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Introduction

The idea of Bose-Einstein condensation dates back from the mid-1920s, when a Bengali scientist,
S. N. Bose, derived a new way to get the blackbody radiation law proposed by M. Planck in
1900. The originality of Bose’s work was in the way of counting the repartition of the photons
emitted by the body, which he considered to be undistinguishable particles, among the different
discrete energy levels of the system. Even though it was a ground-breaking discovery that would
lead to a whole new physics, the importance of his work was underestimated at the time, and
Bose could not get his work published. As a last attempt to reach publication in a scientific
review, he contacted A. Einstein, which personally translated Bose’s article and got it published
in a prominent German revue.

Einstein contribution went further than just helping a quite unknown physicist to get his
work published. Indeed, in 1924 and 1925, he extended Bose’s work to take into account the
mass of the particles. Such an extension let to a curious behaviour: under a given temperature,
a macroscopic amount of particles would populate the lowest-energy state of the system. The
condensation phenomenon was discovered.

While a whole new class of physics had been discovered, it was not directly understood by
the physicists community, and the mechanisms leading to the condensation phenomenon were
not directly understood, as is well expressed by Einstein’s statement[25]

“The difference between Boltzmann and Bose-Einstein statistics expresses indi-
rectly a certain hypothesis on a mutual influence of the molecules which for the time
being is of a quite mysterious nature.”

Later on, it would be understood that the mysterious influence between particles mentioned by
Einstein arises from the fact that the Hilbert space in which the particles’ wavefunctions are
defined had to be entirely symmetric with respect to particles permutations (which is nowadays
known as the symmetry postulate). This requirement that the wavefunctions have to verify lie
at the core of statistical quantum mechanics and is responsible, among other things, for the
process of stimulated emission[10].

Since the temperature at which the condensation takes places, derived by Einstein, is very
low, the Bose-Einstein condensation phenomenon was long considered to be nothing more than
a theoretical curiosity. It is only in 1938 that F. London suggested that the superfluidity of 4He
was a manifestation of Bose-Einstein condensation[22], which brought, for the first time, the
idea that a quantum phenomenon (i.e. the Bose-Einstein condensation) could manifest itself on
a macroscopic size. Later on, other intriguing phenomena such as superconductivity or LASERs
would be described as a kind of condensation, highlighting the fact that quantum mechanical
effects could be observed on macroscopic scales.

The first experimental realisations of Bose-Einstein condensation were realized in very dilute
alkali gases. More specifically, the first BEC were realized with 87Rb[3], 7Li[6], and 23Na[12] in
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1995, and became possible because the trapping and cooling techniques needed to reach the
ultralow temperature required for the BEC realization, had been dramatically improved since
Einstein’s seminal paper in 1925, and those realisation led to the physics Nobel prize in 2001.

Besides the very low temperature required to reach the condensate state, another requirement
has to be fulfilled: the gas has to be very dilute. This requirement comes from the fact that
at such low temperatures as what is required to observe a condensate, a gaseous state could
not exist: indeed, the system would rather exhibit a phase transition to the liquid, or solid,
state. Such a phase transition is mainly due to recombinations and three-body collisions, which
become quite seldom if the gas is sufficiently diluted. Because of the scarcity of such three-body
recombinations, the gaseous state can be obtained over quite long timescales: the system is said
to be in a metastable equilibrium. Another interesting point is that, at such low temperatures
as what is needed to reach the condensate, the pairwise interactions between the particles of the
gas can all be taken into account through a single parameter, called the scattering length of the
atom.

In fact, the presence of interactions between particles blur a bit the idea of condensate
with respect to what was first imagined. Indeed, in the case of a non-interacting gas, all the
constitutive particles occupy the fundamental energy state at 0 K. If interactions are taken
into account, all the particles do not occupy that state, even at the absolute 0. However, for
a sufficiently low temperature, the fraction of particles not in the condensate (the so-called
uncondensed particles) is small, and the system can be described by a single wavefunction.

Because the fraction of uncondensed particles is small, the gas can be described thanks to the
Hartree ansatz (which considers that all the particles occupy the same state), which leads to an
evolution equation for the wavefunction of the function known as the Gross-Pitaevskii equation,
which is a particular form of the more general Nonlinear Schrödinger equation. That nonlinear
equation is an universal equation used to model the time-evolution of complex envelope-fields
in nonlinear dispersive media. In particular, the Nonlinear Schrödinger equation is used to
compute the time-evolution of light pulses in optical fibres, or the evolution of optical solitons
in Kerr-like media. The fact that the system can be described by the Gross-Pitaevskii equation
(which is an effective mean-field theory) considerably simplifies the problem, since the results
provided by that approximation are in very good agreement with experiments, which means
that the full many-body Schrödinger equation has not necessarily to be fully solved.

Even though the Gross-Pitaevskii equation has been presented in the particular context of
Bose-Einstein condensation, its range of applications is broader. Indeed, a similar equation
appears in other fields of physics, such as nonlinear optics (through a certain form of Nonlinear
Schrödinger equation), in biology, or even plasma physics. This highlights the fact that research
on Bose-Einstein condensates is in fact quite general, and spans over multiple fields of nowadays
physics.

Because of its nonlinear aspect, the GPE can give rise to peculiar behaviours of the solutions,
one of which being the solitons. Such solitonic solutions have the counter-intuitive to travel in
space without distortion, as opposed to regular waves (thing of water waves at the surface of a
lake). In fact, such a behaviour is not specific to solitons, it only characterizes solitary waves.
In order for a solitary wave to be called a soliton, it should also exhibit the property to come
undistorted from a collision with another soliton. The first observation of solitonic waves dates
back to 1885, when a Scottish scientist ( John S. Russell) observed that a boat dragged in a
narrow canal gave rise to a wave that travelled for miles without distortion, as is emphasized by
Russel’s saying

“I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass
of water in the channel which it had put in motion; it accumulated round the
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prow of the vessel in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed it
on horseback, and overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot to a foot and a
half in height. Its height gradually diminished, and after a chase of one or two miles
I lost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon which I have
called the Wave of Translation.”

