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Abstract

The main objective is to develop and test an Electrical Ground Support Equipment (EGSE). The
EGSE is the device that ensures the proper operation of OUFTI-2. Of course, it is essential to fully test
any satellite before sending it into space. The choice of only 27 pins or signals was decided in advance for
their importance. Their importance comes from the fact that they are essential for the proper operation
of OUTFI-2.

The first step was to build the actual device that will perform data acquisition. This will consist of a
hardware device that can be interfaced to a PC. Because of their different natures, signals were divided
into two categories : the SPI signal and the non-SPI signal. The SPI signals consist of communication
signal that allow the On-Board Computer to communicate with some subsystems. For SPI signals, a logic
analyzer has been used to acquire them. The logic analyzer had the advantage to be compatible with a
software suite that allows easy interface with the PC. For non-SPI signals, the acquisition was done by us-
ing a Arduino Uno. To interface the non-SPI signal to the PC, the logic analyser was reused since channels
remain available. However, the strategy used for data acquisition turned out to be not possible. Indeed,
thanks to numerous tests, and despite concessions, it turned out that the solution found to acquire the
data could not work. These early tests avoided implementing a hardware solution that was doomed to fail.

However, another component of the work was to work on data processing. Despite the failure in data
acquisition, it was possible to progress in the software part of the EGSE. The EGSE software must allow
data processing and display in a graphical interface. To move forward in this part, it was necessary to
define the structure of the data acquired by the data acquisition part of the EGSE. Many tests have been
done to validate the code as much as possible. Most of the validation was done on real data exchanged
by using logic analyser. For the sotware part, the EGSE is up to date with the modules implemented for
the moment.

In the end, ideas and observations that I was able to collect to find an alternative for data acquisition
as well as an EGSE status report has been provided in order to have another student taking the lead in
this project.
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Chapter 1

Introduction and context

1.1 OUFTI-2: brief background
OUFTI-2 is a 100% Belgian educational satellite. It consists of a CubeSat, a cube nanosatellite of

10cm x 10cm x 11.35 cm. Its predecessor is OUFTI-1. It was the first satellite built by students in
Belgium! The main objective of OUFTI-1 was to test the use of a digital communication protocol for
amateur radio developed by the Japan Amateur Radio League: D-STAR (Digital Smart Technologies for
Amateur Radio).

However, after a successful launch on April 25, 2016, an unidentified problem occurred. As a result, it
was not possible to use the D-STAR. The only signals transmitted by OUFTI-1 via a system independent
of D-STAR, a beacon that uses the Morse code, continued to transmit for 12 days. In the end, all contact
with OUFTI-1 was lost on May 7, 2016.

As a successor to OUFTI-1, OUFTI-2 will share the same mission, which is to test and use the D-
STAR protocol; this remains the main payload of the nanosatellite. But two other additional payloads
(discussed later) will be present in OUFTI-2: RAD and IMU.

1.2 CubesSat
The CubesSat were born in 1999 from the efforts of 2 professors: Jordi Puig-Suari, from the Califor-

nia Polytechnic State University (Cal Poly), and Bob Twiggs, from Stanford University’s Space Systems
Development Laboratory (SSDL). The aim was to allow the emergence of educational projects related to
space by facilitating access to it by creating the standardised nanosatellite CubeSat.

Indeed, the CubeSat standard defines a reference size, called the CubeSat unit: 1U. A 1U CubeSat
corresponds to the dimensions: 10cm x 10cm x 11.35 cm [1]. The weight of a 1U CubeSat is close to 1kg
but can vary around 0.8-1.3 kg. OUFTI-2 is an 1U CubeSat like its predecessor. Larger CubeSat can be
defined as 3U (∼ 5 kg) which will be 3 x 11.35cm high or even 27U (∼ 35 kg) which will be 27 x 11.35cm
high.

In considering these standards, the term nanosatellite may seem inappropriate for an object of this
size, but it should be remembered that a "small" satellite in the space domain generally refers to objects
below 300-500 kg.

1.3 Presentation of the subsytems present in OUFTI-2
In the scope of this project, it is necessary to discuss the boards and subsystems present in OUFTI-2.

As one can obverse in Figure 1.1, different boards are present. One of the particularities is that each
board contains a PC104 connector, which facilitates communication and interconnection between the
boards. As one can see in Figure 1.1, the PC104 has been designed to allow to stack boards one above
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the other. Indeed, thanks to its size (9 x 9.6 cm) which allows to respect the size constraints imposed by
the CubeSat standard, PC104 boards are often used in CubeSats.

Figure 1.1: Exploded view of OUFTI-2

First, the goal will be to briefly present each board, from top to bottom. Later on, when necessary,
more precision about specific module present in these boards will be provided.

The first board is COMM, for communnication, which contains component related to the two com-
munication protocols: AX.25 and the D-STAR payload. The AX.25 is used to communicate with the
nanosatellite. As for the D-STAR, as explained above, the main goal of OUFTI-2 will be to act as a relay
for D-STAR communications.

The board below contains the beacon that uses the Morse code, named BCN, and the IMU (Inertial
Measurement Unit) payload. The IMU is one of the new secondary payload. IMU has been developed
by secondary school students and uses various sensors to determine the altitude of OUFTI-2. BCN is
the subsystem that was also present on OUFTI-1 and that had continued to transmit for 12 days. BCN
is used to send measurement information of other subsystems.

The next board contains the battery and, right below the battery, is the EPS (Electrical Power
Supply) boards. The EPS is responsible for powering all other boards. EPS is obviously connected to
the solar panels and the battery that will be useful for the periods when the solar energy will not be
available.

The next board is the board containing theOBC (On Board Computer). TheOBC board supervises
the proper operation of OUFTI-2. The microcontroller on this board is the DPC (Digital Programmable
Controller) from ThalesAlenia Space. An important note that will be useful for the future is that, in this
board, is present the FRAM (Ferroelectric RAM) which serves as an additional memory for the DPC.
For instance, various measurements are communicated to the FRAM to be stored before sending them to
Earth. Back to the DPC, it contains 3 cores and has the significant advantage of having been designed
to go into space. Indeed, it can withstand radiation much better than a conventional microcontroller.

Speaking of radiation, the last payload is related to this theme. Indeed, the last payload is the other
new secondary payload: RAD. The purpose of this payload is to determine the degree of protection of
different shielding against radiation. To do this, 3 identical circuits are present with different shielding: a
reference circuit without shielding, one with aluminium shielding and the last one is a multilayer shield-
ing. Measurements will be sent to the ground to study the effect of these shields.
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For the other important elements, on top of Figure 1.1 are the VHF (Very High Frequency) antenna
for transmission and UHF (Ultra High Frequency) antenna reception. Then, the ADCS (Attitude
Determination and Control System) is a passive system for controlling the orientation of the nanosatel-
lite. Then, there are, of course, the solar panels and the last element is MECH. This is the mechanical
system that allows the deployment of Antennas.

1.4 Objectives of the project
The main objective is to develop and test an Electrical Ground Support Equipment (EGSE). The

EGSE is the device that ensures the proper operation of OUFTI-2. Of course, it is essential to fully test
any satellite before sending it into space.

As discussed above, each board follows the PC104 standard. Each connector contains the same signals
i.e. the pin allocation of each connector is the same. This is a prerequisite for stacking 2 boards. The
goal of the EGSE will be to acquire and analyse only a part of them. Indeed, of the 104 pins, only
27 will be read.

1.4.1 Signals that must be monitored
The choice of only 27 pins or signals was decided in advance for their importance. Their importance

comes from the fact that they are essential for the proper operation of OUTFI-2. Three categories of
signals can be distinguished:

1. Voltages that supply the different subsystems.

2. Signals related to the activation of certain subsystems and a battery charge indicator.

3. Communication signals that allow the DPC to exchange data with subsystems.

Figure 1.2: Simplified view of the interconnection between subsystems.

In Figure 1.2, a simplified overview of the interactions between subsystems is presented. The voltages
to be monitored come from the batteries and the EPS subsystem. A total of 6 voltages will be read by
the EGSE. All the others signals that must be retrieved by the EGSE are digital signals. One of them
is located in the batteries and indicate that the battery is 100% charged. Still in Figure 1.2, one can
observe protection components before some subsystems. Those protection component allows the OBC to
activate or deactivate a subsystem by means of digital signals; the ENABLES.

The last digital signals to be retrieved by the EGSE are the communications signals that consist of
SPI buses clocked at maximum 3.75 Mhz. The SPI buses are used by the DPC to transmit and receive
data with subsystems as shown in Figure 1.3. Indeed, in Figure 1.3, all the elements that can interact
with the DPC are listed.
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Figure 1.3: Simplified view of subsystems that communicate and exchange data with the DPC through
SPI

Actually, we have already discussed about a component present in Figure 1.3: the FRAM. In fact,
the FRAM is the memory in which the DPC records measurements and events. The only last element
not yet discussed are the ADCs (Analog to Digital Converter) present in the EPS and COMM boards.

1.4.2 Objectives of the EGSE
The first goal of the EGSE will be to acquire the signals discussed above. After acquiring the contents

of these pins, some data processing will be performed. Then, the output of the data processing will be
displayed on a PC. As summarized in Figure 1.4, during the test phase of OUFTI-2, a PC104 connector
will be available and will be connected to the EGSE which will send the contents of the pins to the PC
for display.

Figure 1.4: From the PC104 connector, three types of signal are available: SPI signals, Digital signals
and analog signals. Their content are read by an EGSE and sent to the PC for display.

Figure 1.5 details the actual names of each signal.
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Figure 1.5: From the PC104 connector, three types of signal are available: SPI signals (in red), Digital
signals (in green) and analog signals (in blue). Their content are read by an EGSE and sent to the PC
for display.

As shown in Figure 1.5 and 1.4, the EGSE consists of two main elements: data acquisition and data
processing. Figure 1.6 illustrates the content of the two elements.

Figure 1.6: Simplified block diagram showing the main elements constituting the EGSE: the data acqui-
sition part (hardware) and the data processing part (software)

Therefore, as shown in Figure 1.6, two main tasks will be required to build the EGSE:

1. To build the actual device that will perform data acquisition. This will consist of a hardware device
that can be interfaced to a PC.

2. To process the signal acquired. Concretely, it means creating a software that will take as input the
data acquired and decode the data acquired. Then, the result of the data processing will be display
in a graphical interface.

5



Therefore, the first chapters will naturally be focused on the data acquisition. First, the signals of
interest will be characterised. Then, depending on signals, ways to acquire them will be discussed. The
main solution for data acquisition investigated in this work will be explained. The data acquisition is
based on a hardware device called a logic analyzer.

The second part of this document will focus on the way the data are decoded. I was able to develop
the JavaFX-based software that allows the acquired data to be processed. Many tests have been done to
validate the code as much as possible.

In the end, a status report will summarize the state of the EGSE.
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Chapter 2

Signals to be acquired

2.1 List of the signals
To identify the requirement the final equipment will have to meet, the first step is to list the signals

that must be acquired by the EGSE. As said in the introduction, 27 signals are directly accessible via a
PC104 connector. Figure 2.1 shows a PC104 connector.

Figure 2.1: PC104 connector: 104 pins divided into 2 headers: H1 is the inner part and H2 is the outer
part.

To identify a pin, 2 equivalent methods are possible. The first would be to number them from 1 to
104. The second one, as shown in Figure 2.1, is to define two headers: H1 and H2. Each contain 52 pins,
i.e. a total of 104 pins. Depending on the datasheets, this may vary. In OUFTI-2, header 1 is the inner
part of the PC104 connector and header 2 is the outer part.

In the following table, one can find a summary of all the signals, chosen in advance because of their
importance, that must be read. This is based on a document file, an excel file, last modified in February
2019 (v3.2 version), showing the pin attribution of the PC104 connector.

As can be seen in the table, several types of signals can be distinguished:

− The ENABLES and BAT_FULL

− The SPI_ types

− The Analog data or Voltage

7



Bus Pin on PC104 Bus Description

H1 1 1 ENABLE_RAD
H1 2 2 ENABLE_IMU
H1 3 3 ENABLE_BCN
H1 4 4 ENABLE_COM_RX
H1 5 5 ENABLE_COM_DSTAR
H1 6 6 ENABLE_COM_PA
H1 7 7 ENABLE_COM_TX
H1 17 8 SPI_CLK
H1 18 9 SPI_MISO
H1 19 10 SPI_MOSI
H1 20 11 SPI_CS_FRAM
H1 21 12 SPI_CS_IMU
H1 22 13 SPI_CS_RAD
H1 23 14 SPI_CS_ADC1
H1 24 15 SPI_CS_ADC2
H1 25 16 SPI_CS_ADC3
H1 26 17 SPI_CS_BCN
H1 27 18 SPI_CS_BATT
H1 28 19 SPI_CS_COM
H2 77-78 20 5V
H2 75-76 21 3V3 GENERAL
H2 81-82 22 DGND
H2 91 23 BAT_FULL
H2 93-96 24 IDIODE
H2 97-98 25 BATVBUS

Not found / 26 1.8V
Not found / 27 3.3V

Table 2.1: Pins number and description. (H1 stands for header 1, H2 stands for header 2)

− The Ground

Each signal will be detailed separately below.

2.2 Description of the signals

2.2.1 ENABLES signal and BAT_FULL
ENABLES signal

First of all, as discussed before, the DPC is linked to a number of subsystems. A danger that could
arise is that one a malfunction of a subsystem could risk endangering the DPC. Indeed, one of the subsys-
tems may suffer from short circuits. This would mean that the DPC could suffer from this short circuit
since the DPC is in direct contact with these subsystems. Thus, to ensure safety and full control of the
DPC, it is necessary to allow the DPC to disable a subsystem if it has a short circuit. To do this, a
current limit switch is placed directly between the DPC and the subsystem.

The current limit switch used is MAX14575. Its operation can be understood using Figure 2.2.
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Figure 2.2: Schematics of the current limit switch MAX14575 [2]

The supply voltage of the subsystem first passes through the current limit switch. The different pins
are described in Figure 2.3.

Figure 2.3: Description of the MAX14575 pins [2]

To fully understand how it works, it is necessary to consider what happens when there is a short
circuit. Once a short has appeared, a flag is raised to inform the DPC. Following this, the DPC may
choose to stop powering a subsystem. To do so, the DPC can modify the value of the EN pin (in Figure
2.3) to disable the faulty subsystem. Therefore, the purpose of ENABLES is to allow the DPC to enable
or disable a subsystem.

In conclusion, the value of the ENABLES can be either Low, to disable a subsystem, or High, to
activate it as shown in Figure 2.4.
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Figure 2.4: Voltage threshold to set a LOW or a HIGH [2]

In the case of OUFTI-2, the voltage value of the ENABLES is 0 V in Low (subsystem disabled) and
3.3 V in High (subsystem enabled).

The following table summarises the important information for the ENABLES signals.

Signal Type of signal Minimum Value Maximum Value Description

ENABLES Low or High 0 V 3.3 V Allows the DPC to enable
or disable a subsystem.

