1

M2
( ϕ2

λi1−2b
)2)ξs + ξTMD

µ1((ϕ1

λi1
)2 + 1

M2
( ϕ2

λi1−2b
)2) + 1

(3.43)

Based on the same reasoning as in the 2× 2 system, the coupling elements of the
matrix are found :

ξ∗i,j =
µ1(

ϕ2
1

λi1λ
j
1

+ 1
M2

ϕ2
2

(λi1−2b)(λj1−2b)
)ξs + ξTMD

µ1(
ϕ2
1

λi1λ
j
1

+ 1
M2

ϕ2
2

(λi1−2b)(λj1−2b)
) + 1

(3.44)

The expression of ξ∗ has henceforth a lot of meaning, it represents a weighted average
of ξs and ξTMD, like it has been discovered previously. However it involves a complex
quantity that is the sum of two positive terms Γ = Γ1 + Γ2, where :

Γ1 = (
µ1ϕ1

λi1
)2, Γ2 =

1

M2

(
µ1ϕ2

λ1 − 2b
)2

A way of validating the expression (3.44), is to verify if its consistent with the results
of the 2DOF system. Indeed, considering the set of parameters aforementioned, the
expression found is the one established in 2DOF system section.

Given its definition, the extreme values of ξ∗ are naturally ξs and ξTMD.

• ξ∗ tends to ξs when λ1 → 0 ⇔ Γ1 is dominant, and when λ1 → 2b ⇔ Γ2 is
dominant ;

• ξ∗ tends to ξTMD when λ1 →∞ ⇔ Γ1 and Γ2 are both small. The intention is
to maximize the damping ratio, in this way the last case is the optimal one.

• The optimum to be reached is therefore the one for which the 2 quantities have
an equal importance, which constitutes an intermediate case : Γ1 = Γ2. In
other words, the TMD tuned on the first mode, comes to an influence in the
second mode. A criteria can be established on the position of the TMD :

ϕ1

ϕ2

= (1 +
2b

λi1 − 2b
)

1√
M2

(3.45)
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The equation (3.44) also reveals that the result of ξ∗i,i remains the same if ϕ2 is
multiplied by

√
θ andM2 by θ. It turns out that it is conform to the reality, according

to the next figure. The exact result of the equivalent damping remains unchanging
from a configuration to another.

Figure 3.10: Comparison of the exact result in the two configurations

In order to understand in depth the behavior of Γ, it is required to evaluate the
sensitivity of λ1 in function of principal parameters such as µ, β, M2, ϕ1 and ϕ2.

In the phase of research, it has been developed an alternative method which is
similar to the current one, except that the parameter β has been considered of ord(1)

without any other restriction. It may have a negative impact on the precision of
the solution. This argument is reinforced by the following figure, that displays the
natural frequencies along the ratio mass.

Keeping β free is also not an interesting choice, as if β exceeds a certain value, the
coupling effect between the modes disappears, which may question the global strategy
of the method.
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Figure 3.11: Comparison of the current approach vs. the obsolete approach
(Natural frequencies) (β = 1.2,M2 = 1)

On the other hand, the obsolete method (available in Appendix A3) presents a good
approximation of the eigenvalues as it has been observed before, but not satisfying
results for the approximation of the damping ratio, except the first mode (Figure
3.12). More importantly, it provides an analytic expression of λ1, likely to help
understand the contribution of each parameter.

Figure 3.12: Comparison of the current approach vs. the obsolete approach
(Equivalent damping ratios) (β = 1.15,M2 = 1)
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The sensitivity investigation :

In what follows, a consultation of the unknown λ1 is performed, in order to detect
how it is influenced by the evolution of the other parameters of the problem.

• Influence of µ

Figure 3.13: Variation of λ1 in function of µ

The figure reveals the behavior observed in Figure 3.4. Indeed, when µ grows,
the transfer function is attenuated and the distance between the peak locations
grows. Other, λ0 being equal to 1 in the three modes, it is λ1 that reveals
the evolution of the locations of the FRF’s poles, where the red curve would
represent the location of the common pole of the transfer functions, in a case
of an optimum setting of the TMD.