Solitons can be of two different kinds: indeed, they can be either dark/grey or bright. The
first ones are characterized by a zero density (for dark) or a density dip (for grey) at a given
point, hence the name (a dark soliton can be associated to a “hole” in the density). At the point
of minimum density, the phase also exhibit a sharp jump as its exhibit a tanh profile (which
flattens when the speed of the soliton increases). In opposition to those dark/grey solitons, are
the bright solitons, which are characterized by a maximum in the density. Such structures are
well known in the community of people concerned with nonlinear optics, but it is only recently
that those structures were observed in Bose-Einstein condensates, since the first observation of
bright solitons in BECs dates back from 2002 [34, 19].

Those solitons are solutions to the Gross-Pitaevskii equation. Their type (dark/bright)
depends upon the sign of the interactions between the atoms: repulsive interactions means a
positive scattering length, and lead to dark solitons, whereas a negative scattering length means
attractive interactions, which leads to bright solitons. An interesting point with Bose-Einstein
condensates is that the interactions between atoms can be tuned thanks to a process called
Feshbach resonance, and allow thus to study both types of solitons.

Even though the interactions between atoms can be tuned as desired in a Bose-Einstein
condensate, the case of bright solitons has to be treated carefully, since the dimensionality of
the system shows to be crucial. Indeed, in three dimensions, a condensate of atoms interacting
attractively is not stable, and collapses. In lower dimensions, the picture is different: in two
dimensions, a gas consisting of atoms interacting attractively can exist if the number of atoms
in the condensate does not exceed a critical value. In one dimension, bright solitons can appear.
Such gases in reduced dimensions can be realized experimentally if the confining potential along
one or two spatial dimensions is much bigger than the others.

In order to explore the link between Bose-Einstein condensation and solitons, the work is
organized as follow

• In chapter one, the Bose-Einstein condensation phenomenon in 3D is discussed. After
having briefly introduced some concepts and notations of second quantisation, the case of
ideal gas condensation is discussed. It will be shown that even in that most simple case,
the effect of a confining potential brings some mathematical difficulties. From there, the
concepts are extended to interacting gases. It will be shown that the effect of interactions
drastically modifies the behaviour of the gas, even in the case where there is no confining
potential, as was already noted here above.

• In chapter two, the effect of dimensionality reduction will be briefly discussed. Such a
reduction is made possible by the fact that the confining potential can be made very
asymmetric, leading to quasi-1D and 2D configurations. Even if there is no condensation
possible above strictly 0 K (Hohenberg theorem), an interesting effect can nevertheless
take place: a sharp transition to a quasi-condensed case. Such a transition is known as
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the Berezinski-Kosterlitz-Thoules transition, the system manifests superfluid properties.
Other interesting effects can take place, such as the Josephson effect, or even a transition
to another regime, where the gas of bosons behaves like a gas of fermions. This particular
regime is called the Tonks-Girardeau regime, but will not be discussed in the following.

• In chapter three, the problematic of solitons will be addressed. After having introduced
the concept of solitary wave and soliton, the case of dark and bright solitons will be
discussed separately. For the dark soliton, an analytic study will be performed, and lead
to the conclusion that the center-of-mass of such a soliton can be interpreted as a classical
particle. For the bright soliton, a numerical study is performed. In particular, it will be
shown that a spectral method for the time discretization, coupled with a finite difference
scheme for the spatial discretization of the Gross-Pitaevskii does not lead to a solution
that fits the analytical one, because of the interaction term.
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Chapter 1
Bose-Einstein condensation in 3D

Introduction

In this chapter, the basics about Bose-Einstein condensation in three dimensions will be reviewed.
Starting from general considerations regarding the condensation phenomenon, the concepts will
be applied to more precise cases, such as the ideal Bose gas, with and without confinement, or
to the case of an interacting gas described by a mean field theory.

1.1 The ideal Bose gas

As a gas of non-interacting bosonic particles at thermal equilibrium is considered, the system as
to be coupled with an external reservoir, which function is to ensure thermalization. In that
case, the gas is described, in the grand-canonical ensemble, by the equilibrium N -body density
matrix

ρ̂ =
1

Y
exp

[
−β
(
Ĥ − µN̂

)]
, (1.1)

with β = 1
kBT

the thermal energy contained in the system (kB being the Boltzmann constant and
T the temperature of the system), Ĥ the Hamiltonian of the system, µ the chemical potential,
and N̂ the operator giving the number of particles in the system. The prefactor Y ensure the
normalization of the density matrix Tr (ρ̂) = 1, hence

Y = Tr
{

exp
[
−β
(
Ĥ − µN̂

)]}
.

Depending on whether the gas is free or trapped, the Hamiltonian takes different forms, namely
(using the second quantization formalism)

Ĥ =

∫
Ψ̂† (r, t)

[
− ~2

2m
∇2

r

]
Ψ̂ (r, t) dr, (free ideal gas) (1.2a)

Ĥ =

∫
Ψ̂† (r, t)

[
− ~2

2m
∇2

r + Vtrap (r)

]
Ψ̂ (r, t) dr, (trapped ideal gas) (1.2b)

The point with the density matrix is that encodes all the information about the system: thanks
to that operator, all the thermodynamic quantities (such as the mean energy of the system, the
specific heat, etc.) can be computed.

Another interesting (if not crucial) point about the density matrix, is that it gives an
information on whether a condensate can be realized in a certain state or not. Indeed, according
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to [26], a Bose-Einstein condensate is realized in the state corresponding to a macroscopically
big1 eigenvalue of the one-body density matrix, given by

ρ̂(1) = N Tr2,...,N [ρ̂] .

Choosing a base in which that operator is diagonal, it can be rewritten under the form

ρ̂(1) =
∑
k

nk |φk〉〈φk| , (1.3)

where the nk’s are the different eigenvalues and the |φk〉 the corresponding eigenstates. That
operator can also be used to encode information about the system, such as its density or
coherence. Indeed, by using a space representation of the one-body density matrix, given by

ρ (r, r′, t) = 〈r′|ρ̂(1)|r〉 =
〈

Ψ̂† (r, t) Ψ̂ (r′, t)
〉
, (1.4)

or a momentum representation (linked to the previous one through a Fourier transform), insight
on the influence of a particle located at r on another particle located at r′ can be found.
Moreover, the relation appearing in (1.4) is very general, in the sense that it applies to any kind
of system, independent of the statistics at play, and even in out-of-equilibrium situation.