Table 2.2: Important information about the ENABLES signals

BAT_FULL

The common point with the ENABLES signals is that it consists of a digital signal. Indeed, it can
only take 2 possible values: High or Low. The purpose of BATT_FULL is to indicate that the battery
is 100% charged.

2.2.2 The SPI_ types
As discussed before, the DPC communicates with various payloads present in OUFTI-2. The com-

munication protocol used by the DPC to communicate is the SPI (Serial Peripheral Interface).

The SPI communication always requires at least one master and one slave. In a context of serial
communication, a master is the module that will have the control of the communication and the slave is
the module that will execute the instructions ordered by the master.

In the case of OUFTI-2, the master is the DPC and the slaves are different subsystems/modules that
interact with the DPC. For example, to have a clear example in mind, one module is an ADC responsible
of measuring some parameters like voltage, temperature,... The DPC may request measurement values
from the ADCs. In this case, it is always the DPC that initiates the communication. Indeed, it is always
the DPC that will ask for the measurement values and the ADCs must respond by sending the measure-
ments. Therefore, in no event may ADCs send measurements to the DPC without a first request from
the DPC. That’s why the DPC is called the master of communication and the ADC modules are the slaves.

More details about how the SPI communication actually works will be given in section 3.1 as well as
the different modules with which it communicates. For the time being, the important point to remember
is that SPI signals can only take two values, High and Low, and are used for data communication between
the DPC and modules/subsystem/payload.

The following table summarises the important information for an SPI signal.

Signal Type of signal Minimum Value Maximum Value Description

SPI Low or High 0 V 3.3V Data communication between
the DPC and payloads

Table 2.3: Important information about the SPI signals
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2.2.3 The Analog data
The last signals to be discussed have in common that they are not digital signals, i.e. only High or

Low possible, as it was the case with the signals previously discussed (ENABLES, BATT_FULL, or SPI
signals) but analog signals.

Two categories can be distinguished:

− Fixed voltages: 5V,3.3V High, 3.3V Low,1.8V

− BATVBUS and Idiode

Fixed voltages

Fixed voltages are quite different from the previous signals that carried only binary information, either
High or Low. Indeed, in this case, it will be necessary to measure the actual value of those signals. .

The purpose of each voltage is shown in the following Table

Fixed voltage Description
5V To power the beacon (Morse code)

3.3V High
(High stands for high current) To power the transmission communication

3.3V Low
(low stands for low current) To power most of the subsystems

1.8V To power the DPC

Table 2.4: Purpose of each fixed voltage

Some ADCs will be involved to get the value of those voltages. It will be necessary to define how
accurate must the measurements of those voltages be. Indeed, the first thing to define is the desired
resolution. The required resolution must be at least 8 bits and does not need to be more than 12 bits.
Indeed, if one considers the example of 5V, with a resolution of 8bits, variations of 20 mV (5/28=0.0195V
) can be measured which is sufficient for this projet. More detailed will be provided in a section dedicated
to the choice of an ADC. The following table summarises the important information for the fixed voltage.

Signal Type of signal Expected Value Resolution Description
5V, 3.3V (high),
3.3V (low), 1.8V Analog Fixed value 8-12 bits Power voltage

Table 2.5: Important information for the fixed voltage.

BATVBUS and Idiode signal

The Idiode and the BATVBUS signals are part of the BATT subsystem which means it is related to
batteries. Both are voltages that will also require an ADC to read this signal. The same resolution as
with the fixed voltages will be chosen for this signal. The Idiode corresponds to the battery voltage. The
EPS subsystem contains some DC/DC converters and BATVBUS is actually the voltage right in front
of the DC/DC converters. The Table 2.6 summarises the important information for both the Idiode and
the BATVBUS signals.

Signal Type of signal Minimum
Value

Maximum
Value Resolution Description

Idiode Analog 0V 8.4V 8-12 bits Battery voltage

BATVBUS Analog 0V 8.4V 8-12 bits Voltage before
DC/DC converters

Table 2.6: Important information for BATVBUS and Idiode signals
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2.3 Summary of the signals
The Table 2.7 summarises the main information for all signals.

Signal Type of signal Total number Description

ENABLES Digital 7 Allows the DPC to enable
or disable a subsystem

BATT_FULL Digital 1 Satellite powered off or on
SPI Digital 12 SPI lines to communicate data

Fixed voltage Analog 4 Power voltage
Idiode Analog 1 Battery voltage

BATVBUS Analog 1 Voltage before DC/DC converters

Table 2.7: Summary of all signals

It was essential to clearly identify the nature of the signals to be acquired. Indeed, without this infor-
mation, it is impossible to establish which requirements the acquisition device to be built will have to meet.

2.4 Overview of the data acquisition solution
Now, to better understand the next sections, it is interesting to first give an overview of the hard-

ware solution for data acquisition. The goal is to give a general view. Obviously, all the justifications
related to the choices that led to this hardware solution will be well explained later in the relevant sections.

Figure 2.5: Illustration of the hardware solution to acquire data and transmit it through the PC using a
specific device

First of all, among different types of signals, the less obvious ones to acquire are the SPI signals due too
a high clock rate (3.75 MHz). So, the first step was to find a hardware device that could easily read the SPI
data and transmit them to a PC. Then, this device will also be useful to send the rest of the signals, i.e.
the non-SPI signals to the PC. Indeed, a microcontroller will send the value of the non-SPI signals to this
hardware device. And similarly to the SPI signals, the non-SPI values will then be transmitted to the PC.

The next sections, the acquisition of SPI data will, naturally, be discussed first.
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Chapter 3

Acquisition of the SPI signals

The starting point of the reflection is that the most complicated signals to read will be the SPI
communication. It is thus important to explain how the SPI protocol works. Indeed, one main objective
of the project is to be able to read SPI communications between the DPC and the different modules in
OUFTI-2.

3.1 Explanation of the SPI protocol
The SPI requires 4 wires to establish communication between two modules as illustrated in Figure 3.1.:

1. MOSI: Master Out Slave In, the data sends by the master to the slave

2. MISO: Master In Slave Out, the data received by the master from the slave

3. SCLK: the serial clock controlled by the master.

4. CS: Chip Select, the master chooses with which slaves the data is exchanged.

Figure 3.1: Illustration of the wires needed for SPI communication. To communicate with one single
module, 4 wires are required: MISO,MOSI,SCLK,CS

For MISO and MOSI, the format of data sent is not standard. Indeed, it is always necessary to
check in the datasheet of the slave modules if it is the MSB (Most Significant Bit) or the LSB (Less
Significant Bit) that must be sent first.

For the CS, since a master can have several slaves, one can thus have several CS lines for each slave
module. This is illustrated in Figure 3.2
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Figure 3.2: To communicate with a specific slave module unambiguously, a CS is assigned to each slave
module

When the master wants to communicate with a slave module, it simply set the corresponding CS.

The line that really needs more details is the SCLK line. First of all, SCKL corresponds to a clock,
i.e. a high and low state oscillation at a certain frequency. A change of state is called a single edge. For a
transition from high to low state, the appellation is a falling edge and conversely from low to high state,
the appellation is rising edge. So, using single edge, this line allows to give an indication to the master
when to send the data to the module and an indication to the module when the data should be sampled.

Since the clock can be idle at low or high states and two single edge, falling and rising edge, can be
possible, for a given frequency, different clocks could be defined. Indeed, the SCLK can have 4 different
modes. Those four modes are characterised by two variables CPOL and CPHA:

1. CPOL characterises the idle state of the clock: logic high and logic low.

2. CPHA specifies when to sample the data on the MISO and/or MOSI line: on the leading edge or
on the trailing edge of the clock.

In the next table, one can find the four different modes.

CPOL CPHA Mode
0 0 0
0 1 1
1 0 2
1 1 3

Table 3.1: 4 modes possible in SPI

Practically, the difference between the modes is show in Figure 3.3.
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Figure 3.3: Difference between the 4 SPI modes [3]

Why take the time to explain the different possible clocks? For two main reasons. First, if the mode
is not known in advance it is not possible to decode correctly because depending on the chosen mode,
since the data are not sampled at the same time, the data will be interpreted differently.

A second reason, which will be covered during the decoding part of the modules, is that modules
can handle different modes. Moreover, some modules have specificities that depend on the clock mode.
This is the case for some modules, the ADCs, which, depending on the mode chosen, allows different
functionalities. At the opposite, some modules do not support certain modes. So, the mode of every
module must be clear in advance.

After this explanation, it becomes obvious why, surely, the SPI signal were the more complicated
signal to acquire properly. Indeed, it is first necessary to sample at a sufficiently high frequency, to be
attentive to the change of each chip select, once a select chip is activated, it is necessary to be attentive
to the clock and to read the data according to the clock mode.

Only at the right moment, which must match the SPI mode, one bit must be sampled. Once the word
size, typically 8bits, is reached, the byte can be recorded. Then, whenever a byte is available, it can be
sent for processing. And at the end, depending on the selected chips select, it will be possible to give the
specific meaning each module after decoding the byte sent properly.

In our case, it is DPC that will communicate with the different modules. So,after having described
precisely how the SPI works, it will be necessary to describe the different modules and the possible
interactions with the DPC. The detailed interactions between the DPC and the modules will be largely
discussed in the decoding part but for now, the different modules can be already briefly described.

3.2 Modules and payloads interacting with the DPC
From the Table 3.2, the different chips select names were already teasing the 9 modules with which

the OBC interacts.
The different modules, briefly discussed during the introduction, that communicate with the DPC are

shown in Figure 3.4.
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Bus Pin on PC104 Bus Description

H1 20 11 SPI_CS_FRAM
H1 21 12 SPI_CS_IMU
H1 22 13 SPI_CS_RAD
H1 23 14 SPI_CS_ADC1
H1 24 15 SPI_CS_ADC2
H1 25 16 SPI_CS_ADC3
H1 26 17 SPI_CS_BCN
H1 27 18 SPI_CS_BATT
H1 28 19 SPI_CS_COM

Table 3.2: Part of Table 3.2 taking only the CS signals

Figure 3.4: All subsystems that communicate and exchange data with the DPC through SPI

From Figure 3.4, the different modules are:

1. FRAM: Memory to save measurement and events before sending them to Earth.

2. IMU: IMU payloads.

3. RAD: RAD payloads.

4. BCN: BCN subsystem.

5. ADC1, ADC2, ADC3: some Analog to Digital Converter. More details below.

6. BATT: Detailed below.

7. COM: Detailed below.

ADC1 and ADC2 are located on the EPS board. The reference of the ADCs is the MAX1231 from
Maxim Integrated. ADC3 is located in the COMM board. It the same reference. Many signals are
digitized thanks to these ADCs: temperatures, voltages,... A temporary scheme of some of the signals
digitized by the ADCs is shown in Figure 3.5.
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Figure 3.5: Schematic prints of the ADC. ADC1 is on the left. ADC2 is on the right. Various signals are
digitized and are different for the two ADCs

The BATT stands for the batteries. One remark about the batteries is that it cannot communicate
in SPI but uses another protocol communication: the I2C. In the scope of this project, it is not necessary
to explain how the I2C works in details but it is like the SPI. It uses a common clock but only one data
line to communicate. So, in order to communicate with it, an I2C-SPI converter is used. For clarity’s
sake, this converter is not shown in Figure 3.4.

The last module is the COM. It refers to the COMM subsystem and more precisely the D-STAR
payload. The content of the communication is more detailed on the decoding part.

One important remark is that the clock frequency depends on the module as shown in Figure 3.6.

Figure 3.6: Different clock frequency used by the DPC to communicate with the module

Indeed, each module has its own maximum clock frequency that cannot be exceeded in order to
communicate with it. Therefore several clock frequencies can coexist. For example, the D-STAR com-
municates at the maximum frequency of 125 kHz. So, in order for the DPC to communicate with the
D-STAR, it will set the clock frequency at 125 kHz. However, the DPC has a maximum clock frequency
which is around 3.75 MHz. Therefore, the DPC will communicate with the others modules like the ADCs
and the FRAM with a clock frequency of 3.75 MHz because they can withstand this clock frequency.
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3.3 Requirements to be met
To design correctly the hardware device, it is necessary to specify the requirements to be met.

The first one is the number of channels i.e. the number SPI lines. There are 3 lines for the MISO,
MOSI, SCLK and 9 lines for the CS, one for each module. So, in total, the minimum number of
channels must be 12.

The number of channels is mainly due to the information of which module or subsystem is selected.
So, if it is not possible to find a device that can support 12 channels, one will have to find a way to reduce
the number of channels. The only way to reduce the number of channels is to compress the information of
which slave module is selected. But, on the other hand, it will induce more complexity on the hardware
and the software side. Indeed, for the hardware part, a component that takes all the 9 CS lines and
outputs the information of which slaves has been selected will have to be found. And for the software
part, one has to be coherent with the hardware choice and decode the information consistently. So, if
it is possible to avoid those complications, it is simpler to choose the number of channels that fits the
applications which is 12 in this case.

The second characteristic to consider is the sampling frequency of the device. Indeed, if the commu-
nication is done at the given frequency f , according to Nyquist criteria, one must samples at least at
twice the frequency f of the communication. Since the clock frequency is at maximum 3.75MHz, the
sampling frequency must be at least 8MHz, which is a bit more than twice the frequency. Of course,
the higher the sampling, the better.

The last constraint is of course the price. A reasonable budget was allocated to the project.

In summary, the hardware device will have to meet those requirements:

1. 12 channels: 3 for MISO, MOSI and CLK and 9 for the slave selection

2. Sampling frequency of at least 8MHz

3. Price less than a 300 euros

3.4 Existing device
For OUFTI-1, there was an equivalent project in which it was also necessary to read, not an SPI,

but an I2C communication. The solution found was to buy a hardware device that made it possible to
complete the task straight away.

Therefore, the first step was to see if an existing device could complete this task. Indeed, it is useless
to reinvent the wheel. In terms of acquisition devices in general, different types of devices exist: oscil-
loscope, picoscope, datalogger, logic analyzer,... The purpose of this section is to understand why most
of them are not relevant for this application by explaining the purpose and limitations of each of these
devices.

3.4.1 Datalogger
The datalogger is typically a device that can be used for our type of application. dataloggers design

devices that measure, record and analyse data. They are often provided with software that facilitates the
analysis of these data.

Thus, several known suppliers sell dataloggers that are in line with the needs of this application. They
allow data to be acquired and analysed in real time using the software provided with the device. It is
interesting to review them because finding a device that meets the requirements directly will solve the
problem of data acquisition, which is a significant part of this work.
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At NationaI Instrument, there is a range: C Series modules. These modules "can connect to any
sensor or bus and allow for high-accuracy measurements that meet the demands of advanced data acqui-
sition and control applications".

It proposes to use LabVIew to process the data as shown in the datasheet extract in Figure 3.8.