In absolute value, λ1 is a growing function of µ. It evolves as a square-root
function of µ for the first and second mode, which is confirmed by the analytic
solution found with the previous approach. On the other hand, the variation
in the third mode is linear, with a shift from 0.
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• Influence of β

Figure 3.14: Variation of λ1 in function of β, for different values of µTMD

It is showed in the figure that for the three modes, λ1 increases with β. Also
that, β influences more the behaviour of the third mode. At β = 1 there are
only two bumps : the modes are located at the same natural frequency, then
when β increases, the number of peaks goes from 2 to 3 : the first at the left
of the first natural frequency, the second at the right of the second frequency,
then the third between them. The green curve represents the second one, if β
goes to far right, the third root will naturally follow it. In parallel, and since
the TMD is tuned to the first mode, the common pole (in red) remains nearer
to the first root.

Observation : A series of trial and error has been performed, it has been
discovered that the shift in the third mode at µ = 0 (Figure (3.13)) follows
a linear progression for increasing β, through the function 2(β − 1) (Figure
(3.15)).

Figure 3.15: Variation of λ1 (Third Mode) for µ = 0 in function of β
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• Influence of M2

The variation along M2 : λ1 is increasing in the first two modes, and decreasing
in the third one. For the three curves, λ1 tends to a constant for higher values
of M2 : it is no longer sensitive.

It is also observed that the variability grows as µ grows : going from constant
tendency for small values of µ, to square-root distribution.

Figure 3.16: Variation of λ1 in function of M2, for different values of µTMD

• Influence of α

Figure 3.17: Variation of λ1 in function of α

The evolution of the roots is marked by slope failures, evidencing three segments
[0, 1], [1, β] and [β,+∞]. The second plot (in red) is particularly marked by
2 slope failures (at α = 1 and α = β), while the other curves just one. The
function knows a horizontal asymptote for α >> in the first mode, and a
horizontal asymptote for α << in the third mode. Whereas in the second, an
asymptote when α >> and when α <<. If the TMD is tuned other than in
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the interval [1, β], the distance between the eigenvalues becomes wider, and
the modal coupling disappears.

• Influence of (ϕ1, ϕ2)

Figure 3.18: Variation of λ1 in function of (ϕ1, ϕ2)

In the first mode, λ1 is sensitive to the combined variation of ϕ1 and ϕ2.
Whereas in the second and the third mode, the distribution is vertical for small
values of ϕ2. Subsequently, the distribution becomes diagonal for the second
mode (similarly to the first mode), and horizontal for the third mode.

Inverse strategy

Until now, the method goes in the direction of predicting the behavior of the response.
In other words, the inputs µ, ξTMD and α are known, and the goal is to verify if the
analytic model reproduces well the reality, and if the acceleration’s outcome is below
the threshold.

In the inverse thinking, the acceleration σẍ is limited by a threshold σẍ,lim, the goal
becomes the research of the values of the entry parameters. As reported by the first
chapter, the variance of the acceleration is a function of ω (thus of λ1), and ξ∗ that is
in itself a function of λ1. Writing the comfort criteria σẍ < σẍ,lim, it can be deduced
a criteria on λ1. Once this criteria determined, conditions can be derived for the 6
parameters (µ, β, α, ϕ1, ϕ2, and M2), given that λ1 is function of these.

However working in such a large space (6 dimensions) inevitably requires the
development of a strategy. The coefficients from the cubic equation (3.38), are
combinations of the previous parameters. Besides, the roots of the equation can
be expressed in function of these coefficients (Theorem of Cardano [12]). For these
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reasons, the coefficients can be introduced as the new parameters of the problem,
converting the problem to a 3 dimensions space (p0,p1,p2).

λ3
1 + p2λ

2
1 + p1λ1 + p0 = 0 (3.46)

The construction of these new variables requires the determination of their domain
of definition.

Start New
Parameter Range Parameter Range

µ [0, 0.05]
p0 [0, 0.1]

β [1, 2]
α [0, 2]

p1 [−4.55, 4]
M2 [0.1, 2]
ϕ2

1 [0.1]
p2 [−4, 2]

ϕ2
2 [0.1]

Table 3.4: Domain of definition of the new parameters

The following figures illustrate λ1 in the spaces (p2,p1), (p1,p0) and (p2,p0), keeping
the last variable fixed.