At this point, it is interesting to emphasize that the diagonal terms of the density matrix
obey to the normalization condition

∫
ρ (r, t) dr = N , and that the information on the coherence

given by the out-of-diagonal terms is crucial when it comes to matter waves.

1.2 The field operator

In all the previous discussion, the field operator Ψ̂ (r) has been used, and it is thus time to
introduce it in a more formal way. Using the same basis as in (1.3) that diagonalizes the
one-body density matrix, the creation and destruction field operators Ψ̂† (r) and Ψ̂ (r) take the
form

Ψ̂† (r) =
∑
k

â†kφ
∗
k (r) and Ψ̂ (r) =

∑
k

âkφk (r) ,

where â† and â are the creation and annihilation operators, defined through the relations

âk |n0, n1, . . . , nk, . . .〉 =
√
nk + 1 |n0, n1, . . . , nk + 1, . . .〉

â†k |n0, n1, . . . , nk, . . .〉 =
√
nk |n0, n1, . . . , nk − 1, . . .〉 ,

where nk is the occupation number of the single-particle state |φk〉, and verifying the commutation
relations [

âk, â
†
k′

]
= δk,k′ , [âk, âk′ ] =

[
â†k, â

†
k′

]
= 0 ∀ k, k′. (1.5)

Combining the definition of the field operators with the expression (1.4), and using the
relation nk =

〈
â†kâk

〉
, the space representation of the one-body density matrix takes the form

ρ (r, r′) =
∑
k

nkφ
∗
k (r)φk (r′) .

Assuming only the state |φ0〉 is macroscopically populated, with a population n0, this last
representation can be conveniently rewritten under the form

ρ (r, r′) = n0φ
∗
0 (r)φ0 (r′) +

∑
k 6=0

nkφ
∗
k (r)φk (r′) ,

1Macroscopically big has to be understood as being of the order of N, i.e. O(N)
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highlighting the fact that a Bose-Einstein condensate is realized in that state. The field operator
associated to that last expression writes

Ψ̂ (r) = â0φ0 (r) +
∑
k 6=0

âkφk (r) .

An attentive reader has probably noted that up to now, the discussed field operators do not
have a time dependence, as opposed to the field operators appearing in eqs. (1.2a) and (1.2b).
This comes from the generalization of the Bogoliubov approximation, consisting in writing the
field operators as the combination of a classical field and a perturbation, i.e.

Ψ̂ (r, t) = Ψ0 (r, t) Î + δΨ̂ (r, t) ,

with Ψ0 (r, t) =
〈

Ψ̂ (r, t)
〉
and δΨ̂ (r, t) represents the non-condensed part of the system. In the

case of a dilute ultracold gas (for a temperature reaching 0 K), that last part can be neglected,
and the field operator acts exactly as a classical field2. It has to be noted that the replacement
of the condensate fraction by a classical c-number is valid only in the case of a big number of
particles, i.e. N � 1.

1.3 Derivation of thermodynamic properties

It was previously stated that the density matrix, defined in (1.1), encodes all the information
about the considered system. In the following, that statement will be proved to be correct by
computing some of the thermodynamic properties of the gas.

1.3.1 Occupation number

The first quantity to compute is the occupation number of an energy level. Even though its
detailed expression is different for a free gas or a trapped one, its general expression stays the
same, and will be shown to read

n~l =
1

exp
[
β
(
ε~l − µ

)]
− 1

, (1.6)

with ε~l the energy level corresponding to the set of quantum numbers ~l = (lx, ly, lz), and where
the other quantities have the same meaning as previously.

Choosing a base in which the Hamiltonian Ĥ is diagonal and using the relation N̂ =
∑

k â
†
kâk,

the different terms appearing in the expression of the density matrix take the form

• the numerator is written under the form

exp
[
−β
(
Ĥ − µN̂

)]
= exp

[
−β

+∞∑
k=0

(
εkâ
†
kâk − µâ

†
kâk

)]

=
+∞∏
k=0

exp

−β (εk − µ) â†kâk︸︷︷︸
n̂k


2Neglecting the non-condensed part of the gas is equivalent to the classical limit in quantum electrodynamics,

where the quantum fields are replaced by the classical electric and magnetic fields.
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• the denominator is written under the form

Tr
{

exp
[
−β
(
Ĥ − µN̂

)]}
=

∑
n0,n1,...

〈n0, n1, . . .|exp
[
−β
(
Ĥ − µN̂

)]
|n0, n1, . . .〉

=
∑

n0,n1,...

+∞∏
k=0

exp

−β (εk − µ) â†kâk︸︷︷︸
n̂k

 〈n0, n1, . . .|n0, n1, . . .〉 .

In the last expression, after the permutation of the series and the product, a geometric progression
is recognized. Gathering the results together, and evaluating 〈ρ̂〉 = 〈n0, n1, . . .|ρ̂|n′0, n′1, . . .〉
yields

〈ρ̂〉 =
+∞∏
k=0

1

Yk
exp [−β (εk − µ)nk] δnknk′ , Yk3 =

1

1− exp [−β (εk − µ)]
.

Continuing from there, the mean value of the occupation number can be computed thanks to
the expression 〈n̂k〉 = Tr

[
ρ̂â†kâk

]
. Combining the expression of the density matrix expressed in

the eigenbasis of the Hamiltonian with the invariance of the trace to a cyclic permutation of its
arguments and the relation

â†kâkρ̂ = − 1

βYk
∂

∂εk
exp

[
−β (εk − µ) â†kâk

] ∏
k′ 6=k

exp
[
−β (εk′ − µ) â†kâk

]
,

the sought statistical mean value of the occupation number of the energy level ε~k, given by
〈n̂k〉 =

∑
n0,n1,...