Figure 3.7: Datasheet extract of a C Series module: the NI-9205 model.. LabVIEW can be used for
real time application. [4]

Among the models that allow a channel number greater than 12 is the NI-9205 model. However,
the sampling frequency of 250 kHz is not high enough for this application. Moreover, the price close to
900 eis also quite high.

Another company, DATAQ Instruments, that also offers a range of dataloggers like NationaI
Instrument shares also the same issue as NationaI Instrument: high prices and more importantly a
sampling frequency that is not high enough. Indeed, the maximum sample rate is 200kHz...

At Pico technology, which is a company specializing in PC Oscilloscopes and dataloggers, there
is a range of dataloggers. Each device is supplied with a software, PicoLog, thanks to which "you can
measure, record and analyse your data", according to their words. It also offers another software: the
PicoSDK. This one could be extremely interesting because it allows to control the datalogger using the
language of our choice like LabVIEW and MATLAB, or with programming languages including C,
C++ or Python. This could possibly allow to use a program wrote especially for this application that
process and display the data directly.

Here, the model that would meet all the requirements is the PicoLog 1000 Series [5]. Indeed, it
has 16 channels, a reasonable price of 139 e. However, it should be remembered that in our case, the
goal is to read the data in real time, to process and display them in real time. Thus, with the PicoLog
1000 the mode that corresponds to a real-time playback is the "streaming mode". However, as shown
in Figure 3.8, according to the datasheet, the sampling frequency of 100 000 samples per second is not
sufficient.
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Figure 3.8: Datasheet extract of the PicoLog 1000: streaming mode sample frequency is only 100k
samples per second [5]

3.4.2 Logic analyzer
The last type of acquisition devices is the logic analyzer. The best way to understand the utility of

a logic analyzer is to compare it to an oscilloscope and understand their major difference. Indeed, the
main purpose of an oscilloscope is to provide as much details as possible on a signal. However, in the
case of a logic analyzer, the purpose is to detect logic levels. Thus, for each signal, the logic analyzer
compares this value to a threshold voltage and determines whether the value is a High or a Low as shown
in Figure 3.9. Often, this threshold voltage can be modified to be able to operate to fit any situations.
Another feature of logic analyzers is advanced triggering; it allows to initiate the capture of data only
when specific conditions are encountered.

Figure 3.9: A threshold voltage is used to determine whether it is a High or a Low level [6]

Therefore, this type of device is typically suitable for debugging systems that use digital data or
checking that a data communication is going on as planned. In the case of SPI signals, this is exactly the
goal: to read digital data with no need for analog details.

3.5 Operation of logic analyzers
A wide variety of logic analyzers exist on the market. Each of them has a maximum number of

channels available, a maximum sampling frequency,.. and some of them have a software that goes the
logic analyzer. This software allows seeing the different waveform. An example can be seen in Figure
3.10.
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Figure 3.10: Example of the software used by a logic analyzer

Logic analyzers are usually used for debugging but can also allow extracting the sampled data and
saving it in a file. The most known and popular is without contest the logic analyzer from the Saleae
company. They are popular for their software. Indeed, the interface is clean and easy to use. For
the hardware constituting a logic analyzer, as we’ll see in the next section, it is not complicated. It is
interesting to go through the hardware because the majority of the logic analyzer existing on the market
are using the same components.

3.5.1 Hardware involved
The basic goal of a logic analyzer is to be an interface between the signal to be measured and the

computer. In this section, an overview of a typical logic analyzer will be given, without going into the
details of every components.

The core of a logic analyzer is a chip called Cypress FX2LP microcontroller, which will be shorted
to FX2LP in the following sections. In Figure 3.11, one can find a bloc diagram constituting the FX2LP
microcontroller.

Figure 3.11: Block diagram of the Cypress FX2LP microcontroller [7]

Usually, this is used to send data from a computer to external components like FPGAs, microcon-
trollers,... In the case of a logic analyzer, it is the contrary, the data is send to the computer. The
important part of the diagram is shown in Figure 3.12.

21



Figure 3.12: Data exchange between a logic analyzer and a computer [7]

It exists a fast path between the USB and the parallel bus of 8/16 bits (can be 8 bits or 16 bits) in
width. So, the data are read in the parallel bus, packed into USB packets and send into the computer.

Therefore, the logic analyzer will simply sample the bus asynchronously. It means the sampling
frequency is independent of the recorded signal. So, it is up to the user to choose a correct sampling
frequency i.e. at least twice the highest frequency contained in the signal (the higher, the better). The
maximum sampling frequency depends on the number of the channels used. For example, if only 8
channels are used, the maximum sampling frequency is 24 MHz and 12MHz if 16 channels are used. All
the operations are supervised by the 8051 core (an 8-bits microprocessor) that can be seen in Figure 3.11).

In summary, the FX2LP can be used thanks to its 8/16 parallel bits bus to read the signals and send
it to the computer. However, the FX2LP is not sufficient to have a proper logic analyzer. Indeed, some
input protection should be added to protect the FX2LP. Also, since there are no memory to store the
data inside the FX2LP, the only mode possible is a streaming mode.

The advantage of the streaming mode is that the storage is not an issue since the computer storage
will be the upper limit. However, if the computer is solicited by other USB hub than the FX2LP,
congestion on the USB bus can happen. This could lead to an interruption of the streaming capture.
Indeed, since the FX2LP is using USB 2.0, the maximum bandwidth is 200MHz. So, if the signal to be
sampled was 24MHz, a small interruption could lead to an interruption of the capture. There are several
ways to avoid capture interruption. For example, some logic analyzers are not using USB 2.0 but USB
3.0 or PCI express. Indeed, both have a higher bandwidth than the USB 2.0.

Another way to improve this is to add some extra RAM chips or SDRAM. That way, the data are
stored in the RAM inside the logic analyzer before sending to the computer. Therefore, in this case, it is
not a streaming mode but is not subjected to interruption anymore. This solution is the most encountered
in the market.

In conclusion, the FX2LP is the key to easily interface a logic analyzer to a PC. It was important to
spend some time on it because whatever the logic analyzer, this element will be present. This will make
it easier to explain the final components of the logic analyzer.

3.6 Hardware involved in SPI signal acquisition
Finally, an illustration of the logic analyzer that allows to acquire and send the SPI signal to a PC is

shown in Figure 3.13.
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Figure 3.13: Illustration of the SPI acquisition. 12 channels are used: SCLK, MISO, MOSI and the 9 CS

Once the hardware solution has been found, it must, above all, allow an easy interface with the PC.
This will drive the choice of the logic analyzer as discussed in the very next section.

3.7 Sigrok: easy interfacing to a computer
Once the hardware allowing an easy interfacing with the PC has been found, it is necessary to find

a way to retrieve the data sent in the PC. It turns out that a software specialised in signal analysis ex-
ists and is called Sigrok. Sigrok is defined as "a portable, cross-platform, Free/Libre/Open-Source signal
analysis software suite" [8]. The main work of Sigrok was to write reusable libraries that can be used to
communicate with the hardware used in many logic analyzers. That way, once the hardware is found, an
easy way to communicate with the PC is to use the softwares developed by Sigrok.

3.7.1 Libraries
This section is about the library upon which the software are based. So, it is necessary to understand
it because in the scope of the project, it was necessary to perform some modifications on it. The main
library, called libsigrok, is used to be the interface with the logic analyzer. It supports many devices
and especially the FX2-based logic analyzer. It is written in C. With this library, many front-end
can be built upon this library. The most well-known program that is based on this library is the graphical
interface: PulseView. [21]

PulseView makes it very easy to read and analyse digital signals by displaying each of their tracks in
parallel. For example, to illustrate this, consider an SPI communication between the DPC and a module.
Thanks to PulseView, it is easy to observe in Figure 3.14 the different signals involved.
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Figure 3.14: SPI communication displayed in PulseView

Thanks to PulseView, it becomes simple to read and debug a microcontroller that would use this
protocol to communicate with a module.

Another important and very useful library is called libsigrokdecode. Thanks to this library, it is
possible to create all types of decoders. A decoder is used to decode certain communication protocols.
For example, the list of supported protocols includes UART, I2C, walrus,... And one that is particularly
interesting in our case: the SPI.

The library was written in C. It provides an API to allow you to develop a whole bunch of decoders.
Indeed, since the project is open-source and to allow as many people as possible to contribute, all decoders
are written in Python based on the API provided by the libsigrokdecode library. Indeed, Python is
easier and more popular than C, and thus facilitates the creation of decoders. Indeed, thanks to the API
provided by sigrokdecode, it is not necessary to understand all the implementation details but only to
focus on writing the decoder.

Thus, if a person wants to debug a communication protocol that would not already be available in the
library, he has two choices: either he saves a communication session using PulseView by exporting the
read data and post process in another program (Matlab, Java, Python,...) or he creates a decoder based
on libsigrokdecode and can read the decoded communication directly on PulseView. If we continue
with the example of the SPI communication seen in Figure 3.14, since an SPI decoder already exists, it
is possible to have the communication decoded directly! The result can be seen in Figure 7.1.

Figure 3.15: Same SPI communication as in Figure 3.14 but the bottom lines show the data sent decoded
in terms of bits and bytes. In this case, the module (MISO) sends successively 0xFF, 0x52, 0xBF and
the master sends 0x52, 0xBF, 0x00

At this stage, we have the hardware solution that will acquire the communication. But also the soft-
ware that can communicate with the hardware to get those data into the PC and decode them!
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3.8 Choice of the logic analyzer: comparison between logic ana-
lyzers

It is necessary to find a logic analyzer that is compatible with the Sigrok. In the official Sigrok web-
site, a list of logic analyzers that are compatible with the Sigrok suite is available [9]. Recall that certain
constraints must be respected:

1. 12 channels: 3 for MISO, MOSI and CLK and 9 for the slave selection

2. Sampling frequency of at least 8MHz

3. Price less than a 300 euros

In the market, the number of channels is standard: either 8 or 16 in 95% of cases. Since we have 12
channels to read, we have to take a 16-channel logic analyzer. At the end, in Table 3.3, one can compare
several logics analyser that meets the constraints.

Device Saleae Logic Pro 16 Logic16 clone DSLogic Plus LAP-C 16064
Max Sample

Rate.
125Mhz when use
all 16 channels.

16MHz when use
all 16 channels

20MHz when use
all 16 channels.

20MHz when use
all 16 channels.

Price $999 $70 $149.00 $225

Table 3.3: Comparison of existing logic analyzers

All of them have in common that they use an FX2LP. So, at the hardware level, all the solutions
are relatively similar.

The Saleae Logic Pro 16, at $999, does not use Sigrok’s programs but has its own dedicated software.
The reason for the high price is not the hardware but the software it comes with. It is the most professional
logic analyzer. This is typically the logic analyzer that a company would choose to go very fast. However,
the price is excessive compared to the possible alternatives. One of them is precisely a clone of Saleae
Logic Pro 16 but of much lower quality. The DSLogic Plus is another logic analyzer. The quality is
superior to the simple copy of Saleae and it is compatible with Sigrok programs. For the example,
another compatible logic analyzer, the LAP-C 16064, has been added but the price difference is not
justified, it does not offer anything more compared to the DSLogic Plus.

3.9 Dslogic Plus
In this section, more details specific to the DSLogic will be provided.

3.9.1 Capabilities
First, the characteristics of the DSLogic will be presented. An illustration of the DSLogic is shown in
Figure 3.16.
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Figure 3.16: Image of the Dslogic: 16 channels and CK (clock input), TI (trigger input), TO (trigger
output). [10]

The number of channels is 16 and it can reach a sampling frequency up to 400 MHz using only 4
channels, if accompanied by the appropriate probes.

However, 400 MHz is the maximum sampling frequency. In practice, two modes can be used: stream
mode or buffer mode. In stream mode, data can be transferred to PC in real-time using directly the
PC storage. In this mode, the sampling frequency, if all the 16 channels are used, is limited to 20MHz.
While in buffer mode, data are stored in the on-board memory and transferred to PC after the capture
is finished. In this mode, the sampling frequency is limited to 100MHz if all the 16 channels.

The DSLogic allows various threshold voltage as shown in Figure 3.17. This is useful in order to be
compatible with to most of voltage standard.

Figure 3.17: Adjustable threshold voltage: 5V, 3.3V, 2.5V, 1.8V, 1.5V, 1.2V. [10]

3.9.2 Hardware involved
In this section, the hardware involved will be presented. First, an annotated view of its PCB is shown

in Figure 3.18.
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Figure 3.18: an annotated view of the Dslogic PCB. An SDRAM, protection input components, the
FPGA and the FX2LP chip are highlighted. [11]

First of all, one can notice the FX2LP in the bottom left which is used to send the data to the PC.
We already discuss its operation before.

And between the FX2LP and the inputs signals is an FPGA, the XC6SLX9 from Xilinx. It is the
FPGA that sample the input data, packs the data and store them into an internal buffer. It then transfers
the data to the FX2LP which packs them into USB packets before sending them into the PC. This is
typically what is done when the logic analyzer is used in streaming mode.

But, in buffer mode, the data is not sent directly to the PC but to a SDRAM. This is useful when
the USB data transfer (200Mbits/s) is too low regarding the frequency of the input signals. Once the
SDRAM is full, the FPGA send the data stored into the PC using the FX2LP like before.

To protect the FPGA, some protection is present between the FPGA pins and the inputs signals. It
consist of an network of diodes to protect against high voltage or voltage spikes.
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Chapter 4

Acquisition of the non-SPI signals

Apart from SPI signals, as explained in Chapter 2, there are other types of signals that needs to be
acquired. As a reminder, here is the table that summarized the essential information concerning these
signals

Signal Type of signal Total number Description
Fixed voltage Analog 5 Power voltage

Idiode Analog 1 Battery voltage

ENABLES Digital 7 Allows the DPC to enable
or disable a subsystem

BATT_FULL Digital 1 Satellite powered off or on

Table 4.1: Main information concerning the non-SPI signals

4.1 General idea
For analog signals, the goal will be to find a hardware solution to digitize analog data and transmit

them into a PC. One common way is to use a microcontroller and find a way to communicate the infor-
mation to the PC via USB. The concern will be that the final hardware product will be impractical if it
uses two USB ports. Indeed, recall that the Dslogic already uses an USB port. But, one the other hand,
one must also recall that the Dslogic still contains 4 free channels.

So, one could keep the idea of using a microcontroller that allows to digitize all analog data. But,
instead of connecting this microcontroller to the PC, which would require to investigate an efficient way
to interface it to the PC, one can simply transmit the digitalized data to the 4 still free channels of the
DSLogic. This solution is illustrated in Figure 4.1
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Figure 4.1: Illustration of how to read non-SPI data and transmit it through the PC using the DSLogic

To determine which microcontroller to use, it is essential to specify the needs that it will have to meet.
To do this, it is necessary to review the non-SPI signals that will need to be read. Once this is done, the
information and how to send the data to the DSLogic will be discussed right after.