Figure 3.19: Influence of (p0,p1,p2) on the first root of λ1
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Figure 3.20: Influence of (p0,p1,p2) on the second root of λ1

Figure 3.21: Influence of (p0,p1,p2) on the third root of λ1

All what remains is to compose a set of the 6 parameters such that the criteria on
lambda1 is fulfilled. The aim of these ’maps’ is to offer the widest possible flexibility
to the designer, by proposing a solution that is not unique, as it was until now.
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4 Application on a case study

4.1 Presentation of the case study

The example that will be treated in this chapter is the footbridge of Mantes Limay
in Paris (France). This new footbridge dedicated to pedestrians and cyclists in an
ecoresponsible prospect. It will connect the city centre of Mantes-la-Jolie to the city
centre of Limay, restoring the continuity of the old bridge of Mantes.

A dynamic study will be carried out under crowd load without damper at first, and
with a TMD afterwards. The purpose is to predict the behavior of the structure
with the analytic model developed through the two previous chapters.

Figure 4.1: Architectural view of the footbridge of Mantes Limay (Paris)
http://www.smso.fr/index.php/lacces-aux-berges-et-a-leau/les-passerelles/14-lacces-aux-berges-et-a-leau/les-passerelles/

242-passerelle-de-mantes-limay

4.1.1 Modelling and modal parameters

The footbridge is treated like a 2D-member is composed by 3 spans with a total
length of L = 203 m, a width of l = 6 m and a mass M0 = 150 t. Its dimensions are
described in the Figure 4.2.
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Figure 4.2: Dimensions of the footbridge

It is assumed that a study has already been conducted to identify the natural
characteristics of the bridge within the lateral direction. The obtained first and
second natural frequencies are [f1, f2] = [1 Hz, 1.12 Hz]. The mode shapes associated
are shown on the Figure 4.3.

Figure 4.3: Mode shapes φi(x)

The footbridge is constituted by a metallic deck, the average value of the critical
damping ratio is ξs = 0.4%. The modal mass is the same in the first and second
mode, and they are both equal to the mass of the structure Mi,i = M0. In the
modal base, the stiffness matrix is also diagonal, where K = diag(ω2

i ·Mi,i). An
assumption is made for the viscosity matrix considering it diagonal as well, where
C = diag(2 ·Mi,i · ωi · ξi). The structure is load along the first DOF. The equation
of motion is written below :[

M1,1 0

0 M2,2

][
ẍ1

ẍ2

]
+

[
C1,1 0

0 C2,2

][
ẋ1

ẋ2

]
+

[
K1,1 0

0 K2,2

][
x1

x2

]
=

[
p1

0

]
(4.1)

The absolute value of the FRF is represented below bringing out the peaks related
to the natural frequencies f1 and f2.
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Figure 4.4: FRF without damper

4.1.2 Computation of the Loading

Deterministic Loading

Figure 4.5: Frequency range classification for all types of resonance risks (extracted
from the Sétra Guideline [8])

The Owner of the project is the one who specifies the class of the footbridge, coming
out of the definition of the level of traffic. It is considered a pedestrian density d of
0.8 m−2 associated to the case of a dense crowd (category II), leading to a number
of pedestrian N = d× S = 1000.

The Owner has also to establish the comfort requirement to reach, this condition
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is generally translated in terms of acceleration. In the transversal direction, the
pedestrian comfort limit is 0.10 m/s2, in order to avoid the "lock-in" effect that may
occur in the range 0.10 m/s2 to 0.15 m/s2.

The crowd load applied to the system is computed according to the Sétra Guideline
[8]. A load per unit area is obtained according to the following equation :

p(t) = d× (35N)× cos(2πf0t)× 10.8×
√
ξ

n
× ψ (4.2)

Figure 4.6: Representation of the harmonic loading modelling the crowd excitation

Stochastic loading

The loading is now modeled with a white noise. As a reminder it is the realization of
a random process in which the PSD is the same for all frequencies of the bandwidth.

Figure 4.7: Power spectral density of the loading

In favor of keeping the same energy as the deterministic determined loading, S0 is
computed from σ2

P = (
√

2Ph)
2, such that σ2

P is the energy of the harmonic signal,
and Ph its amplitude. This energy is now equalized to the energy of the white noise,
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representing also the integral of the PSD, providing :

S0 =
σ2
P

2ωmax

The following table display the set of parameters used to obtain the spectral excitation.
Where Nstep is the number of step considered, and dt is the time step. ωmax is defined
as the half of the pulsation of Nyquist ωmax = ωNy/2, where ωNy = 2π/dt.