〈n0, n1, . . .|â†kâkρ̂|n0, n1, . . .〉 can finally be computed

〈n̂k〉 =
∑

n0,n1,...

〈n0, n1, . . .|â†kâkρ̂|n0, n1, . . .〉

= − 1

βYk
∂

∂εk
Yk =

1

β

∂

∂εk
ln

(
1

Yk

)
εk>µ=

1

β

∂

∂εk
ln
[
1− e−β(εk−µ)

]
=

1

exp [β (εk − µ)]− 1

It should be noted that in the previous derivations, the splitting of the mean value of the density
operator 〈ρ̂〉 into a product of different, independent, components highlights the fact that the
eigenstates of the Hamiltonian can be seen as independent systems, all connected to the same
reservoir.

1.3.2 Mean number of particles in the system

After having derived the occupation number of the different energy levels in the system, the
number of particles contained in that system can be computed. By definition, that quantity is
given by 〈

N̂
〉

=
∑
~l

1

exp
[
β
(
ε~l − µ

)]
− 1

. (1.7)

Since the expression for the energy ε~l depends on whether the gas is free or not, those cases
have to be treated separately.

3The expression of such a “partial” partition function is valid only if |exp [−β (εk − µ)]| < 1⇔ εk > µ ∀k
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The free gas

It is well known that the energy of a free perfect gas is purely kinetic, which means

ε~l =
‖~P‖2

2m
, ~P =

2π~
L
~l.

Inserting that expression for the energy in the statistical mean value of the number of particles
in the system given by the relation (1.7) yields a complicated expression to compute analytically.
However, if the computations are made on an infinite volume, the successive terms in the series
do not change drastically from one to the other (since ‖~k‖2 ∝ 1/L2, and L → +∞), and the
series can be replaced by a Riemann integral.

Changing the integration domain of the Riemann integral from d~l to d~P , the mean number
of particles present in the system is given by〈

N̂
〉

=
V

(2π~)3

∫
d~P

exp
[
β
(
‖~P‖2
2m
− µ

)]
− 1

.

To proceed further in the computations, it can be noted that the integrand is a geometric series,
provided that µ < ε~0 (which is in good agreement with physical intuition since the occupation
levels (1.6) cannot be negative). If the condition is fulfilled, the integrand can be replaced by∑+∞

l=1 exp
[
−βl

(
‖~P‖2
2m
− µ

)]
, and the integration would finally give〈
N̂
〉

=
V

(2π~)3

+∞∑
l=1

(
2πm

βl

)3/2

exp (lβµ) .

Introducing the thermal de Broglie wavelength λT =
√

2π~2
mkBT

, dividing by the volume (to get an
intensive quantity that is not affected by the limit V → +∞), and using the definition of the
Bose function

gp (z) =
1

Γ (p)

∫ +∞

0

xp−1

z−1ex − 1
dx =

+∞∑
l=1

zl

lp
,

the mean density of the free ideal gas is given by 〈n̂〉 =
g3/2(eβµ)

λ3T
.

A legit question to ask is under which temperature the condensate begins to form. To find
that expression, the total number of particles in the system is written〈

N̂
〉

=
〈
N̂0

〉
+
〈
N̂ ′
〉
,

with
〈
N̂ ′
〉
the non-condensed particles, given by

〈
N̂ ′
〉

=
∑

~l 6=~0
1

exp[β(ε~l−µ)−1]
. As the condensate

is reached for µ→ ε~0 = 0, the number of non-condensed particles is bounded by a non-infinite

value
〈
N̂ ′max

〉
, found by imposing that µ reaches its maximum value (i.e. µ = 0 in this case).

The critical temperature above which no particles are in the condensate can then be found
by noting that, in that case, N = N ′max, which leads to〈

N̂
〉

=
V

(2π~)3

+∞∑
l=1

(
2πm

βl

)3/2

= ζ (3/2)
V

λ3Tc
, (1.8)

which can be inverted to give the expression of the critical temperature Tc, given in this case by

Tc = 2π~2
mkB

[
n

ζ(3/2)

]1/3
. Another information can be extracted from relation (1.8): when T = Tc,

the mean distance between the atoms is of the order of the thermal de Broglie wavelength,
which corresponds to the entrance in the quantum degenerate regime, where the wavefunctions
of the atoms begin to overlap.
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The trapped gas

For a gas trapped by an harmonic-like potential of the form Vtrap = m
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
,

the different energy levels are given by

ε~l =

(
lx +

1

2

)
~ωx +

(
ly +

1

2

)
~ωy +

(
lz +

1

2

)
~ωz.

The same approach as that used in the case of the free gas can be used to determine the number
of particles in the system. However, another path will be followed here, which has the advantage
to give a first order correction to that number of particles. For convenience, a new chemical
potential µ̃, including the zero point energy, is defined, i.e. µ̃ = µ − ~

2
(ωx + ωy + ωz), which

leads to the expression

n~l =
1

exp [β~ (lxωx + lyωy + lzωz)− µ̃]− 1

=
1

1
z

exp [β~ (lxωx + lyωy + lzωz)]− 1
, with z = exp (βµ̃) .

The number of particles not in the ground state, N ′, is bounded from above by the quantity
N ′max, yielding the inequality

∑
~l 6=~0

{
1

z
exp [β~ (lxωx + lyωy + lzωz)]− 1

}−1
︸ ︷︷ ︸

N ′

<
∑
~l 6=0

{exp [β~ (lxωx + lyωy + lzωz)]− 1}−1

︸ ︷︷ ︸
N ′max

,

where, for the upper bound, z has been put equal to 1 since the sum excludes the state ~l = ~0.
The upper bound N ′max can be evaluated more formally by writing

N ′max =
∑
~l 6=~0

exp

β~ ∑
α∈{x,y,z}

lαωα

− 1

−1

=
∑
lx 6=0

∑
ly 6=0

∑
lz 6=0

+∞∑
k=1

exp (kβ~lxωx) exp (kβ~lyωy) exp (kβ~lzωz) .