A key point to understand about these signals and what makes them intrinsically different is that
there is no real urgency to read these data. Indeed, for the SPI signal, it is essential to be as reactive as
possible in order not to miss any data exchange. While for non-IPS signals, the stakes are not the same,
it is quite the opposite. It is simply a matter of checking whether the voltages are at their expected value
for fixed voltages and checking the evolution of the battery charging.

Therefore, for this application, timing is not the main constraint. Indeed, a measurement of these
voltages every second for example will be more than sufficient.

4.2 Non-SPI signals: Analog signals
As a reminder, the analog non-SPI signals are recalled in the following Table.

Signal Type of signal Total number Description
Fixed voltage Analog 4 Power voltage

Idiode Analog 1 Battery voltage

BATVBUS Analog 1 Voltage before
DC/DC converters

Table 4.2: Analog non-SPI signals description

It is also worth remembering the details of each of these signals as shown in the following Tables.
What is common for both analog signals, i.e. fixed voltages and battery level, is the need for 8 to

12 bits resolution. So, to read this data it will be necessary to use an 8 to 12 bits ADC of 6
channels. This is the first requirement. After reading those signals, it will be necessary to send them
to the DSLogic.
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Signal Maximum Value Resolution Description
Idiode 8.4V 8-12 bits Battery voltage

BATVBUS 8.4V 8-12 bits Voltage before
DC/DC converters

Signal Expected Value Resolution Description
Fixed voltage: 5V, 3.3V (high),

3.3V (low) , 1.8V Fixed value 8-12 bits Power voltage

Table 4.3: Details of analog non-SPI signals

4.3 Non-SPI signal: Digital signals
For non-SPI digital signals, to read the status of each of these signals, 8 pins are needed in total.

Therefore, the microcontroller must have 8 pins capable of recognising a high state (3.3V) and a low state
(0V). So, the second requirement is to have 8 digital pins.

Signal Type of signal Total number Description

ENABLES Digital 7 Allows the DPC to enable
or disable a subsystem

BATT_FULL Digital 1 Satellite powered off or on

Table 4.4: The 8 digital signals

To send this information, one single byte can be sent, each bit corresponding to one digital signal. As
shown in Figure 4.2, the structure of the byte will be as follows:

Figure 4.2: Illustration of 1 byte contain all the digital information

4.4 Choice of the serial communication
In summary, once the microcontroller has read all the non-SPI signals, it has to send those information.
Therefore, one must choose a serial communication. The three most common are the UART, I2C and
SPI. The serial communication chosen is the SPI and it becomes one more requirement for the
microcontroller. This choice will be clearly explained later on.

4.5 Choice of the microcontroller
For the choice of the microcontroller, as discussed before, the needs are not critical, the majority of

them can perform this kind of task.

It was therefore decided that an Arduino Uno card would be sufficient. As a reminder, the Arduino
Uno is a very popular microcontroller board based on the ATmega328P [12] and is widely used for pro-
totyping purposes. One of its main advantages is the simplicity to code and debug, thanks to dedicated
IDE software.

It is then necessary to check if the Arduino Uno has all the requirements:

1. 10-bit ADC of 6 channels,

2. 8 digital pins capable of recognising a high state (3.3V) and a low state (0V),

3. Presence of serial communication chosen is the SPI
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To verify that this is the case, it should be remembered that the Arduino is based on the ATmega328P.
So, it will be necessary to look in its datasheet.

4.5.1 10-bit ADC of 6 channels
As shown in figure 4.3, there is indeed an ADC with 6 channels with a resolution of 10 bits.

Figure 4.3: ADC characteristic in the Arduino Uno. Presence of six 10-bit channels [12]

An important detail is that analog inputs cannot support too high input voltages. Indeed, as shown in
Figure 4.3, the input voltage is limited to VCC , the supply voltage of the Arduino. In our case, VCC = 5 V.

Thus for Idiode, it will be necessary to reduce this tension before reading it with an Arduino. There-
fore, a resistive voltage divider with two resistor of 10kΩ that divides the voltage in half will be sufficient
since 8.4V/2 = 4.2 V < VCC .

4.5.2 8 digital pins able to recognise a 3.3V high state
As a reminder, the Arduino must be capable of distinguishing between a Low at 0V and High at 3.3V

digital signal. In Figure 4.4, the digital pin characteristics are shown.

Figure 4.4: Digital pin characteristics. The IL in VIL stands for Input Low and the IH in VIH stands
for Input High. [12]

A Low will be unambiguously recognised if it is lower than: 0.3 x VCC . This will be the case since
a common ground will be shared between the Arduino and the digital signal. Therefore, there is no
problem to recognise a 0 V digital signal.
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However, it will not be the case for a 3.3V high state. Indeed, the minimum value to be recognised
as a High is: VIH = 0.6 x VCC . If you are superior to VIH , it is recognised as high. In our case, we want
VIH ≤ 3.3V so that the 3.3V will be higher than VIH and will be recognised as High

In the worst case where, the value of VIH is maximum when VCC = 5.5V. So, VIH= 5.5 x 0.6 = 3.3
V. It should be noted here that we are exactly at the limit.

If a small power supply disturbance that induces a VCC = 5.6V, then the value of VIH will become
0.6*5.6V = 3.36V. This means that VIH ≤ 3.3V is not satisfied and digital signals, in high state, will
not be recognised as high. And even if the power supply is stable, if instead of 3.3V, the high signals are
lower than this value, for example at 3.28V, in theory, they will not be recognised as high.

Therefore, it is obvious that being exactly in the limit case is not acceptable, from time to time the
supply voltage varies or that the high signals are not exactly at 3.3V.

The solution is to use an intermediate component between the Arduino’s inputs and the digital signal
to increase the voltage of the signals to be far from the limit VIH = 3.3V .

The component used is called a voltage-level Translator. One example from Texas Instruments is
the TXB0104. It takes as input any supply voltage from 1.2 V to 3.6 V and outputs any supply voltage
from 1.65 V to 5.5 V, provided that the output is greater than the input. TXB0104 can take 4 inputs
so, for 8 signals, two of them will be needed. [13]

With this, the input digital signals will be increased to be far from the limit VIH = 3.3V by increasing
them to 5V. In conclusion, by using 2 TXB0104, the 8 digital inputs can be recognised as High by
increasing the 3.3V to 5V.

4.5.3 SPI communication available
The Arduino Uno can easily use SPI communication thanks to its dedicated library. Four pins, pin

10 to 13, are dedicated to the use of the SPI.

4.6 Illustration of the acquisition of the non-SPI signals
As shown in Figure 4.5, by combining level translator and Arduino, all non-SPI signals can be read

and sent via SPI to the Dslogic.
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Figure 4.5: All the non-SPI signals are read by the Arduino and sends the data in a specific format
through SPI to the DSlogic

It should be noted that since communication is only from the Arduino to the Dslogic, it is not necessary
to connect the MISO.

4.7 Format of the data sent to the DSLogic
Most of the time in serial communication, the data is sent in 8-bit packets or 1 byte. The fact that

there are 10-bit data for non-SPI data, it is necessary to define a format to send these data correctly.

To send the 10bits data, it will be necessary to send 2 bytes: the first one will correspond to the MSB
(most significant Byte), the second will correspond to the LSB (least signifying bytes) as shown in Figure
4.6.

Figure 4.6: Illustration of how 10bits data can be split into 2 bytes

For MSB, 2 bits are used to complete the 8 LSB bits. Thus, 6 bits of the MSB are not used for now.

However, if the Arduino only sends the 10-bit measurements as shown in Figure 4.6, it is not possible
to deduce the origin of measurements. One way would be to define a send order as shown in the following
Table.

33



Analog Data Send order

Idiode 1

5V 2

3.3V (high) 3

3.3V (low) 4

BATVBUS 5

1.8 V 6

Table 4.5: Send order of the analog data into the SPI bus

A more robust way is to use the bits not used by the MSB to uniquely define each voltage. Indeed,
before each voltage, an ID specific to each voltage can be sent. The list of IDs is presented in the following
table.

Data ID Number

Digital 0

Idiode 1

5V 2

3.3V (high) 3

3.3V (low) 4

BATVBUS 5

1.8 V 6

Table 4.6: ID number of the data into the SPI bus

The same goes for non-SPI digital signals, it will be preceded by a byte containing its ID to be
recognized.

Since it is required to define 7 IDs, it is necessary to allocate 3 bits (log2(6) = 2.81) on the MSB. The
modified data format is shown in Figure 7.13 for analog data and in Figure 7.14 for digital data.

Figure 4.7: Illustration of the analog data structure: 10 bits analog data are preceded by 3 bits ID
Number
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Figure 4.8: Illustration of the digital data structure: 8 bits digital data are preceded by 3 bits ID Number
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Chapter 5

Summary of the data acquisition
strategy

To summarize data acquisition strategy of the EGSE, illustrated in Figure 5.1, it should be remembered
that 23 signals must be read from a PC104 connector. Two types of signals have been distinguished:

1. SPI signals

2. Non-SPI signals

Figure 5.1: Illustration of the data acquisition strategy of the EGSE. The final product will only require
a single USB connection and all signals eventually passes through the Dslogic.

For SPI signals, the DSLogic has been used to acquire them. Indeed, the DSlogic has the advantage
of being compatible with the sigrok suite that allows easy interface with the PC.

For non-SPI signals, the acquisition was done by using a simple Arduino Uno. To interface with the
PC, the DSlogic is reused. Indeed, channels remain available and can be used to receive Arduino data in
SPI.

Thus, the Dslogic must acquire the data of two separate SPI communications:
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1. SPI1: The basic SPI signals present in the PC104 connector

2. SPI2: The data sent by the Arduino.

The following table gives a clear description of the situation

SPI Communication Module Description

SPI-1
Master: DPC

ADC 1

SPI communication between
the DPC and different modules

ADC 2
ADC 3
FRAM
COMM
BCN
IMU
RAD
BATT

SPI-2
Master: Arduino Dslogic

SPI communication between
the Arduino and the Dslogic to
send the digitized analog Data

Table 5.1: Distinction between the two separate SPI communications read by the Dslogic
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Chapter 6

Test and failure of the data acquisition
part

The purpose of this chapter focused on the difficulties encountered during the various tests. The
purpose of these tests was to validate that the data acquisition strategy could work.

6.1 Sigrok-cli
For the moment, the only program in the Sigrok suite that has been discussed is their GUI (PulseView)

which allows displaying the signals from each channel. As a reminder, Figure 6.1 shows the results that
can be obtained with PulseView

Figure 6.1: Illustration of PulseView. Ideal to obseve digital data

However, in the context of this project, it is not necessary to show the communications. The ideal
would be to acquire the data that is read on each channel and, instead of displaying it, it should be sent
to a program that will make sense of the data that is being communicated. In concrete terms, the data
that pass through the MISO/MOSI lines will be decoded according to the module with which the DPC
communicates.

It turns out that the Sigrok suite contains software named Sigrok-cli. It is defined as " is a cross-
platform command line utility for the Sigrok software. It cannot display graphical output, but is still
sufficient to run through the whole process of hardware initialization, acquisition [...]"

6.1.1 Useful options
To work properly, it is necessary to specify a number of options to connect properly to the logic

analyzer. There is a wiki page to have an explanation of all the options that are available [14]. However,
the purpose of this section will be to only explain the options I have used and that are interesting in the
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context of the project.

The easiest way is to first see the command used and to analyse it step by step. The command used
is the following:

sigrok-cli -c "samplerate=10MHz:continuous=on" –driver=dreamsourcelab-dslogic -P
SPI:miso=3:clk=0:cs=1

This expression can be easily understood by explaining one option at the time:

− --driver=dreamsourcelab-dslogic.
It is necessary to specify which logic analyzer is connected. For each type of logic analyzer, a
firmware is available and it is necessary to specify which firmware should be used by indicating
the logic analyzer that is used. Here, the logic analyzer is a Dslogic so it is necessary to indicate
the dreamsourcelab-dslogic driver. To know which exact name to indicate, refer to the Supported
hardware page (on the official website: https://sigrok.org/wiki/Supported_hardware)

− -c "samplerate=10MHz:continuous=on"
-c stands for config. It is used to configure the most important option in this type of device: the
sampling frequency. Indeed, most often, the options chosen are a number of samples (10M samples
for example) or an acquisition time (during 1s, for example). Also, it allows you to read the data
continuously.

− -P SPI:miso=3:mosi=2clk=0:cs=1
The logic analyzer reads the data, and it has an option - P SPI to decode the data on the fly.
To do this, you must specify the channels needed to decode.

− -B SPI
This option allows the data to be communicated to another program. This aspect is discussed
below.

The last option (-B SPI) allows the data to be communicated to another program. This aspect is
discussed in section 6.3.

6.2 SPI Decoder
In this application, it is obviously the SPI decoder that is interesting because the communication

is done in SPI. The main advantage, with the easy interfacing with the PC, is the presence of an SPI
decoder present in the libsigrokdecode library. However, in the basic implementation, the decoder only
considers the case of a communication between only one master and one slave. Here, several slaves must
be considered. It is therefore necessary to modify the SPI decoder to decode the communication taking
into account several slaves. In the decoding part, we will see in detail how this decoder has been modified
to work with several slaves.

To go into the details of the basic implementation, as discussed during the presentation of the SPI
protocol, the clock mode must be known so that the data can be sampled at the right time, as shown in
Figure 6.2.
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Figure 6.2: Difference between the 4 SPI modes [3]

Once the mode is defined, the MISO and MOSI lines will be sampled at the appropriate time. In
concrete terms, it is necessary to be attentive to all clocks changes. For example, in mode 3, to sample
correctly, you have to wait for a transition from Low to High to sample. Then, each sampled bit is saved
in a variable to form an 8-bit word. Thus, two 8-bit words must be formed, one for MISO and the other
for MOSI. Once 8 bits are sampled, both bytes are sent to another program for processing.

6.3 Note on Inter-process communication (IPC)
One of the tasks was to connect Sigrok-cli with the GUI. This type of operation is called an Inter-

process communication (IPC). Indeed, Sigrok-cli is responsible to acquire the data while the GUI needs
those data for processing.

One of the best known IPCs is to use a program to write data to a file (a simple.txt file for example)
and another program reads this file to extract the written data. The file was just an example, it exists
many more. In the IPCs terminology, the program that provides the data is called the server and the
program that reads the data is called the client.

Usually, in the application similar to what is required in this work, the way two programs are con-
nected is to use a dedicated socket. Indeed, this is typically what is used by the Saleae logic analyzer
(the extremely expensive product discussed above, dedicated to professionals). Indeed, it is one of the
solutions suggested in their official website to export the data read in real time: "use the socket API to
automate the capture and export processes" [16] .

The way the communication via socket works is as follows. The server socket is characterized by an IP
address and a port number. The client socket is also characterized by an IP address and a port number.
The client reads what is sent to the server by connecting to the server-specific port. This way, everything
that is sent to the server can be communicated to the client. Of course, all this can be done on the same
machine by specifying the localhost as the port number.

Unfortunately, Sigrok-cli does not have an option to send data to a socket and allow another program
to use the data sent to the same socket.