Set of parameters
Nstep 5000
dt[s] 0.01
σP [N ] 470.3

ωmax[rad.s
−1] 315

S0 352

In the interest of generating p(t) =
∑n=+∞

n=−∞PneinΩt the time domain signal associated
to this PSD, it is needed to work with Fourier transformation. Since the loading p(t)
is considered real, a restriction must be verified on the coefficients Pn. Indeed, the
restriction is that p(t) must necessarily be equal to its combined complex p(t) = p(t)

:
+∞∑

n=−∞

PneinΩt =
+∞∑

n=−∞

Pne−inΩt =
+∞∑

n=−∞

P−neinΩt (4.3)

In order to conserve the result of the sum as real, the condition Pn = P−n has to be
verified.

Figure 4.8: Loading p(t) extracted from the PSD

4.1.3 Integration of the TMD

The introduction of a damper add another DOF to the system. The TMD is
characterized by its mass mTMD, its damping cTMD, and its spring kTMD.
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The proximity of the natural frequencies expressed by β = f2−f1
f1

goes in agreement
with the strategy that consists in the damping of 2 modes with a single TMD.

The mass, viscosity and stiffness matrix are changed : the dimensions are increased
(2× 2 to 3× 3), and apart from the mass matrix they are no longer diagonal, as it is
noticed in the following expressions.

M̃ =

M1,1 0 0

0 M2,2 0

0 0 m

 (4.4)

C̃ =

C1,1 0 0

0 C2,2 0

0 0 0

+ cTMD

 ϕ2
1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1

 (4.5)

K̃ =

K1,1 0 0

0 K2,2 0

0 0 0

+ kTMD

 ϕ2
1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1

 (4.6)

The nodal FRF associated to these new matrices is the written :

H̃(ω) = (−M̃ω2 + iωC̃ + K̃)−1 (4.7)

The Figure 4.9 highlights the evolution of the transfer function H̃, for a TMD
tuned on the first natural frequency.

Figure 4.9: FRF after implementation of the TMD

Generalization of the matrices
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The matrices M̃ , K̃ and C̃ are generalized, the new equation of motion and FRF
expression is the following :

M∗ ·

q̈1

q̈2

q̈3

+ C∗ ·

q̇1

q̇2

q̇3

+K∗ ·

q1

q2

q3

 =

p∗1(t)

0

0

 (4.8)

The structure is excited on its first DOF, by means of the white noise aforementioned.
The PSD of this loading is [SP ] such that :

[SP ] =

 S0 0 0

0 0 0

0 0 0

 (4.9)

The modal forces associated are derived from : [Sp∗ ] = [Φ]T [Sp][Φ]

4.1.4 Response of the system

Deterministic loading

The system is a particular, the addition of a 0.01 is sufficient to go below the threshold
of 0.1m/s2

Figure 4.10: The response of the system : nodal acceleration in function of time
with and without TMD

The next figure evidences the excitation frequency associated to the maximum of
acceleration. To clarify the observation, a cross-section (Figure 4.12) is performed
at x = 168m, with an increased mass ratio.
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Figure 4.11: Acceleration in function of the frequency of the excitation f0 and the
longitudinal distance x

Figure 4.12: Acceleration in function of the frequency of solicitation f0 ; at
x = 168m

A perturbation technique has been employed by Loore [5] for the development of an
analytic approximation of the FRF (4.11). A close-up in the vicinity of the resonance
has been performed using an extended coordinate :

ω̂ =
ω

ω1

= 1 + εη (4.10)

with η = ord(1)

Thanks to the method developed, it is possible to make fall the singularity present
in the approximation in the first order of the FRF.