In this last expression, by permuting the series over k with those over the different l’s, N ′max
can be re-expressed as

N ′max =
+∞∑
k=1

1

1− exp (−kβ~ωx)
1

1− exp (−kβ~ωy)
1

1− exp (−kβ~ωz)
. (1.9)

Such an expression can not be easily computed. However, it can be simplified if the different
arguments of the different exponentials are small, which amounts to considering the semiclassical
description of the excited states. Combining that approximation with

1 = O

[
1

1− exp (−x)

]
(x→ 0)

1

1− exp (−x)
∼ 1

x
(
1− x

2

) (x→ 0)

(1 + ax)n ∼ 1 + nax (x→ 0) ,
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Figure 1.1 – Condensed fraction as a function of temperature for an ideal trapped gas.
The circles correspond to an exact computation with N=1000 in a spherically symmetric
trap (ωx = ωy = ωz). The dashed and solid lines correspond to relations (1.10a) and (1.10b),
respectively. Image from [9].

the expression appearing in (1.9) can be written under the form

N ′max =

(
kBT

~

)3
1

ωxωyωz

+∞∑
k=1

1

k3

(
1 +

kβ~ωx
2

)(
1 +

kβ~ωy
2

)(
1 +

kβ~ωz
2

)
.

Keeping only the first two orders of that approximation, N ′max takes the form

N ′max =
1

ωxωyωz

(
kBT

~

)3

ζ (3) (at first order)

N ′max =
1

ωxωyωz

(
kBT

~

)3

ζ (3) +
ωx + ωy + ωz

2ωxωyωz

(
kBT

~

)2

ζ (2) , (at second order)

and the condensed fraction can be computed, and is given by [9]

N0

N
≈ N −N ′max

N
= 1−

(
T

T 0
c

)3

(at first order)

(1.10a)

N0

N
≈ N −N ′max

N
= 1−

(
T

T 0
c

)3

− ζ (2)

2

ωx + ωy + ωz
3
√
ωxωyωzζ2 (3)

(
T

T 0
c

)2
1

3
√
N
, (at second order)

(1.10b)

with T 0
c the critical temperature above which no particles are in the condensate. Figure 1.1 shows

the condensed fraction as a function of temperature for both the cases of the thermodynamic
limit (1.10a) and the finite size case (1.10b), and compare them with the result of an exact
quantum calculation. It can be seen that the first order correction allows to fit very well the
result of the exact quantum calculations, except near T = T 0

c , where the interactions between
the particles can no longer be neglected. Moreover, it is seen that the interactions reduce
the critical temperature with respect to what is expected in the case of a perfect gas. Such
interactions, which in fact play a crucial role in the behaviour of the system, will be considered
and discussed later on in this text.

1.3.3 Energy and specific heat

After having found the occupation number of the energy levels and the temperature dependence
of the condensed fraction, the next quantities to compute are the energy contained in the system,
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as well as the specific heat of the gas. Those quantities are given by〈
Ĥ
〉

=
∑
~l

ε~l
exp

[
β
(
ε~l − µ

)]
− 1

and cV =
1

N

∂

∂T

〈
Ĥ
〉∣∣∣∣

N,V

.

From those definitions, it is obvious that the case of the free gas gas and that of the trapped gas
have to be treated separately. Moreover, the cases T < T 0

c and T > T 0
c should also be treated

separately, since below the critical temperature, some particles are in the condensed state.

The free gas

Using the same semiclassical approximation as previously, the expression of the mean energy
can be rewritten under an integral form as

〈
Ĥ
〉

=
V

(2π~)3

∫
‖~P‖2/2m

exp
[
β
(
‖~P‖2
2m
− µ

)]
− 1

d~P ,

which can, once more, be rewritten as a geometric series. Permuting the series with the integral,
the mean energy contained in the system is given by the expression

〈
Ĥ
〉

=


3
2
kBT

V

λ3T
g5/2

(
eβµ
)

(T > T 0
c )

3
2
kBT

V
λ3T
ζ (5/2) (T < T 0

c )

where the last result can be obtained by letting the chemical potential reach the lowest energy
level of the system (which is 0 in the case of a free gas). To get the specific heat from those
relations, the relation

dgp (z)

dz
=

1

z
gp−1 (z)

can be used, leading to the expression [32]

cV = kB

15v
4

g5/2(eβµ)
λ3T

− 9
4

g3/2(eβµ)
g1/2(eβµ)

(T > T 0
c )

15v
4
ζ(5/2)

λ3T
(T < T 0

c )

where v is the volume by particle, i.e. v = V/N .

The trapped gas

By using the same manipulations, but with the correct energy spectrum, the mean energy and
specific heat of the system read

〈
Ĥ
〉

=

{
N ~

2
(ωx + ωy + ωz) + 3 kBT

ωxωyωz

(
kBT
~

)3
g4
(
eβµ̃
)

(T > T 0
c )

N ~
2

(ωx + ωy + ωz) + 3 kBT
ωxωyωz

(
kBT
~

)3
ζ (4) (T < T 0

c )

cV =


12kB

g4(eβµ̃)
g3(eβµ̃)

− 9kB
g3(eβµ̃)
g2(eβµ̃)

(T > T 0
c )

12kB
ζ(4)
ζ(3)

(
T
T 0
c

)3
(T < T 0

c )
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1.4 The interacting Bose gas
Up to now, only the perfect gas has been considered. However, it is only a rather poor
approximation of reality, since all particles interact. Those interactions are fundamental since
the collisions (i) ensure thermalization of the trapped atomic sample, (ii) they determine the
shape and dynamics of the condensate, and (iii) they limit the achievable spatial density in the
gas.

1.4.1 Scattering theory: brief reminders

Since the considered gas is very dilute, the collision processes are assumed to involve only pairs
of particles. If those particles have masses m1 and m2 and interact via the potential V (r1 − r2),
the Hamiltonian of the system is

Ĥ =
p̂21

2m1

+
p̂22

2m2

+ V (r1 − r2) .