It allows many things like recording a data read session by exporting it in a wide variety of formats.
This will not be very useful because the purpose of the application is to be able to display all the infor-
mation in real time.
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However, Sigrok-cli has an option to send the data to what is called a pipe. A pipe is a one-way
communication.

Figure 6.3: IPC using a pipe

This type of communication can only be used on the same machine. Data written from one side of
a pipe can be read from the other side of the pipe as shown in Figure 6.3. In practice, the output of a
program is buffered in a virtual file that is linked to a second program. Thus, Sigrok-cli allows to output
the data acquired on a pipe which can then be recovered by the GUI.

On Windows, it is very common to use sockets as IPCs. However, the use of pipes as IPCs is very
uncommon because they are very complicated to set up. So, to use the application on Windows, you
have to find a way to bypass the pipe use.

The first attempt was to investigate how to modify Sigrok-cli to add a socket option. More precisely,
Sigrok-cli is based on the two libraries discussed above. The option to send the data to a pipe is available
in the library libsigrokdecode. Two choices are then possible.

The first option is to modify the library libsigrokdecode (written in C). The code was created in
2011 and continues to undergo changes. So, trying to understand the logic of the code and modify it
properly would have been ambitious and it would have been difficult to predict whether it would work.
Indeed, it must be taken into consideration that my experience in C is limited and that it was my first
experience with IPCs, I never configured a socket before for example. This option is not possible.

As discussed before, the SPI decoder (written in Python 3) is based on this library libsigrokdecode.
So, instead of modifying the library, one can modify the SPI decoder. Indeed, modifying the SPI decoder
so that it does not send the decoded bytes to a pipe but to a socket. Thus, it would have been necessary
to create the server part of the socket and send all decoded bytes to this socket. On the GUI side, it would
behave like a client that reads the socket. So, to summarize, the modifications would have involved the
creation of a Python socket which would be the server and the creation of a Java socket which would be
the client. This solution may have been possible but considering my experience in IPCs, it involved risks
in terms of implementation time and especially debugging to ensure that the communication is correctly
configured.

The simplest and safest solution is not to try to modify the SPI decoder nor the libsigrokdecode
library but to use the pipe which is the only way to export the data already available.

However, this solution is not possible in Windows but is more suitable for Linux where pipes are
widely used than for Windows. Even the few examples of project real-time application were implemented
in Linux.

It is easy to understand why. Indeed, the use of pipes is much more natural on Linux where its use is
very widespread often without realizing it. For example, when, in the terminal, the following command
is used:

process1 | process2 | process3

Behind this command are hidden pipes that are represented by the vertical bar (|). Indeed, the output
of the process1 is sent in input of the process2 which itself sends its output as input of the process3. In
the end, what will be displayed will then be the output of process 3. This is illustrated in Figure 6.4
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Figure 6.4: Pipe utilisation hidden behind process1 | process2 | process3 command

Thus, it was decided that GUI should be used on Linux.
In Figure 6.5, the current situation is summarized.

Figure 6.5: Summary of the componenents currently constituing the EGSE.

1. SPI signals: provided by the PC104 and the Arduino (not shown for clarity purpose)

2. USB interface: via the FX2 chip

3. SPI decoder: done by sigrok-cli (thanks to libsigrokdecode library)

4. Endpoint communication: pipe created by sigrok-cli

5. Data processing: detailed below

For now, the Dslogic takes care of reading the signals provided by the PC104 (arduino not shown for
clarity purpose) and provides an USB interface. On the PC side, sigrok-cli provides an easy interface
that allow to decode the SPI communications. Then, the output is made accessible through a pipe so
that any program that can link to it can have access to it.

In conclusion, the combination of sigrok-cli and DSlogic allows data acquisition and data transfer to
the PC. In the PC, the data is sent to a part of the memory called a pipe. These data are then available
for the processing part of the data. As shown in Figure 6.5, it will be a GUI based on JavaFx.

6.4 Problem due to Sigrok-cli
In this section, the aim will be to discuss all the tests performed and the problems encountered when

trying to use the DSlogic.
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6.4.1 IPC
This problem has just been discussed but after many tests to try to link sigrok-cli and the GUI on

Windows, it was decided to switch to Linux. I had never used Linux before so it took some time to get
used to it.

6.4.2 Limitation
To test the DSlogic, an arduino Uno was used to check the device’s capabilities.

The arduino allows simulating the DPC’s behavior and will act as a master of SPI communication.
The SPI lines of the arduino are then directly connected the DSLogic. Thanks to this setup, it is easy to
test the limits, if any, of the Dslogic since the Arduino Uno has specific pins to communicate in SPI. In
fact, there are many ready-to-use codes in the Arduino official site that allow you to use an Arduino as
the master of an SPI communication.

The first thing to test was the Dslogic’s ability to send data in real time. So, the first test of the
arduino was to send one byte every millisecond to verify that the DSlogic is able to read continuously.
The result of this test was conclusive. The reading was done without interruption after several tens of
minutes of capture. Dslogic could read the data and send it to the PC and could be displayed via the
JAVA application.

Why one byte every millisecond? Because I first used a generic script illustrating the use of SPI
that is present in the Arduino site. However, in practice, more than one bytes every millisecond will be
sent to or from the DPC continuously. Therefore, to ensure that the DSLogic worked as expected, it was
necessary to check that it would worked in the worst case for the DSLogic. The most unfavourable case
is the case where the DPC continuously sends and/or receives byte without a break.

To test this point, with the arduino, data was sent without any break to the DSlogic. The purpose
of the test was to see if the reading could be done without interruption. Unfortunately, when testing
with the Arduino, the DSLogic was systematically interrupted by displaying "Device only sent X
samples". X would vary around 106 samples

A problem had just been identified. The question is whether this situation can occur in the operation
of OUFTI-2. So, the next logical step is to identify if this situation can occur in OUFTI-2. It turns out
this situation can occur with the FRAM.

Indeed, the critical point is the communication with the FRAM. So, I tested the DSLogic directly
to the development board where the FRAM is located instead of simulating the behaviour of the DPC
with the arduino. I was helped by Guillaume who made sure that a writing in the FRAM was done.
On my side I made sure that the DSLogic was well installed and was ready to start an acquisition when
Guillaume was ready. By testing directly on the development board, sigrok-cli systematically stops and
ends with "Device only sent X samples". By looking for the cause of this problem, this problem had
already been pointed out before me. This is apparently a known bug when the signal frequencies are too
high.[15]

When Guillaume was writing in the FRAM, he was just collecting measurement done by the ADC,
so it wasn’t even the worse scenario for the FRAM. To understand to what extent the DSLogic was
not powerful enough, for the reading to be done correctly, it was necessary to slow down the SPI com-
munication by adding a delay of 300ms more or less every 100 bytes. The only case where sigrok-cli
was able to track the data sent by FRAM was when a 300ms delay was added between each frame of
100 bytes. Which is not tolerable. Indeed, changing the SPI communication to allow data acquisition
is obviously not an option. The purpose of the project is precisely to test the functionality of OUFTI-
2 as if it were in flight. It is not possible to modify the DPC code to add a 300ms delay just to allow
the DSLogic to work properly. So, this is a major problem that can compromise the data acquisition part.

Once this major problem had been identified, the reason for the problem had to be found in order
to find a solution. To understand where the problem comes from, it is necessary to remember the two
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programs developed by Sigrok: PulseView and sigrok-cli. Pulseview is the graphical interface. During
the acquisitions, no reading interruption was ever observed. Sigrok-cli on its side is the equivalent com-
mand line of Pulseview, ie anything that can be done with PulseView can be replicated with Sigrok-cli.
However, with sigrok-cli, as discussed, systematic interruptions are observed.

Since PulseView is not interrupted, the problem cannot be hardware otherwise the interruption prob-
lem would also be present with PulseView. So, I contacted the sigrok developers to look for ways to
improve. First, they confirmed the problem. The problem was in fact confirmed by two main developers
of Sigrok: abraxa and Uwe. As observed in Figure 6.6, abraxa, one of the developers confirms to me
that the problem comes from a difference in the implementation of sigrok-cli compared to PulseView.

Figure 6.6: Confirmation of the issue by a main developper of Sigrok

Indeed, to quote abraxa: "The issue is inherent to sigrok-cli because it doesn’t use multithreading
(PulseView does) and uses blocking calls (PV doesn’t)" Concretely to fix this problem, multithreading
must be implemented for sigrok-cli to work as well as PulseView. So, the solution to solve this problem
would be to reimplement sigrok-cli.

Sigrok-cli is written in C, has years of development behind it and if the problem was trivial it would
already have been fixed by one of the developers. So, it is clear that reimplementing sigrok-cli was not
possible for me. By discussing with Mr Dedijcker who immersed himself in the code and in agreement
with Mr Broun, another solution had to be found.

My first intuition was to abandon the idea of sigrok but with Mr Broun’s advice, it was decided to
make compromises on the reading of the FRAM. Indeed, one of the critical cases with FRAM was the
repatriation of all measurements. Indeed, by telemetry it can be decided to send back all the measure-
ments recorded to the ground station. However, 3/4 of the memory is occupied by measurements. It
corresponds to a slightly less than 200k bytes. This amount of data would inevitably lead to an interrup-
tion of reading. As a reminder, a delay of 300ms every 100 bytes was the limit to avoid any interruption...

Therefore, it was decided not to have access to the FRAM reading by the DPC to avoid this situa-
tion. However, this is compensated by the fact that in writing, the value of the measurements is accessible.

In summary, FRAM data cannot be read with the DSlogic. However, when writing to the FRAM,
the data that is being transmitted may be intercepted. The main idea being that the read data should
be the same as the data we collect in writing.

To summarize, the solutions were either to implement sigrok-cli again, to change the solution or to
limit the reading of the FRAM. Presented in this way, it is obvious that the last solution is the best but
it was not so obvious to find. As Mr Broun advised me, just because we don’t have everything doesn’t
mean we should abandon the idea directly. It is a piece of advice that will definitely help me in the future.

6.4.3 Sigrok-cli can’t be used.
Despite the compromises made for FRAM, I will explain the methodology used to conclude that

sigrok-cli cannot work in this project for data acquisition.

To understand this, it should be remembered that the tests with the Arduino are used to simulate
the behaviour of the DPC.

The DSlogic only read 4 channels provided by the Arduino: MISO, MOSI, SCLK and CS. Remember
that in the end the DSlogic will actually have to read 12 channels. A number of tests have been carried
out, the most important of which are
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1. Reading simulation of the 3 ADCs

2. Simulation of writing measurements in the FRAM.

The purpose of these tests is to see if the bug no longer appears. Each test individually, the reading of
the ADCs and writing in FRAM, was fine. However, when the reading of the ADCs is directly followed
by the FRAM writing, the bug discussed previously reappeared: "Device only sent X samples". This
is a first problem.

The second problem is that, for the moment, in all tests, the Dslogic only reads 4 channels instead
of the 12 final ones. The last test was to go back to the situation where the Dslogic did not crash, i.e.
by individually testing the reading of the ADCs and writing in FRAM. However, instead of only reading
4 channels, it reads 12. In this case, the reading is systematically interrupted. It corresponds to the
same bug previously. Compared to the individual test, the Arduino’s behaviour is the same. The only
difference is that there are additional channels to read. So,adding channels causes the DSlogic to read
more channels, which overloads it and as a consequence stops the reading.

To conclude the result of the tests are as follows:

1. With 4 channels, the Dslogic cannot read an SPI communication that includes a reading of the
ADCs followed by writing in FRAM.

2. With more channels, the Dslogic cannot read an SPI communication that includes only a reading
of the ADCs or a FRAM writing.

In addition to these conclusions, additional details are important. During the tests, the behaviour of
the arduino was a favourable case because it is not even complete. Indeed, modules that, for the moment,
are not yet present (IMU, RAD,...) have not been simulated so in addition to the reading of the ADCs
followed by a FRAM writing, additional bytes will be sent to the OBC.

And it should not be forgotten that the DSlogic will have to read 3 additional channels that will
correspond to the MOSI, SCLK and chip select for the digitized analog values.

Taking into account the conclusion of the tests and the additional details, the data acquisition with
the Dslogic is clearly compromised.
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Chapter 7

Data Processing

Despite the fact that data acquisition is compromised, it was possible to work on the software part
of the EGSE, which consists of processing the data and displaying them. To do this, it is necessary to
impose a format that should have been given them acquired. To do this many connections with what
should have been sent by the DSLogic will be made.

7.1 Format of the data received
In order to decode properly, one must be aware of the format of the data. We saw how SPI com-

munications, i.e. the data that pass through the MISO and MOSI lines, are decoded. The result of the
decoding are the bytes exchanged, in hexadecimal, as recalled in Figure 7.1.

Figure 7.1: The bottom lines show the data sent decoded in terms of bits and bytes. In this case, the
module (MISO) sends successively 0xFF, 0x52, 0xBF and the master sends 0x52, 0xBF, 0x00

This feature is also available on sigrok-cli, but modifications had to be made on the SPI decoder.
Indeed, the result sent by sigrok-cli is the following:

1 byte1 #MISO
2 byte2 #MOSI
3 byte3 #MISO
4 byte4 #MOSI
5 byte5 #MISO
6 byte6 #MOSI
7 byte7 #MISO
8 byte8 #MOSI
9 byte9 #MISO

The first change to do concerns the fact that the SPI decoder considers a communication with a single
slave module possible. Since we have more than 1 CS, it was necessary to recognize several slave modules.
In addition, it is necessary to find a way to identify each CS to know with which module bytes
are exchanged.
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The second modification was to be explicit about the data sent on MISO and MOSI. The decoder
implicitly specifies that the odd byte ( 1st, 3rd,...) correspond to MISO and the even one (2nd, 4th,...)
correspond to mosi. It is necessary to clarify to which line, miso or mosi, the data belong. For
the simple reason that if a problem occurs and some packets of bytes are lost, it is possible to continue
decoding on a good basis by knowing exactly to which line the bytes belong.

For the sake of the illustration, we can imagine a case where on a communication of 15 bytes, an
interruption occurs at the 7th byte and resume 11st byte. The 7th byte is considered miso, since 7 is
an odd number. From the decoder point of view, the next byte it will receive will correspond to mosi
because it will be the 8th byte received. So, we end uo in a situation where the 11th byte which belongs
to miso is confused as belonging to mosi.

The third is that the dslogic reads 2 SPI communications. Indeed, the first one, SPI1, corresponds to
the SPI signals of PC104. The second, SPI2, corresponds to the analog values that pass first through the
Arduino and then DSlogic to SPI. Therefore, it is necessary to extend the decoder so that it can track
and decode 2 communication. This will be quite easy to set up since the same methodology is used to
decode SPI.

The changes made lead to

1i: byte1 #MISO
1o: byte2 #MOSI
1i: byte3
1o: byte4
1i: byte5
1o: byte6
1i: byte7
1o: byte8
1i: byte9

First, the data exchanged is seen from the master point of view. The i stands for what comes into the
master, while the o stands for what come out. So, naturally the i will stand for the MISO line (Master
In ), and the o will stand for the MOSI (Master Out).