H∗1 (ω̂) =
[
2µ(β − ω̂I + iΞ)−

µTMDφ
Tφ

2(α− ω̂ + iξTMD)

]−1 (4.11)
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Where :

µ =

[
1 0

0 M∗
2/M

∗
1

]
, β =

[
1 0

0 ω2/ω1

]
, Ξ =

[
ξ1 0

0 ξ2

]
(4.12)

To present a notation that is habitual to the reader, a transformation of the
dimensionless expression is proposed, where the variables are known :

H∗1 (ω) =
[
2[K∗ −M∗Ωω] + ω1C

∗ −
mTMDφ

Tφ

2(ωTMD − ω + iω1ξTMD)

]−1 (4.13)

Where :

Ω =

[
ω1 0

0 ω2

]
(4.14)

The analytic formulation of the transfer function allows to interpret the evolution
of the acceleration in Figure 4.12, from 2 peaks to a single one. The discussion is
presented by distinguishing 3 cases for µTMD :

• Low values : Two peaks are observed, the maximum values are reached at :

ω̂ = 1 ; ω̂ = 1 + β (4.15)

• High values : A single peak is highlighted, the maximum value is reached for
:

ω̂ = ω̂∗ =
φ2

2 + (1 + β)µ2φ
2
1

φ2
2 + µ2φ2

1

(4.16)

this value represents a sort of weighted mean between 1 and 1 + β. When the
modes are equal, ω̂ tends to 1 + β/2 which is exactly the middle between 1 and
1 + β.

• Intermediate values : The peaks located at the poles 1 and 1+β decrease to
reach a minimum value, then a transition to a single peak is observed located
at the pole ω̂∗, followed by a rise in amplitude.
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4.2 Results

In this section, the expression of the variance coming from the first chapter is
completed by the results of the analytic development of the modal properties coming
from the second chapter, giving rise to an expression completely analytic. The
purpose is to show that the model obtained predicts appropriately the behavior of
the response.

4.2.1 Approximation of the modal properties

4.2.1.1 Approximation of the eigenvalues

The following figure compares the analytic expression of the eigenvalues to the exact
outcome of the equation f(ω2) = |K − ω2M | = 0. The dashed curves converge well
to the solid ones, with a relative error growing with µTMD. The approximation of
the first mode presents the biggest error, sticking to the Figure 4.14. Concerning
the third mode, a shift appears with respect to the numerical computation : the
curves do not start from the same value. The relative errors, all modes confused,
remain below 3.5% for µTMD ≤ 5%

Figure 4.13: Evolution of the analytic result in function of µTMD, and comparison
with the numerical eigenvalues solution



62 4.2 Results

Figure 4.14: Relative error of the analytic expression with respect to numerical
eigenvalues solution in function of µTMD

4.2.1.2 Approximation of the damping ratio

Moving to the equivalent damping ratio, where the exact and analytic results of the
ξ∗i,i are represented in the Figure 4.15. Here again, the analytic function reproduces
well the shape, but not in terms of amplitude. The errors (computed and plotted in
the next figure) are increasing along µTMD, reaching 23% in the first mode, 16% in
the second and 30% in the third for a mass ratio of 5%.

Figure 4.15: Evolution of the analytic result in function of µTMD, and comparison
with the numerical equivalent damping ratio



4.2 Results 63

Figure 4.16: Relative error of the analytic expression with respect to the numerical
outcome of the equivalent damping ratio in function of µTMD

4.2.2 Approximation of the variance

The green curves speak for the correction of the uncoupled approach (blue curves)
after one iteration of the method [9]. The PSDs are therefore well approximated, for
diagonal and non-diagonal components of Sq̈, according to Figure 4.17 and 4.18.

Figure 4.17: PSD of Modal acceleration (diagonal components)
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Figure 4.18: PSD of Modal acceleration (non-diagonal components)

The analytic outcomes of the variance and covariance coming from the first chapter,
are linked to the uncoupled approach, hence they are compared to the ’Diagonal’
curves. This time, the natural frequencies and the damping ratios that emerge from
it, are replaced by the outcomes of the second chapter.

The variance computed through the integration of the PSD is depicted. According to
the following figure, it is coherent to the variance measured from the time simulation
of the response.

Figure 4.19: Comparison of the stochastic result of the variance of acceleration
with respect to the variance measured from the time simulation

The following figures depict the error of measured on the expressions of variance and
covariance. For a mass ratio 5%, the error attains as maximum : 12%.
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Figure 4.20: Relative error of the analytic expression of the modal variances with
respect to the exact outcome solution in function of µTMD

Figure 4.21: Relative error of the analytic expression of the crossed variances with
respect to the exact outcome in function of µTMD

In the Figure 4.22, the nodal variance associated to the first DOF is plotted in the
different configurations. The error related to the analytic variance at 5% of mass, is
estimated at : 16%.
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Figure 4.22: Evolution of the nodal variance in function of µTMD

Like it was done in the SDOF system, a validation of the model is proposed. The
variance of the acceleration is represented in the (α, ξTMD) domain for the first DOF
(the loaded DOF).