It is common practice to transform such a 2-body problem into a problem involving the
centre-of-mass coordinates and the relative coordinates between the two particles. Writing{

R̂G = m1r̂1+m2r̂2
m1+m2

P̂G = p̂1 + p̂2
and

{
r̂ = r̂1 − r̂2
p̂ = m2p̂1−m1p̂2

m1+m2

the Hamiltonian takes the new form

Ĥ =
P̂ 2
G

2M
+
p̂2

2µ
+ V (r̂) ,

with M = m1 +m2 and µ = m1m2

m1+m2
. In this new formulation, the centre-of-mass moves as a free

particle of mass M , while the “relative” particle moves as a fictional particle with reduced mass
µ in the potential V (r̂).

To find out the scattering properties of the potential V (r̂), the eigenstates of the relative
Hamiltonian have to be found, i.e. the problem[

p̂2

2µ
+ V (r̂)

]
ψk (r) = Ekψk (r)

has to be solved for a given4 energy Ek = ~2k2
2µ

, and for a potential that is assumed to go to zero
sufficiently fast for ‖r‖ → +∞. By further assuming a situation in which ‖r‖ � b, b being
the range of the potential, the scattering amplitude can be written as the superposition of the
incoming wave and the scattered wave, which reads

ψk (r) ∼ exp (ik · r) + f (k,n,n′)
exp (ikr)

r
, (‖r‖ → +∞) (1.11)

where n = k
k
is the incoming direction of the wave with momentum ~k, n′ = r

r
is the direction

of the outgoing wave, and where f (k,n,n′) is the scattering amplitude. That result comes
from the fact that the previous problem can be rewritten under the form(

∇2 + k2
)
ψk (r) =

2µ

~2
V (r)ψk (r)

=
2µ

~2

∫
V (r′)ψk (r′) δ (r − r′) dr′.

4It can be noted that the problem is the inverse of what is done in introductory quantum mechanics courses,
in which the eigenstates are known and the energy is sought.
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The fundamental solution to that equation is given by an outgoing spherical wave [11], i.e.
ψk (r) = − 1

4π
exp(ikr)

r
, which yields the total expression of the sought ψk (r) to be given by

ψk (r) = exp (ik · r)− µ

2π~2

∫
exp (ik ‖r − r′‖)
‖r − r′‖

V (r′)ψk (r′) dr′.

If the potential has a finite range b, the expression ‖r − r′‖ can be Taylor expanded to give

‖r − r′‖ ≈ ‖r‖ − r · r
′

‖r‖
+O

(
1

‖r‖

)
, (‖r′‖ → 0) .

This expansion allows to identify the scattering amplitude f (k,n,n′) to the expression

f (k,n,n′) = − µ

2π~2

∫
exp (−ik′ · r′)V (r′)ψk (r′) dr′, with k′ = kn′.

This equality shows that the scattering problem is implicit, since it relates the value of ψk (r)
far from the scattering region to the value of that function inside the region where the scattering
is important. However, it can be simplified if the scattering state is developed at first order in
V , yielding

f (k,n,n′) = − µ

2π~2

∫
exp [−ik′ (r′ − r)]V (r′) dr′.

This expression is known as the Born approximation and shows that the scattering amplitude is
simply the spatial Fourier transform of the scattering potential. Once the scattering amplitude
has been computed, other quantities, such as the differential and total cross-sections, can be
computed. Those quantities are given by

dσ

dΩ
= |f (k,n,n′)|2 and σ (k,n) =

∫
|f (k,n,n′)|2 dn′, (1.12)

respectively, and give access to the number of particles emitted per unit time and unit incident
flux within the solid angle dΩ (for the differential cross-section), and to the total area of the
incoming beam that is scattered, and can be seen as how the particles perceive the potential
(for the total cross-section).

Since the gas in which those interactions take place is very cold, and thus the involved
energies are small, the scattering process can be considered as being isotropic (at least if the
potential decreases fast enough at infinity), which means that the scattering amplitude is
independent of n and n′, and the asymptotic expression of the Hamiltonian eigenstate takes
the form

ψk (r) ∼ exp (ik · r) + f (k)
exp (ikr)

r
. (1.13)

In order to proceed further and get the exact expression of ψk (r), the full 3D Schrödinger
equation should be solved, which is a quite tedious task. However, with suited assumptions on
the potential, further computations can be made.

1.4.2 Radial potential

By considering that the scattering potential is purely radial, i.e. of the form V (r) = V (r), it is
clear that the symmetry of the problem require the scattering amplitude to be only a function of
the angle made between the directions of the incoming and the scattered waves (n ·n′ = cos (θ)),
so that the scattering amplitude is written f (k,n,n′) = f (k, θ).
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The radial symmetry of the problem involving the existence of a common base to the
operators Ĥ, L̂z and L̂2, the general solution to the (time-independent) Schrödinger equation
can be written

ψk (r) =
+∞∑
l=0

l∑
m=−l

clm
ul (r)

r
Y m
l (θ, ϕ) (1.14)

with θ and ϕ the polar and azimuthal angles around the z−axis, and Y m
l (θ, ϕ) the spherical

hamonics verifying{
L̂2Y m

l (θ, ϕ) = l (l + 1) ~2Y m
l (θ, ϕ) l = 0, 1, 2, . . .

L̂zY
m
l (θ, ϕ) = m~Y m

l (θ, ϕ) m = −l,−l + 1, . . . , l − 1, l

Injecting relation (1.14) into the general 3D Schrödinger equation yields the 1D radial
Schrödinger equation[

− ~2

2µ

d2

dr2
+
l (l + 1) ~2

2µr2
+ V (r)

]
ul (r) = Eul (r) , l = 0, 1, 2, . . .