It solves the problems discussed earlier:

1. It clarifies to which line, miso or mosi, the data belong thanks to the use of i or o right
before each byte exchanged.

2. It is easy to identify each CS thanks to the number at the beginning of each line. Indeed, each
module will have a corresponding number to identify it in a unique way.

SPI Communication Module ID number Description

SPI-1
Master: DPC

ADC 1 1

SPI communication between
the DPC and different modules

ADC 2 2
ADC 3 3
FRAM 4
COMM 5
BCN 6
IMU 7
RAD 8
BATT 9

SPI-2
Master: Arduino Dslogic 0

SPI communication between
the Arduino and the Dslogic to
send the digitized analog Data

Table 7.1: ID to identify it in a unique way each module

The choice to inform the module first before the information on the miso or mosi line has a meaning
for decoding. Indeed, to decode, it is first necessary to know with which module is concerned and then
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decode according to it.

An important point to understand is that at each clock time, data can be transmitted on the MISO
or MOSI line. So, at each clock time, two byte are decoded: one from MISO and one from MOSI.

However, once the data was decoded, the notion of clock disappeared. Indeed, just from the data,
knowing what happened on the same clock time is impossible. An example of the ambiguity of the
situation is given:

1o: byte3
1i: byte4
1o: byte5
1i: byte6
1o: byte7

From these data, the question that arises is which data is sent first, MISO or MOSI ? If it is MISO, then,
on the same clock time, the data are sent in the order: miso then mosi. So, in the example, the couple
of decoded byte sent on the same clock time, are: byte4 - byte5 ; byte6-byte7

1o: byte3
1i: byte4 | MISO
1o: byte5 | MOSI
1i: byte6 | MISO
1o: byte7 | MOSI

But, if it is MOSI first, the couple of decoded byte sent on the same clock time, are: byte3 - byte4 ;
byte5-byte6

1o: byte3 | MOSI
1i: byte4 | MISO
1o: byte5 | MOSI
1i: byte6 | MISO
1o: byte7

That’s why it is necessary to decide on a convention to define what happens on the same clock time.
The choice was made to first send MISO first and then MOSI. The reason is mainly to simplify decoding.

To understand this, it is useful to consider a simple example: A request is sent by the master on
the MOSI line. At the next clock time, a response will be sent by the slave modules. In other words,
a request (MOSI) has been sent at time T-1, and the byte of the slave module (MISO), at time T, will
correspond to the response.

If considering the MOSI first, the situation is illustrated below.

1o: byte3 | MOSI: REQUEST
1i: byte4 | MISO (must be ignored)
1o: byte5 | MOSI: (potential request)
1i: byte6 | MISO: RESPONSE
1o: byte7

At time T, the request is made by on the MOSI line. The next byte corresponds to a MISO but is not
the response because it is not at time T+1. So, it must be ignored.

At time T+1, it is possible that another request by the master will be made so it will not be possible
to simply ignore this MOSI byte. And finally, the response to the request is at the MISO byte.

So,in the end, between the request and the response, 2 byte interpose themselves and turns out to be
more difficult to decode than the situation where we consider the MISO first.

Indeed, if a request (MOSI) has been sent by the master at time T-1, the next byte will correspond
to the response of the slave module (MISO), at time T, will be the next byte as illustrated below.
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1o: byte3
1i: byte4 | MISO
1o: byte5 | MOSI: REQUEST
1i: byte6 | MISO: RESPONSE
1o: byte7 | MOSI: (possible new request)

7.2 Modules
To decode each module, it is first necessary to briefly describe the role of each module. Indeed, to

choose the information to be displayed, it is first necessary to know what information passes through the
modules.

Obviously, the goal will not be to provide a summary of the datasheet of each module. The primary
goal is to identify the data that can flow between the DPC and the modules. Once all types of commu-
nications have been identified, it will be necessary to consider how to decode them.

Among the 9 modules whit which the OBC interacts, only the FRAM, COMM (=D-STAR), 3 ADCs
were implemented for the moment. The SPI communication of the IMU, RAD, BCN and BATT sub-
system were not implemented. One remark for the BATT is that a library was created to manage SPI
communication but it was not fully finalised.

7.3 ADCs
As discussed before, 3 ADCq are present on OUFTI-2. Their purpose is to read analog signals.

7.3.1 Quick overview of the MAX1231 operation
The reference of the ADCs is the MAX1231 from Maxim Integrated. The following table contains
the main information about it.

Resolution 12 Bits
Channels 16

Modes possible Single ended or
differential inputs

Table 7.2: Characterists of the ADC

Resolution

About the output of the ADC, the value digitised are encoded on 12 bits. The number of output
values is 212 = 4096 possible values from 0, the minimum value, to 4095, the maximum value.

The data is thus encoded on 12 bits. After the measurements are taken, they are sent to the DPC.

Mode Possible

At no time, differential measurement is required. Indeed, differential measurement means measuring
the difference between two inputs which is not used in our case.

So, these are Single-ended measurements since all measurements are referenced to the GND.

In single-ended mode, the only possible mode is unipolar mode. This clarification is not trivial as
with differential measurements, the measurement could be unipolar or differential.
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Register

In the following Table 7.3, the main registers useful to properly use the ADC.

Register Name Description
RESET To reset all register to their default state
SETUP To setup the clock mode, the reference, the mode unipolar or bipolar

CONVERSION To specify which channel to read

Table 7.3: To initiate the data, 3 registers must be set

The Setup register is the most interesting to to send the measurements. Indeed, as you can see in
Figure 7.2 , it is used to define the clock, the reference mode and the choice in unipolar or bipolar mode.

Figure 7.2: Setup Register. [17]

As discussed earlier in single-ended measurement, the only possible mode is unipolar mode.

The selected clock is the external one. Indeed, it will be the one provided by the DPC. The clock
frequency, for this module, is 3.8MHz. This frequency is acceptable because the maximum frequency
allowed for ADC is 4.8 Mhz.

Therefore, in single-ended mode, the measurement range is between 0 and Vref .

Vref is the reference voltage. It corresponds to the maximum voltage that can be read. The reference
voltage must always be greater than the voltages to be measured on the channels. Otherwise, any val-
ues greater than Vref will be translated as the maximum value that can be output by the ADC, i. e. Vref .

The MAX1231 allows you to define Vref in 2 ways: either to provide an external reference voltage
or to use the internal Vref . In our case, the Vref chosen is the internal reference which is 2.5V. Thus, the
maximum voltage for the channels which must not exceed 2.5V.

The refencence voltage mode is internal (2.5V) and is set to be all the time so as to avoid wasting
time with a wake-up delay.

The LSB, i. e. the smallest variation, for example to go from 0 to 1, is given by Vref/4096 =
2.5/4096 = 0.6mV . The transfer function to switch from the value digitised by the ADC (on 12 bits),
Vread, to the voltage value, V , is: V = Vread x 2.5

4096

However, some of the voltages to be read can be higher than 2.5V. For example, 3.3V voltages from
the EPS are part of the measurements that are digitised. Since 3.3V is higher than the reference voltage,
it must have been necessary to reduce these tensions below 2.5 V to be correctly read. This is often done
by using a resistive voltage divider that has a constant transfer function H. So,the real voltage value,
before the voltage divider, is then obtained by computing V = Vread x 2.5

4096 x 1
H .
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Now, the last important register that needs explanation is the Conversion register. Its goal is to
specify which channel to read. Indeed, to recover the value of a channel, the DPC sends to the ADC (via
the MOSI line) what is called a byte conversion. Thanks to this byte, the channel to be read is specified.
The way this register is defined is shown in Figure 7.3.

Figure 7.3: Conversion Register. [17]

Thus, bits 3 to 6 are used to specify which of the 16 (=24) channels to read. In the following Figure7.4,
examples of actual conversion bytes sent to ADC are shown. The channels requested can be deduced, 9
to 12, in this case.

Figure 7.4: Example of conversion bytes sent by the DPC to the ADC.[17]

7.3.2 SPI communication
Now, that the conversion register is understood, one can detail how the measurement value are sent

to the DPC. To better explain it, it is easier to use an example of capture of the SPI communication that
is shown in Figure 7.5
Once a conversion byte is sent to the MOSI line, the next two bytes of the MISO line will correspond to
the measurement of the selected channel as shown in Figure 7.5.
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Figure 7.5: Example of communication between ADC and DPC. Right after a conversion byte is sent,
the ADC sends 2 bytes corresponding to the measurement requested via the conversion byte.

At each conversion byte corresponds two measurement bytes. The reason for the two bytes is because
the first one will correspond to the MSB (most significant Byte), the second will correspond to the LSB
(least signifying bytes). Indeed, since the resolution of the ADC is 12 bits, the format of the measure-
ments is illustrated in Figure 7.6

Figure 7.6: Format of the 12bits-measurements split into 2 bytes

A remark can be underlined about Figure 7.5. To speed up the measurement, the ADC takes advantage
of the fact that the SPI is a full duplex protocol communication. When receiving the bytes LSB, you can
already configure the byte conversion so that it can read the next channel.

-

7.3.3 Decoding
In continuity with what has been explained in the section 7.1: Format of the data received, the decoded

data will have the following structure.

...
1i: byte1 #MISO
1o: byte2 #MOSI
1i: byte3
1o: byte4
...

With all the explanation given in the previous sections, the information that will need to be decoded
are:

1. MOSI: Deduce the channel from a conversion byte, recognise the setup byte and the reset byte

2. MISO: Measurement bytes. After a conversion byte, recover the 2 bytes constituting a measurement.

With these information, to each channel will correspond a measurement.

7.4 FRAM
One of the modules with which the DPC communicates is the FRAM. It is the FM25V20A from

CYPRESS.

The main role of FRAM is to record a number of data such as: measurements made by ADCs, satellite
status, various events....
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However, the goal is not to cover everything that is present in the FRAM but only to focus on what
is communicated to the DPC via SPI. For the FRAM, bits are transmitted with Most Significant bit
(MSB) first. The FM25V20A can operate in SPI Mode 0 and 3. In this project, the mode 3 is used like
the ADCs before.

7.4.1 SPI communication
To communicate with the FRAM, it is necessary to use opcodes. All these opcodes, extracted from the
datasheet, are defined in Figure 7.7.

Figure 7.7: Opcodes. [18]

Among all these opcodes, the only ones that deserve attention are the write and read opcodes. For
the others, it is necessary to know that they exist and to recognize them when decoding, nothing more.

The write and read opcodes are important because, as their names suggest, it allows you to initiate
writing and reading in the FRAM. Therefore, since the aim will be to decode what is written and read
in FRAM, it is necessary to understand how writing and reading in FRAM works.

The operation of writing and reading is quite similar and is illustrated in Figure 7.8. After the opcode
write/read, it is necessary to specify which place in the memory should be written/read by indicating the
address on 18bits.

Figure 7.8: Write / Read operation. [18]
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For writing, it is the DPC that sends data to be placed in FRAM. The line used will, therefore, only
be MOSI and the data to be written will be just after the opcode WRITE and the address where to write.

For reading, the DPC receives the data previously placed in the FRAM. The lines used will be MISO
for the data to be read and MOSI line for the request with the READ opcode and the address where to
read.

A remark about the addresses length. The reason for the 18 bits is due to the organisation of the
FRAM. Indeed, to give an image of the Fram’s organisation, it is necessary to imagine a table of 256k
lines. Each of these lines is 8 bits long. Therefore, when writing to memory, it is mandatory to spec-
ify the line, called the address, on which to write. To specify 256k addresses uniquely it is necessary:
log2(256000) = 17.97 = 18 bits. Thus to specify an address, it is necessary to use 18 bits.

The management of the FRAM and its organisation on OUFTI-2 has already been thought by several
students. During that year, I had the opportunity to collaborate with a student, Guillaume, who was in
charge of coding telemetry. Thanks to his experience, he was able to explain to me how the data was
organised within the FRAM by means of a diagram, shown in Figure 7.9, he made.

Figure 7.9: FRAM organisation. Structure and type of data stored in the FRAM. Made by Guillaume
??

To have all the precise details, it will be necessary to refer to his thesis. For now, it is only necessary
to list what constitutes the FRAM to know what needs to be decoded. The data stored in the memory
are divided into 6 types:

1. Measures: All measurements made on OUFTI-2. The 3 ADCs module are part of it.

2. Events: Records all types of notable events: subsystem turned off or not, antenna status changes,
number of restarts....

3. Status: Timestamp which is the time elapsed since the start, the state of the antennas, the number
of restarts of the OBC.

4. Offset measurements and event: To avoid overwriting the data and to know from which address
measurements and events can be written

5. TM counter: Counts the number of telemetry requested.

6. Fault counter: Counts the number of time the subsystems encounters faults.
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Once the 6 types of data in the FRAM are presented it is necessary to know their structure to correctly
decode them. The structures for each of them are explicit in Figure 7.9 and are recalled in the Table 7.4.

Type of Data Total Bytes 0 1 2 3 4 5 6 7

Offset 8 Event Offset Measure Offset

Status 7 Timestamp Status Restart Silence

Measures 7 Measure ID Timestamp Value

Events 7 Timestamp Event ID Parameter

TM counter 2 Counter

Fault counter 2 Counter

Table 7.4: Summary of the structure of type of data

For more details on what is in the FRAM, it is more interesting to see Guillaume’s thesis directly.
[18]

For now, all the necessary elements to decode have been explained. The next section explains how
data transiting between the FRAM and the DPC can be decoded.

7.4.2 Decoding
First of all, to decode it is necessary to remember that the DPC communicates with FRAM using

opcodes as discussed before. One of the obvious tasks will be to identify these opcodes. Only one point
of attention should be given to opcodes related to writing and reading. Indeed, as seen above, an address
directly follows these opcodes followed by the data to be read or written.

As for the data, their structure has also been explained. However, just based on the structure of the
data, it is quite difficult to decode. Indeed, even if we have the structures of each type of data in the
FRAM, it is complicated to distinguish them from each other.

Indeed, two natural strategies would be:

1. Each type of data has a defined number of byte as can be seen in the table 7.4. For example, if 8
bytes are transmitted, it is necessarily an offset that has been read or written. However, and this is
obvious from the table, using length as a basis does not allow the types of data to be distinguished.
Indeed, 3 types of data are of size 7 bytes and the counter are on 2 bytes

2. Keep the idea of lengths and for data types of the same length, differentiate them using the fact
that each of them has a different structure. For example, both events and measures are 7 bytes in
size but have a different structure.

However these strategies are not effective. Indeed, solution 1) is not possible and solution 2) is not
ideal.

Indeed, for solution 2), keeping the example of events and measures, the challenge is to determine,
from 7 bytes, if it is an event or a measure. Two problems arise:

1. It is necessary to wait for the 7 bytes which induces a delay because the decoding is delayed
compared to the communication.