The ’Corrected’ map corresponds to the uncoupled system rectified with [9], the
result is obtained after three iterations. It converges well towards the exact result.
The ’Analytic’ map reproduces well the shape of the exact solution, as it depicts the
white region containing the minimal values of the variance. The α optimum is also
well approximated (αopt = 1.056). However, the criteria on ξTMD (ξopt = 0.67) is not
conform.

Figure 4.23: Representation of the variance of the acceleration in the (α, ξTMD)
space
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4.3 Conclusion of the application

The method is revealed to be satisfactory, as it imitates in a precise way the dynamic
behavior of an MDOF structure subjected to lateral vibrations. It provides a forecast
of the response, and offers a good approximation of the optimum domain (α, ξTMD).
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5 Conclusion

For footbridges subjected to crowd-induced vibrations, an estimation of the response
is requested for the assessment of the dynamic behaviour. When the vibrations
go beyond the comfort limits, the main structure can be equipped with a TMD to
reduce the vibration levels. The damper sees its properties tuned to the properties
of the footbridge. Optimal values are available in the literature for SDOF strutures,
where the natural frequency and damping ratio of the device are defined in function
of the input of the problem : the mass ratio between the damper and the primary
system.

This work focuses on the definition of the response thanks a spectral analysis using
stochastic operators, with the loading and the response designated by random
variables. Perturbation techniques has been employed to point out the interactions
between multiple modes (modal coupling). Based on assumptions on the order of
magnitudes of the different parameters, dimensionless formulations have been derived
for complex equations. The mentioned techniques proved to be a perfectly effective
tool in simplifying the basic problem. The formulas derived are simple, rich in
information, and with a scope that is quite general.

The document aims attention to the importance of modal coupling in the evaluation
of the criteria for bridge comfort. It proposes a complete analytic method permitting
to predict the response of a damped structure using a single TMD to dampen 2
modes simultaneously, which is not feasible with simplistic methods neglecting the
effect of coupling.

The generalization proposed could also make it possible to study the problems of
seismic or wind in buildings of high height. The proposed expression may, beyond
the use to which it is to be put, constitute a study object or a perfectly general
tool for characterizing the coupled dynamics of any structure comprising a damper.
Moreover, the overall approach followed here could also be applied in the case of the
use of several TMD, or even more sophisticated dampers, which still opens the door
to many additional investigations.

The personal contributions have involved :

• The computation of the acceleration variance and covariance analytic formula
based on Denoël’s displacement results [10] ;

• The adaptation of the method proposed by Denoël [9] (Method aiming to
rectify the uncoupled approach outcome, using the asymptotic expansion of
the transfer function), for the case of a normalization for a unitary maximum,
and the proposition of an analytic expression of the correction ;
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• The establishment of the first order approximation of the eigenvalues and the
equivalent damping ratios for SDOF and MDOF structures, treating with the
modal basis (employment of generalized matrices).
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Appendix

A1 Variance of displacement

The purpose is to demonstrate thanks to a perturbation technique the mathematical
sentence below, that declares the variance of the displacement, giving a white noise
loading of intensity S0 for an SDOF system.

σ2
q = S0

∫ +∞

−∞
|H(ω)|2dω =

S0

K2
· πωm

2ξ
(.1)

Starting from k2, that is defined as the following integral : with the introduction of
a new variable K(ω) = |H(ω)|2 illustrating the kernel of the problem.

k2 =

∫ +∞

−∞
K(ω) dω; K(ω) =

1

K2

1

(1− ( ω
ωm

)2)2 + (2ξ ω
ωm

)2
(.2)

The kernel can be expressed as the sum of a background component and a residual
one K(ω) = K̃(ω) +K(ω).

The background component K̃(ω) corresponds to the kernel evaluated in the low-
frequency range. Making ω tend to 0, an approximation in the vicinity of the origin
is obtained : K̃(ω) ∼ 1

K2 .