The solution of that equation, if no potential is considered, is expressed as a spherical Bessel
function, and behaves as sin

(
kr − lπ

2

)
at large distances, whereas the solution to the full

equation takes the form, for a potential that tends towards 0 sufficiently fast enough, of a linear
combination of complex exponentials. The results thus read

ufree
l (r) =

√
2k2

π
rjl (kr)

kr�1−−−→
√

2

π
sin
(
kr − lπ

2

)
(free solution)

ul (r) = Al exp (ikr) +Bl exp (−ikr) = Cl sin
(
kr + δ̃l

)
(complete solution)

with δl = δ̃l + lπ
2
the phase shift between the two solutions caused by the scattering potential,

which of course depends on the energy, i.e. δl = δl (k). The crucial point about those phase shifts
is that they are enough to fully describe the scattering amplitude. Indeed, by using Rayleigh’s
decomposition of the exponential

exp (ikz) =
+∞∑
l=0

il (2l + 1) jl (kr)Pl (cos θ)

kr�1
≈ 1

kr

+∞∑
l=0

il (2l + 1) sin
(
kr − lπ

2

)
Pl (cos θ) ,

and the decomposition of ψk (r) on the Legendre polynomial basis ψk (r) =
∑+∞

l=0

√
2l+1
4π

ul(r)
r
Pl (cos θ),

the asymptotic expression for the scattering amplitude is

ψk (r) =
+∞∑
l=0

eilπ/2eiδl
cl

2ir

[
(−1)l+1 e−ikr + e2iδleikr

]
Pl (cos θ) .

Finally, the total scattering cross-section σ can be computed. Taking the orthogonality of the
Legendre polynomials into account, the integral appearing in (1.12) can be easily computed,
yielding

σ (k) =
+∞∑
l=0

σl (k) , with σl (k) =
4π

k2
(2l + 1) sin2 [δl (k)] .
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Up to now, the bosonic character of the particles has not been yet considered. In order to
take that particularity into account, the asymptotic expression for the scattering amplitude has
to be modified to be rewritten [11]

ψk (r) ∼ eikz + e−ikz√
2

+
f (k, θ) + f (k, π − θ)√

2

eikr

r

rather than as the expression given in (1.11), and leads to a differential cross-section given by

dσ

dΩ
= |f (k, θ) + f (k, π − θ)|2 .

The only partial waves contributing to the scattering cross-section for polarized bosons correspond
to even values of l. The symmetrization principle doubles the contribution of the even partial
waves, and cancels that of the odd ones, leading to

σ (k) =
8π

k2

∑
l even

(2l + 1) sin2 [δl (k)] .

The final question that remains to be answered to is the exact expression of δl (k). It can be
difficult to obtain their exact form but fortunately, for a potential scaling as 1/rn, an asymptotic
expression of these phase shifts is known [21]

δl (k) =

{
k2l+1 for 2l + 3 < n

kn−2 otherwise.

Since alkali atoms are generally considered in Bose-Einstein condensation experiments, which
interact through a Van der Waals force (scaleing as r−6 at large distances), the total scattering
cross-section at low energy is given by limk→0 σl=0 (k) = 8πa2, where the scattering length a is
defined by

a = − lim
k→0

tan [δ0 (k)]

k
,

which shows that the interactions are described by a single parameter.

1.4.3 The pseudo-potential

For the previous computations to hold, it was assumed that the potential had a finite range of
action b and decreased towards 0 sufficiently fast enough. However, the real potential between
two particles is known to behave as 1/r6 at large distances, meaning an infinite range.

Working with such a potential is not easy, however, since

• the exact expression of the scattering potential is difficult to compute,

• a small error in the exact expression of V may result in a drastic difference in the scattering
length a.

• A potential behaving as 1/r6 at infinity cannot be treated in the Born approximation, and
implies that mean field approximations (i.e., approximations that neglect the relations
between the particles) cannot be used. Indeed, the Van der Waals interaction is strongly
repulsive at short distances, attractive at medium distances, and has many bound molecular
states [11].
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Therefore, the idea is to replace the exact potential by another one, preserving the scattering
properties of the exact potential at low energy and that can be treated in the Born approximation,
since the many-body description then depends only on the scattering length, and not on the
detailed interatomic potential. The easiest potential satisfying those requirements is the zero-
range pseudo-potential, which has the following action on a 2-body wavefunction

〈r1, r2|V |ψ1,2〉 = gδ (r1 − r2)
{

∂

∂r12
[r12ψ1,2 (r1, r2)]

} ∣∣∣∣
r12=0

,

with g the coupling constant used to model the exact scattering potential. Introducing that
expression for the pseudo-potential into the expression (1.13) yields

ψk (r) ∼ exp (ik · r)− g µ

2π~2
exp (ikr)

r

∂

∂r
[rψk (r)]

∣∣∣∣
r=0

.

The second term of the right hand side can be easily computed, and gives

∂

∂r
[rψk (r)]

∣∣∣∣
r=0

=
1

1 + ik µg
2π~2

.

The scattering state can thus be rewritten under the form

ψk (r) = exp (ik · r)− f (k)
exp (ikr)

r
, with f (k) = g

µ

2π~2
1

1 + ik µg
2π~2

.

Considering the very low temperature (which is equivalent to consider the low-energy limit k → 0)
of the system, the scattering state can finally be rewritten under the form ψk→0 (r) = 1 − a

r
,

and the constant g given by g = 2π~2a
µ

.

1.4.4 Dynamics

It is now time to tackle the problem of the dynamics of the condensate. Taking interactions
into account, the Hamiltonian of the system takes the form

Ĥ =

∫
ψ̂† (r)

[
− ~2

2m
∇2

r + Vtrap (r)

]
ψ̂ (r) dr+

1

2

∫
dr

∫
dr′ψ̂† (r) ψ̂† (r′)V (r − r′) ψ̂ (r′) ψ̂ (r) .