2. There are cases where it is impossible to deduce if it is an event or a measure. Indeed, it is possible
to find a certain number of examples where 7 bytes can be both measurement data and event data
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In the end, the best solution is hidden in the organisation of memory. Indeed, the memory is divided
into 6 distinct parts, each of which contains a type of data. This is clearly visible in Figure 7.9. The
following table lists the specific locations where the different types of data in the memory are separated.

Type of Data Adress start in memory

Offset 0x00000

Status 0x00008

TM Counter 0x0000F

Fault Counter 0x000037

Measures 0x00049

Events 0x30019
to 0x3FFFF

Table 7.5: Memory organisation: Adresses range for each type of data

To read or write, it is mandatory to specify the address where to read or write. Thus, by knowing
the organization of the memory in advance, thanks to the address, it is easy to deduce what type of data
will be read or written.

To decode, all you have to do is decode the address. Thanks to the address, it is easy to deduce the
type of data that will be read or written. Depending on the type of data, it will be necessary to decode
it according to its own structure.

To summarise, the information that will need to be decoded are:

1. MOSI: recognise the opcode. If read/write opcode, deduce its adress. If write, decode the data
being written using the methodology explained before

2. MISO: If read opcode, decode the data being read using the methodology explained before

7.5 DSTAR
The DPC communicates with the D-STAR microcontroller. This is a part of the these made by

Francois Piron, a student who was working on a thesis for OUFTI-2 at the same time. One of its tasks
was to establish the way data between the DPC and the D-STAR will be transmitted via SPI.

Once his work was finished, I had the information on SPI communication at my disposal. In order
not to repeat what he has already written in his thesis, I will not go into details but if necessary more
information can be found in his thesis.

In this work, it will be a question of explaining only what is strictly necessary to correctly decode the
SPI communication.

7.5.1 SPI communication
The communication is done in mode 3 and particularity of this subsystem, unlike FRAM or the ADCs

which communicated with a clock at a frequency of 3.8 Mhz, the clock frequency is only at 125kHz.

For the D-STAR, communication is based on the use of commands, which reminds us of the opcodes
used for FRAM. Thus, all commands are represented by an ASCII byte.[19] Figure 7.10, made by Francois
Piron, summarizes the different commands.
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Figure 7.10: Commands available in D-STAR. Made by Francois Piron [19]

For communication, it is mainly the OBC that sends the orders and data to the D-STAR microcon-
troller. It is therefore the MOSI line that is being used. For the MISO line, it is used to check that the
data has reached the D-STAR module. Indeed, it sends back to the DPC each byte received to verify
that it has been correctly sent. This is shown in Figure 7.12.

Figure 7.11: Example of DSTAR SPI communication

There is only one command that receives data from the microcontroller and it is the’LOG’ command.
In this case, MOSI contains the command and an offset (see Figure 7.10), and on the MISO line, after
repeating the ’LOG’ command and the offset, the logs are sent.
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Figure 7.12: Example of DSTAR SPI communication: Log command. (In hexadecimal, the equivalent of
ASCII character L is 4C.)

7.5.2 Decoding
Since the data sent to the D-STAR is not known, it is not possible to decode what passes through the
MOSI line. Indeed, the data that pass through this line contains the frames received by the D-STAR
module.

For MISO, it would have been interesting to validate and if it correctly repeats what MOSI sends.
However, this part has been validated by Francois Piron so it is not necessary to implement it on our side.

However, it is interesting to decode which of the 8 modes the D-STAR is in.

For the D-STAR the only thing that can be decoded is the mode in which the D-STAR is.

So, the information that will need to be decoded are:

1. MOSI: Recognise the command and deduce the mode.

2. MISO: Nothing.

7.6 Arduino Data
As stated when presenting these signals, for each signal, it will be necessary to send 2 bytes, MSB

first. The structure of the data sent by the Arduino has been discussed before and is recalled in Figure
7.13 and 7.14."

Figure 7.13: Illustration of the analog data structure: 10 bits analog data are preceded by 3 bits ID
Number

Figure 7.14: Illustration of the digital data structure: 8 bits digital data are preceded by 3 bits ID Number
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7.6.1 Decoding
From the explanation above, the information that will need to be decoded are:

1. MOSI: Recognise the ID and decode the 10-bits analog data sent in 2 bytes and the digital coded
in 8 bits.

2. MISO: Nothing.

7.7 Software used for data processing and display
From a software point of view, the ultimate goal of the project is to display the important information

obtained via the PC104 connector. Therefore, it will be necessary to build a graphical interface.

To build graphical interfaces, several solutions exist. Indeed, most languages allow to build a graph-
ical interface like Python, Java or even Matlab. In my case, the choice of language naturally turned to
Java. First of all because it was advised by Mr Dedijcker, one of the supervisors of the OUFTI-2 project.
And this choice is quite logical, many GUIs are created in Java so that a large documentation is present.
Moreover, I had some basics in Java and for my first experience in the GUI field, having some basics
makes it a little easier.

Once the language has been chosen, it is not over. It is necessary to choose the framework. Indeed,
two main choices are possible: Swing or JavaFX. Both allow to make GUIs. JavaFX is supposed to be
the replacement for Swing. But the transition from Swing to JavaFX is still not done and both are still
in use. For my part, I chose to work with JavaFX.

First of all, in an application, 2 parts are present: the graphical interface and the back-end. The
graphical interface corresponds to all the visual elements visible in an application. The back-end is in
fact the logic that is responsible for correctly modifying the visual elements. For example, imagine that
the application needs to display a led that can take two colors: red and green. The visual element is
the led, its shape, size, width,... and belongs to the graphical interface. The logic of the led, ie when it
changes color, under what conditions,... is supported by the back-end.

What is interesting in javaFX application is that it allows to properly dissociate the graphical interface
and the back-end.

7.7.1 Graphical interface
In our case, what should appear in the graphical interface has already been discussed previously.

Indeed, everything that needs to be decoded must be displayed. For example, for the ADCs, it is the
value of the measurements of the 16 channels, for the D-STAR, it is the current mode, for the FRAM, it
is the data sent to the FRAM. The graphical user interface must include and display these elements.

To build the graphical interface, one must create an FXML file, specific to JavaFX, which uses
XML syntax. However, to simplify the creation of GUIs, existing programs and to generate FXML files
automatically. This is the case with SceneBuilder, the program I used to create the graphical aspect of
the JavaFX application as shown in Figure 7.15. Thanks to this program, to add an element to display,
it is enough to select the desired element and drag it to the place where it should be placed. An element
can be a frame, a button, a text field and many other things. The size of an element can be modified with
sliders and all graphic elements such as shape, color, font,... can be defined with SceneBuilder. Once
an element has been chosen, to uniquely identify it, an id can be associated with it. Thus, if 2 elements
appear similar in appearance, with the id specific to each element, it is then possible, in back-end, to
manipulate each element separately.
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Figure 7.15: Example of the GUI manipulation in SceneBuilder

7.7.2 Back-end
For the back-end, this is really the logical and implementation part of the decoding discussed above.
The main back-end tasks are:

1. Generate the GUI

2. Read the decoded data (specific format)

3. Recognize the slave module

4. Decode MISO and MOSI line, depending on the slave module.

5. Log and display on the GUI

To code these parts, it was important to make a clear code. Indeed, as previously discussed, there are
still 4 modules left to be implemented. So, in the future, it will be necessary to supplement the code with
additional decoders for each remaining module. So, for reasons of clarity, and in order to be completed
by future students, I have made sure to create a class for each of these tasks.

As a reminder, the language chosen is Java and corresponds to an object-oriented language. Each
class is associated with a task listed above. The rest of this section will focus on a short explanation of
each class so that future students can continue with the same logic.

DataReading

A class is in charge of initiating the data acquisition via the sigrok-cli program. As discussed above,
sigrok-cli can send the data to a pipe. So, the first thing to do is to have access to this pipe. In short,
the data is available in an endpoint that a pipe created by sigrok-cli. This endpoint is accessible via Java
and and manipulate as a simple buffer. In concrete terms, in terms of code, we can run the sigrok-cli
program from Java and get the bytes decoded by sigrok-cli via a buffer.

As explained before, the data available in the buffer will have the following structure.

...
1i: byte1 #MISO
1o: byte2 #MOSI
1i: byte3
1o: byte4
...
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DataManagement

Once the access to the data is done, the next step is to manipulate these bytes. The first step is to
identify the slave module. This is done by identifying the ID of the slave module by referring to the Table
that had been shown previously.

SPI Communication Module ID number Description

SPI-1
Master: DPC

ADC 1 1

SPI communication between
the DPC and different modules

ADC 2 2
ADC 3 3
FRAM 4
COMM 5
BCN 6
IMU 7
RAD 8
BATT 9

SPI-2
Master: Arduino Dslogic 0

SPI communication between
the Arduino and the Dslogic to
send the digitized analog Data

Table 7.6: ID to identify it in a unique way each module

Once the slave module is identified, it is up to the decoders to give meaning to the bytes received
by following what has been explained in the decoding part of each module. This class also displays the
information once it has been decoded.

Decoder

Since each module has its own specificities, a class for each module has been created. Indeed, the way
of decoding MISO and MOSI line is specific to each. The only thing they actually have in common is
that they have to implement a method to decode the MISO and MOSI line. Therefore, an abstract class
has been created. This class has only two methods: DecodeMiso and DecodeMosi. All classes decode
inherited from this abstract class.

Each decoder class implement methods to execute what has been explained in the decoding part of
each module.

LogData

Before displaying the information, it is necessary to log them. This class takes care of the methods
to allow the information to be recorded correctly by specifying when it was recorded.
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Chapter 8

Testing and validation of the data
processing part.

In this project two distinct parts had to be realized, the data acquisition and the data processing.
As seen above, the real-time data acquisition part is compromised. But this does not prevent us from
working on the decoding part of the data. The practical implementation has already been discussed
previously however it was necessary to test if the Java code was working as expected.

8.1 Input data collection
Therefore, the question arises as to how to test the implementation of the code if we do not have

access to SPI communication. Indeed, as an input, the Java application expects:

...
1i: byte1 #MISO
1o: byte2 #MOSI
1i: byte3
1o: byte4
...

As a reminder, the Java application must be linked to an endpoint to read the data. This endpoint can
be of several types: socket, pipe,... More information had been provided in the explanation of IPCs (Inter
Process Communication).

So,for the operation of the Java application, regardless of the endpoint, provided it is properly linked
to the application, its operation will be the same. Thus to simulate the reading of the Java application at
one of these endpoints, a simple text file can be used. Indeed, by placing the elements that are expected
in the endpoint in a text file, it will have a totally equivalent behavior from the application point of view.

The question that arises is how to produce the element that is expected in the endpoint in a text file.

The first idea would be to produce them "by hands". This means starting from the explanations of
the SPI communications of each module and producing the expected input. Typically for ADCs, the
expected pattern is as follows:

1i: 00 #MISO
1o: Conversion Byte 1 #MOSI

1i: Measurement MSB 1 #MISO
1o: 00 #MOSI

1i: Measurement LSB 1 #MISO
1o: Conversion Byte 2 #MOSI
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1i: Measurement MSB 2 #MISO
1o: 00 #MOSIO

1i: Measurement LSB 2 #MISO
1o: Conversion Byte 3 #MOSI
...

However, this method is first of all very long. Indeed, writing each line is tedious and it is not guar-
anteed that the final result is without error.

Instead of trying to generate the expected input, the ideal would be to have direct access to the
data. The solution found uses Dslogic, which only works with Pulseview in the end. Indeed, thanks to
Pulseview which does not interrupt its data reading, it is easy to acquire the data actually exchanged by
the DPC and the modules. To test the Java application, this is exactly what we need except one detail:
it must respect the expected input structure.

8.1.1 Methodology to acquire the real data exhanged with the DPC
The methodology is as follows. First of all, connect the pins correctly to the Dslogic and launch

Pulseview.
In Pulseview, configure the sampling rate and reading time correctly. After reading, use the SPI

decoder by defining which pins are used as MISO, MOSI, SCLK and CS. This is explained in Figure 8.1

Figure 8.1: Illustration of how the SPI decoder can be set in Pulseview

The interesting part is that Pulseview allows to export decoded MISO line and MOSI line in a txt
file. This can be done following the steps in Figure 8.2.
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Figure 8.2: Illustration of how exporting decoded data in a file. This must be done separately for MISO
and MOSI.

Each line is saved in a different file and will have the same structure as in Figure 8.3.

Figure 8.3: Illustration of the structure of the exported decoded data in a file.

Now the goal is to transform this text file so that it has the expected input structure. Typically,
everything that is prefixed must disappear and be replaced by the ID of the module with which the DPC
communicates. Then, the two separate file must be merged into a new one. And for this task, I wrote a
Python script that reads the txt file provided by Pulseview and transforms it so that it has the expected
input structure:

...
1i: byte1 #MISO
1o: byte2 #MOSI
1i: byte3
1o: byte4
...

The advantage is that in the end it is more reliable because it avoids the mistakes that would have
been made by hand. But the main advantage is that the exchanged values are the ones that are really
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sent and received by DPC, which allows to check the Java applications in the same situations as the data
acquisition in real time.
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Chapter 9

Status of the EGSE and alternatives

9.1 Data acquisition
For the hardware part that is in charge of data acquisition, everything still needs to be done. However,

I am convinced that elements of my work will serve the next student who will take over, such as the
explanations on the IPCs that I didn’t have the opportunity to study during my studies. The signal
characterization part, the explanation and decoding of the SPI protocol will certainly save time.

9.2 Data processing
Most of the validation was done on real data exchanged with the DPC using the methodology explained

above. The purpose is to test if the decoder processes the data as requested. Here are the different things
validated for each module :

− ADC1, ADC2, ADC3 :

1. Deduce which channel sends a measurement.

2. Recover the measurements read by channels.

3. Display of the measurements in the corresponding channel in the GUI.

− FRAM

1. Deduce the type of data among the 6 existing ones.

2. Deduce the content of what is written or read according to the type.

3. Display in the GUI.

− DSTAR

1. Deduce the current mode.

2. Display the result in the GUI.

− Non-SPI data

1. Deduce the type of data.

2. Recover the measurements values of the voltage or the state of the digital signal

3. Display of the values in the GUI.

All the elements implemented for the moment in OUFTI-2 have therefore been tested. So, the back
end is up to date with the modules implemented for the moment. With the other modules, more element
will have be displayed. Therefore, the GUI will have to evolve. But as explained, by using SceneBuilder,
this will not affect the work done on the back end. Of course additional elements can be implemented.
We could imagine a more in-depth analysis on the data collected, for example.
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9.3 Comments on alternatives solution for data acquisition and
observations

As a reminder, the choice of the logic analyzer was made because they had enormous advantages including:

1. No hardware problems

2. Thanks to Sigrok-cli, a relatively simplified PC interface.

And this second point should not be underestimated. No matter how powerful the hardware is, it is
useless if it is not combined with an easy-to-implement solution to interface it to the PC. Unfortunately,
the data acquisition was a failure. But, after making progress with the JAVA application in charge of
data decoding, I had the opportunity to look for possible alternatives for data acquisition.