The residual component represents the quantity needed to recover the exact value of
the kernel. The shape of the kernel highlights the presence of two peaks corresponding
to the natural frequency and its negative image. A local approximation near the
natural frequency is sought, which induces the introduction of the strained coordinate
: ω = (1 + ξη)ωm, where ξ is the damping ratio and η = ord(1). ξ constitutes a
small quantity (order of magnitude lower than the other terms), it represents also a
characteristic of the resonant peak, since the peak’s width is of order ξωm.

K(ω(η)) = K(ω)− 1

K2
=

1

K2
(

1

(1− (1 + ξη)2)2 + (2ξ(1 + ξη))2
− 1)

A simplification is made on the last equation :

K(ω(η)) =
1

K2ξ2

(1 + ξη)2(1− 2ξη − (4 + η2)ξ2)

4(1 + η2) + 4ξη(2 + η2) + ξ2η2(4 + η2)

To focus on only one peak at a time, an approximation can be obtained by assuming
ξ << 1, which results in the suppression of the terms containing ξη. The resulted K
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represents a first residual, since it is associated to the peak of frequency ωm.

K(ω(η)) =
1

K2ξ2

1

4(1 + η2)

The expression is now lighter, with a degree 2 in the denominator instead of degree
4. The residual is now integrable, its integral is simple to compute :

k2,r1 =

∫ +∞

−∞
K(ω(η)) ξωmdη =

1

K2
· πωm

4ξ

The close-up on the second peak provides the second residual, and since the peaks
are similar, it can be written that : k2,r2 = k2,r1 . Finally, the variance is deduced :

σ2
q = S0 · k2,r = S0 · (2× k2,r1) =

S0

K2
· πωm

2ξ
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A2 Covariance of displacement

The purpose is to demonstrate thanks to a perturbation technique the mathematical
sentence below, that declares the covariance of the displacement, giving a white noise
loading of intensity S0 for an MDOF system.

σqm,n =
1

KmKn

Re
(Spm,n(ωm) + Spm,n(ωn)

2

ωm + ωn
2

π(ξ − iε)
2(ε2 + ξ2)

)
(.3)

Starting from k2, that is defined as the following integral : with the introduction of
a new variable K(ω) = Hm(ω)Hn(ω)

T
illustrating the kernel of the problem.

k2 =

∫ +∞

−∞
Spm,n(ω)K(ω) dω;

K(ω) =
1

KmKn

1

[1− ( ω
ωm

)2 + 2iξ ω
ωm

][1− ( ω
ωn

)2 − 2iξ ω
ωn

]
(.4)

The kernel can be expressed as the sum of a background component and a residual
one K(ω) = K̃(ω) +K(ω).

The background component K̃(ω) corresponds to the kernel evaluated in the low-
frequency range. Making ω tend to 0, an approximation in the vicinity of the origin
is obtained : K̃(ω) ∼ 1

KmKn
.

The residual component represents the quantity needed to recover the exact value of
the kernel. The shape of the kernel highlights the presence of ...

K(ω(η)) = K(ω)− 1

K2
=

1

K2
(

1

(1− (1 + ξη)2)2 + (2ξ(1 + ξη))2
− 1)

A local approximation is sought that permits the close-up on both natural frequencies
simultaneously. This induces the introduction of the strained coordinate ω(η) that is
centered on the average of the natural frequencies :

ω =
ωm + ωn

2
+ η (ωn − ωm) =

ωm + ωn
2

(1 + 2εη)

With : η = ord(1), and ε = ωn−ωm

ωm+ωn
a small dimensionless parameter that measures

the gap between natural frequencies.

Stepping back to the residual component, the following equation represents its
development with the introduction of the new coordinate :

K(ω(η)) =
1

KmKn

1 + 2ε2 + 4iξ(−2ε+ ε3)

D
;
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With :

D = 8ε2(−ε2+6iξε+2)η2+8ε(−iξε3−ε2+4iξε+2ξ2)η+(ε4−4iξε3−4ε2+8iξε+4ξ2)

To focus exclusively on the case where the natural frequencies are of the same order of
magnitude, an approximation can be obtained by imposing ε2 << 1. The condition
contains the cases : ε < ξ where the peaks are joined, and ε > ξ where the peaks are
separated. The result is the suppression of the terms of order ε3.