As discussed, among the existing devices, the solution of a logic analyzer coupled with sigrok-cli is
not possible. Therefore, the solutions explored are those based on a microcontroller and a second one
based on the use of an FPGA. It should be clear that the purpose of the following sections will not be to
provide a complete final solution but rather to share observations and remarks that will be useful for the
development of the next hardware solution. Despite the fact that the solution explained in this these is
not working, it would be a waste not to share what I found when thinking about an alternative solution

9.3.1 Requirements and tasks
The first minimum hardware requirement is to have the necessary number of pins, i.e. digital inputs

(12 SPI, 7 ENABLES + BATT_Full) and 6 analog inputs with a resolution of 10 bits minimum, i.e. 26
in total. Besides the number of pins, it is important to define the tasks to be accomplished in advance to
ensure that the device will actually fulfill its role. To ensure that the device does as few tasks as possible
so that it only focuses on data acquisition, the natural tasks would be to stipulate:

1. read the signals.

2. send them to the PC in a specific format.

Which specific format? There are 26 pins. For the analog signals, 10 bits will have to be sent for
each. The 10 bits will be sent successively one by one. FOr the digital signals, the value read in 1 bit
will be sent, which makes 18 bits in total. So, for each pin, one bit will correspond to a signal that would
be decided in advance. Therefore, the JAVA application receives the data of 26 bits in this predefined
format and manipulates them to transform them so that they correspond to the input format expected
by the application.

If we approach the problem this way, we’ll have to send the data at a quite high speed. Because it
must be remembered that the SPI signals are clocked at 4Mhz. So, it is necessary to sample the data at
twice the frequency, 8MHz, or every 0.125µs. Once the data are sampled, it must be able to send them
to the PC before the next sampling.

This is based on the assumption that the reading time is zero or at least negligible compared to
the sampling period which is 0.125 µs. In concrete terms, this includes the reading of 18 digital pins
and the time conversion of the 6 channels for analog data. This assumption is extremely optimistic and
unrealistic. It is necessary to take into account the time of each of the tasks to have an idea closer to
reality. Therefore, it is necessary to assign to the different tasks a typical average duration. In other
words, it is necessary to define a duration for:

1. Reading a digital input

2. Conversion time for an analog data.

3. Data upload rate to the PC

These duration are component dependent and should be considered for both the microcontroller and
FPGA-based solution. Taking into account the duration of each task, less time will be available to send
the data. Less time to send the same amount of data as before means an increase in upload speed (to
the PC). From there, we can think about ways to reduce the upload speed. To do this, there are two
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strategies: send less data and /or provide more time to send data.

Regarding the part to send less data, it should be remembered that the sampling rate is only due to
the presence of the 3 SPI lines: MISO, MOSI and the clock. For those, there is no choice, you have to
satisfy the Nyquist criterion. However, for the other signals, it is useless to sample and send the contents
of the pins at such a high frequency. In concrete terms, all non-SPI signals can be sampled by sending
them every second without any problems and not every 0.125µs (= 125ns!). For SPI signals, not all select
chips need to be sampled at this frequency as well. In the end, there are really only MISO, MOSI and
clock that require special attention. In view of this observation, the idea of sending the value of the 26
pins in a predefined 26-bit format is no the best option for our specific application.

To increase the upload time and send the least amount of data related to the SPI, you should not
forget the main objective. In our case there are 12 lines linked to the SPI: MISO, MOSI, SCLK and 9
CS. It is no use sending the value of all the pins every 0.125 µs. Indeed, the only information that is
interesting are on the one hand the bytes sent on the MISO line and the MOSI line and on the other
hand which slave module was involved in the communication. In the end, you have to wait 8 clock cycles
and send the 4 bytes that will contain the slave with which the DPC communicates, followed by the bytes
sent on the MISO and MOSI line.

For non-SPI signals, the general idea will be to understand that SPI signals have priority and that
non-SPI signals should be read when possible. Concretely, the tasks will then be:

1. Read the MISO, MOSI and SCLK signals. Its duration will be 3 digital input readings every
0.125µs.

2. Once the reading of the MISO, MOSI and SCLK signals is complete, it is necessary to determine
the CS involved in the communication. Since this information is only necessary at the end of the 8
clock cycles, the reading of the 9 CS can be spread over the 8 clock cycles. Its duration will be 8
digital input readings that can be spread over every 8 clock cycles, i.e. 1µs.

3. The remaining time will be devoted to reading non-SPI signals. This includes 8 digital inputs
readings and 6 conversion time of the ADC used for the analogs signal. Its duration will be spread
over 1s.

From now on, since on the one hand less data is needed to the PC and on the other hand more time is
available to send the data, the upload speed is greatly reduced in this case. To get an idea of the bottom
of the upload speed range, let’s consider the case where only the 4 bytes that are the bytes sent to MISO,
MOSI and the slave concerned. These 4 bytes must be sent before the next 4 bytes are ready i. e. before
8 clock cycles. Assuming a zero reading time, which is still an unrealistic assumption, the upload speed
will be 4 bytes/1µs = 4MB/s. 4MB/s is a very high speed.

But it should be remembered that so far, the case we are in is very challenging because of the relatively
fast speed of SPI communication. Indeed, for the moment, we are considering the case of continuous clock
cycles without any interruption. In reality, this is not the case. Indeed, small interruptions are present
in the order of several µs. Indeed, an interesting observation is that there is some delay during SPI
communication. To observe it, let’s analyze the case of a measurement writing of an ADC in the FRAM
shown in the Figure 9.1. We recognize the structure that effectively corresponds to the writing of a
measure: opcode followed by the address where to write the measure and finally the structure of the
measure.
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Figure 9.1: Illustration of the delay present when writing measurement obtained by the ADCs in FRAM.

The maximum number of consecutive bytes that can be sent is 4 bytes. After 4 consecutive bytes,
there is a delay in the order of 18.7 µs before the next 4 bytes. In concrete terms, the time to send a byte
is more or less 8 x 1/3.75 µs ∼= 2µs. If you want to send 16 bytes, the time required is not 32µ (16 x 2µs)
but 88µs (16 x 2µs + 3 x 18.7µs) because of the delay that occurs every 4 bytes. It must be verified that
this is also the case for FRAM reading, which I did not have the opportunity to do. However, for ADCs,
there is also a delay every 8 consecutive bytes, of about 32 µs. The purpose of this observation is simply
that the upload speed will probably be lower than the case where the communication is uninterrupted.
Because, in the end, there would be more time to send the data, which implies a lower upload speed.

9.3.2 Microcontroller based
To find the microcontroller, the same approach as with what we did to choose the Arduino. From

a material point of view, the additional constraints will be the number of digital inputs that will be
more important. If we choose an Arduino for the simplicity of development and prototyping, one model
corresponds to the material characteristics: the Arduino Mega 2560. However, it must be ensured that
it is powerful enough to sample quickly.

First of all, the first thing to check is the time it takes to read a digital pin. To find this information,
one must look at the Arduino library that implements the DigitalRead function. However, this function
has the disadvantage of being very slow, in the order of a few µs. There are alternatives to this function
that allow to make a digital pin reading in only 2 clock cycles. However, since the Arduino is clocked at
16 Mhz, i. e. a period of 62.5ns, the reading time is at least 2 x 62.5 ns = 0.125 µs. Which is still too slow.
So,typically thanks to the fact that the tasks to be performed and their duration have been determined
in advance, this solution can be eliminated. So, developing an alternative solution on Arduino doesn’t
make sense because timings constraints are not met.

However, the choice is not limited to the Arduino. Indeed, other microcontrollers exist, like the
STM32 microcontroller series.[22] In this series, all are far superior to the Arduino, in every aspects like
clockrate, upload biterate,... So,as mentioned above, I didn’t implement or test this solution. But before
anything, the first step would be to list the tasks and make a timing diagram to make sure that the
STM32 microcontroller meets the requirements. If the task list is feasible, it will be necessary to find a
way to interface it with the PC. The STM32 offers a solution to communicate data via USART, USB
or even Ethernet for some of them. What is interesting is that a lot of documentation is available. For
example, Many projects exist and some ideas can be taken up such as avoid the USB protocol and uses a

69



USART to USB to send data to the PC or which java class can be used to access data received by USB.[23]

9.3.3 FPGA Based
If it turns out that using a microcontroller is not powerful enough, one solution would be to use the

FPGA. Indeed, if processing speed is not enough, it may be necessary to switch to an FPGA. However,
one of the concerns will be to interface it with the PC. By doing research, 2 solutions emerge. The first
one is familiar because it uses the FX2 chip that was present in the Dslogic [25]. Indeed, development
boards with an FX2 and drivers exist in the market[24]. Another relatively well documented solution is
to use not a USB port but an Ethernet link to interface with the PC [26].
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Chapter 10

Conclusion

In this thesis, the objective was to build an EGSE. The EGSE is an essential tool to check the proper
operation of OUFTI-2, a step that is essential for any satellite. Thus, a number of signals were chosen
because of their importance in the proper operation of OUFTI-2. The objective of the EGSE is to acquire
these signals and analyze them. Therefore, two main components are essential in the design of the EGSE.

First, it was necessary to build a hardware device that could acquire these signals and interface with
a PC. After distinguishing the types of data that need to be monitored, a data acquisition strategy
was discussed. This is based on the use of a logic analyzer, the DSlogic and an Arduino. To interface
with the PC, an open-source software, Sigrok-cli, allowed access to the data acquired by the DSlogic.
Thanks to numerous tests, and despite concessions, it turned out that the solution found to acquire the
data could not work. These early tests avoided implementing a hardware solution that was doomed to fail.

Despite the failure in data acquisition, it was possible to progress in the software part of the EGSE.
The EGSE software must allow data processing and display in a graphical interface. To move forward
in this part, it was necessary to define the structure of the data acquired by the data acquisition part of
the EGSE. Once this structure was well defined, a JavaFX-based program was implemented. In concrete
terms, the value of voltages, the content of digital signals and the data sent by SPI buses can be decoded
and displayed on a graphical interface.

As far as SPI buses are concerned, the program is updated with the subsystems already implemented
in OUFTI-2: D-STAR, FRAM, ADC1, ADC2, ADC3. Tests on actual exchanged data between the DPC
and the subsystem were done to validate the implementation of the application.

In this work, an effort has been made to be as clear as possible to allow the student who will continue
the project to start on a good basis. Indeed, to finalize the EGSE, it will be necessary to find a data
acquisition solution that allows interfacing with the PC. And on the software side, when the SPI com-
munication between the DPC and the BCN, RAD, IMU and BATT subsystems is defined, the JavaFX
application must be updated. Fortunately, it has been designed to allow easy integration of the decoding
of the SPI communication specific to each subsystem.
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Appendix A

Appendix

A.1 SPI Decoder Code

# Key: (CPOL, CPHA). Value: SPI mode.
# Clock polarity (CPOL) = 0/1: Clock is low/high when inactive.
# Clock phase (CPHA) = 0/1: Data is valid on the leading/trailing clock edge.
spi_mode = {

(0, 0): 0, # Mode 0
(0, 1): 1, # Mode 1
(1, 0): 2, # Mode 2
(1, 1): 3, # Mode 3

}

class Decoder(srd.Decoder):

## Asign the input singnals to variables: Depends on the langage
## Example
## Miso = Pin 1 , Mosi = Pin 2, SCLK = Pin 3,
## CS 0-> 8 = Pin 4->12

## Specify the options:
#- Default CPOL & CPHA for the SPI Mode
self.CPOL = 0
self.CPHA = 0
#- The bit order: MSB or LSB first
self.bo = 'msb-first'
#- Wordsize
self.ws = 8

def __init__(self):
self.reset()

##Define the variables useful for the decoding.
def reset(self):

##is limited between 0 to wordsize (=8)
self.bitcount = 0

##Miso or Mosi Byte
self.misodata = self.mosidata = 0
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##Useful if wordsize>8,
##If wordsize = 8, data can be sent with 1 byte
##If wordsize > 8, need self.bw bytes to send data

self.bw = (self.options['wordsize'] + 7) // 8

##COnstruct the MOSI and MISO byte and transfer them
def putdata(self):

bdata = self.misodata.to_bytes(self.bw, byteorder='big')
#SEND DATA SERIAL PRINT

bdata = self.mosidata.to_bytes(self.bw, byteorder='big')
#SEND DATA SERIAL PRINT

def reset_decoder_state(self):
self.misodata = 0
self.mosidata = 0
self.bitcount = 0

def cs_asserted(self, cs):
active_low = (self.options['cs_polarity'] == 'active-low')
return (cs == 0) if active_low else (cs == 1)

##Each bit is read one by one
## Until wordsize is not reached, it is important to continue receiving data.

def handle_bit(self, miso, mosi, clk, cs):
# If this is the first bit of a dataword, save its sample number.

# Receive MISO bit into our shift register.
##Since self.misodata is reset after each wordsize is reached
## to 0, we shift the new bit to misodata.
##bitcount = 0: miso = 1, misodata=1
##bitcount = 1: miso = 1, misodata=11
##bitcount = 2: miso = 0, misodata=110

if self.bo == 'msb-first':
self.misodata |= miso << (ws - 1 - self.bitcount)

else:
self.misodata |= miso << self.bitcount

# Receive MOSI bit into our shift register.

if self.bo == 'msb-first':
self.mosidata |= mosi << (ws - 1 - self.bitcount)

else:
self.mosidata |= mosi << self.bitcount

self.bitcount += 1

## Most important, we receive bit per bit, so until wordsize is not reached
## it is important to continue receiving data.
# Continue to receive if not enough bits were received, yet.
if self.bitcount != ws:

return

##Once the bitcount equals to the wordsize, we can send the data

75



self.putdata()

##bitcount is reset to 0 there
self.reset_decoder_state()

def find_clk_edge(self, miso, mosi, clk, cs):
/!\
if "clock not changed ":

return

# Sample data on rising/falling clock edge (depends on mode).
mode = spi_mode[self.CPOL, self.CPHA]
if mode == 0 and clk == 0: # Sample on rising clock edge

return
elif mode == 1 and clk == 1: # Sample on falling clock edge

return
elif mode == 2 and clk == 1: # Sample on falling clock edge

return
elif mode == 3 and clk == 0: # Sample on rising clock edge

return

##Once the mode meets the clock, we care about the bits.
self.handle_bit(miso, mosi, clk, cs)

def decode(self):

# We want all CLK changes.

## 'l': Low pin value (logical 0)
## 'h': High pin value (logical 1)
## 'r': Rising edge
## 'f': Falling edge
## 'e': Either edge (rising or falling)
## 's': Stable state, the opposite of 'e', the current and previous pin value
## were both low (or both high).

wait_cond = [{0: 'e'}]

while True:
(clk, miso, mosi, cs) = self.wait(wait_cond)
self.find_clk_edge(miso, mosi, clk, cs)
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