K(ω(η)) =
1

4KmKn

1

(4η2 − 1)ε2 + 2iξε+ ξ2

The expression is now lighter, with a degree 2 in the denominator instead of degree
4. On the other hand, it is performed a Taylor expansion of the PSD, such that :

Spm,n(ω(η)) = Sp(
ωm + ωn

2
) + S ′p(

ωm + ωn
2

)(ωn − ωm)η + ord(η2)

The PSD is approximated to its first term giving :

Spm,n(ω(η)) ≈ Sp(
ωm + ωn

2
) ' Sp(ωm) + Sp(ωn)

2

Finally, the residual is integrable. Its integral k2,r is decomposed such that k2,r =

k2,r1 + k2,r2 , where k2,r1 captures the resonant peaks on the positive side of the
frequency domain, and k2,r2 its complex conjugate.

k2,r1 =

∫ +∞

−∞
Sp(ω(η))K(ω(η))

ωm + ωn
2

2ε dη

=
1

4KmKn

Sp(ωm) + Sp(ωn)

2

ωm + ωn
2

∫ +∞

−∞

2ε

4η2ε2 + (ξ + iε)2
dη︸ ︷︷ ︸

I1

I1 is obtained performing Cauchy’s residue theorem, since the applicability conditions
are fulfilled by the rational fraction :

• The denominator admit complex poles where at least one of them has a positive
imaginary part ;

• The degree of the numerator + 2 ≤ The degree of the denominator ;

I1 =
π(ξ − iε)
(ε2 + ξ2)

(.5)

The replacement of I1 in k2,r1 gives :

k2,r1 =
1

KmKn

Sp(ωm) + Sp(ωn)

2

ωm + ωn
2

π(ξ − iε)
4(ε2 + ξ2)

(.6)
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Finally the addition of the contribution of k2,r2 provides the wanted result of k2,r :

k2,r =
1

KmKn

Re
(Spm,n(ωm) + Spm,n(ωn)

2

ωm + ωn
2

π(ξ − iε)
2(ε2 + ξ2)

)
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A3 Approximation of the eigenvalues (Alternative
method)

M̃ = ATM A =

1 0 0

0 M2 0

0 0 µ1


︸ ︷︷ ︸

M0

(.7)

K̃ = ATK A =

1 0 0

0 β2M2 0

0 0 µ1


︸ ︷︷ ︸

K0

+

 0 0 −µ1ϕ1

0 0 −µ1ϕ2

−µ1ϕ1 −µ1ϕ2 2ν2


︸ ︷︷ ︸

K1

ε+ ord(ε2) (.8)

Limiting the power series expansions to the order ε1. Similarly to the system 2× 2,
the eigenvalue problem (K̃ − λM̃)φ′ = 0 give birth to 2 equations :

• Order ε0 : (K0 −M0λ0)φ0 = 0 ⇒ λ0 = {1, 1, β2}

• Order ε1 : (K1 − λ1M0)φ0 = 0 ⇒ λ1 = {0, ν2 ±
√
ν2

2 + µ1(ϕ2
1 +

ϕ2
2

M2
)}

The obtained formula of λ remains coherent with the result found in the 2DOF
system. It represents a generalization, the Equation (3.10) is met when the following
parameters are set :

Set of parameters
β M2 ϕ1 ϕ2

1 1 1 0

3 eigenvalues are expected from a 3DOF system. However, the analytic development
provides 6 possible combinations of λ = λ0 + ελ1. When exploring the different
cases, the case λ1 = 0 seems to state that one of the eigenvalues λ remains constant,
even when µ increases. This case is not possible, it is thus eliminated, leaving 4
possibilities for λ.

λ =

1 + ε(ν2 ±
√
ν2

2 + µ1(ϕ2
1 +

ϕ2
2

M2
)

β2 + ε(ν2 ±
√
ν2

2 + µ1(ϕ2
1 +

ϕ2
2

M2
)

ω =


Ω1

√
α +

√
(α− 1)2 + µ(ϕ2

1 +
ϕ2
2

M2
)

Ω1

√
β2 + α− 1 +

√
(α− 1)2 + µ(ϕ2

1 +
ϕ2
2

M2
)
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ω =


Ω1

√
1 +

√
µ(ϕ2

1 +
ϕ2
2

M2
)

Ω1

√
β2 +

√
µ(ϕ2

1 +
ϕ2
2

M2
)