In the Heisenberg representation of quantum mechanics, the evolution of the condensate field
operator takes the form [32]

i~
∂

∂t
Ψ̂ (r, t) =

[
Ψ̂ (r, t) , Ĥ

]
=

[
− ~2

2m
∇2

r + Vtrap (r) +

∫
dr′Ψ̂† (r′, t)V (r − r′) Ψ̂ (r′, t)

]
Ψ̂ (r, t) . (1.15)

To go further, the field operator has to be replaced by the “classical” part Ψ0. Such a replacement
in the integral containing the atom-atom interaction is usually a poor approximations when
short distances are ‖r − r′‖ are involved. However, in a cold dilute gas, only binary interactions
at low energy are relevant, and can be characterized by a single parameter (the s-wave scattering
length). This allows to replace the real potential V (r − r′) by the effective potential gδ (r − r′),
with the coupling constant g related to the scattering length through the relation g = 4π~2

m
a (the

expression is different from what was previously derived because now particles having identical
masses are considered).
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By using such a pseudo-potential in (1.15) in combination with the replacement of Ψ̂ (r, t)
by Ψ0 leads to the well known Gross-Pitaevskii equation

i~
∂

∂t
Ψ0 (r, t) =

[
− ~2

2m
∇2

r + Vtrap + g |Ψ0 (r, t)|2
]

Ψ0 (r, t) , (1.16)

derived independently by Gross [15, 16] and Pitaevskii [31]. That equation can also be determined
by applying a variational procedure, consisting in computing

i~
∂

∂t
Ψ0 (r, t) =

δE

δΨ∗0
,

with the energy functional E [Ψ0] given by

E [Ψ0] =

∫
dr

[
~2

2m
|∇Ψ0 (r, t)|2 + Vtrap (r) |Ψ0 (r, t)|2 +

g

2
|Ψ0 (r, t)|4

]
.

The first term of that equation accounts for the kinetic energy of the gas, while the second and
last term are the energy due to the trap and the mean-field interaction energy, respectively. It
should be noted that the derivation of the Gross-Pitaevskii equation eq. (1.16) is valid only in
the dilute regime, i.e. the regime in which the product na3 � 1, with n the average density of
the gas.

Applying eq. (1.16) to an order paramater having the form Ψ (r, t) = ψ0 (r) exp
(
−iµ~ t

)
,

with µ the chemical potential and ψ0 (r) real and normalized to the number of particles∫
ψ2
0 (r) dr = N , yields the time-independent Gross-Pitaevskii equation[

− ~2

2m
∇2

r + Vtrap (r) + gψ2
0 (r)

]
ψ0 (r) = µψ0 (r) ,

which has the form of a cubic nonlinear Schrödinger equation, the nonlinearity arising from
the mean-field term, proportional to the local density n (r) = ψ2

0 (r). By solving that equation,
the ground state of the system can be determined. It can be shown by re-expressing that last
equation in term of dimensionless variables that the term N |a|

aho
, with aho =

√
~

m 3
√
ωxωyωz

the
characteristic size of the harmonic oscillator, dictates the importance of the interactions [9].

On the other hand, if other states than the ground state are sought, the order parameter can be
written under the form, considering the low-temperature limit where the properties of the excita-
tions are not influenced by the temperature, Ψ0 (r, t) = [ψ0 (r) + u (r) e−iωt + v∗ (r) eiωt] e−iµt/~,
which correspond to small oscillations of the condensate around the ground state. Injecting that
expression for the order parameter into eq. (1.16) yields the system~ωu (r) =

[
− ~2

2m
∇2

r + Vext (r)− µ+ 2gψ2
0 (r)

]
u (r) + gψ2

0 (r) v (r) ,

−~ωv (r) =
[
− ~2

2m
∇2

r + Vext (r)− µ+ 2gψ2
0 (r)

]
v (r) + gψ2

0 (r)u (r) .
(1.17)

That system allows to determine the eigenfrequencies ω, and thus the energy of the excitations.
An equivalent way of doing things is to diagonalize the Hamiltonian of the system in Bogoliubov
approximation, which consists in rewriting the non-condensed part of the field operator as a
linear combination of creation and annihilation operators of quasiparticles, i.e. writing

δΨ̂ (r, t) =
∑
j

[
uj (r) α̂j (t) + v∗j (r) α̂†j (t)

]
.
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By imposing that those operators follow the commutation relations (1.5), the quasiparticles
amplitude u (r) and v (r), the normalization condition to which those amplitudes are submitted
read {∫

[u∗i (r)uj (r)− v∗i (r) vj (r)] dr = ±δij,∫
[ui (r) vj (r)− vi (r)uj (r)] = 0

∀i, j ∈ N0

The PDE system (1.17) cannot be easily solved analytically because of the term ψ0 (r),
which is not known, excepted for particular cases, like the Thomas-Fermi regime (in which the
kinetic energy is negligible with respect to the interaction energy), or the free gas case, for which
ψ0 (r) =

√
n (r) and µ = gn.

In the case of the free gas, the system (1.17) takes a rather simple form, i.e.~ωu (r) =
[
− ~2

2m
∇2

r + gn (r)
]
u (r) + gn (r) v (r) ,

−~ωv (r) =
[
− ~2

2m
∇2

r + gn (r)
]
v (r) + gn (r)u (r) ,

which can be easily solved to give the dispersion relation

ωk (r) =
1

~

√
~2k2
2m

[
~2k2
2m

+ 2gn (r)

]
.

This dispersion relation shows that for high momenta ~ ‖k‖, the dispersion relation is identical
to that of a quantum particle, i.e. ωk (r) = ωk = ~k2

2m
, while for small momenta, the dispersion

relation becomes ωk (r) = c (r) k, with c the spped of sound in the condensate, given by the
expression

c (r) =

√
gn (r)

m
.

1.4.5 Hydrodynamic analogy

In the previous derivations, it was supposed that the system was close to its equilibrium state.
It is now time to remove that hypothesis and see how the local density n (r, t) then evolves.
It will be shown that the density evolution can be described by an equation looking like the
equation describing the movement of a classical fluid.

By writing the local density as n (r, t) = |ψ (r, t)|2, the Gross-Pitaevskii equation eq. (1.16)
can be rewritten under the form

i~
∂ψ

∂t
(r, t) =

[
− ~2

2m
∇2

r + Vext (r, t) + gn (r, t)

]
ψ (r, t) . (1.18)

By noting that ∂tn (r, t) = ψ∗ (r, t) ∂tψ (r, t)+ψ (r, t) ∂tψ
∗ (r, t), the time variation of the density

is obtained by summing the product of eq. (1.18) with ψ∗ (r, t) and the complex conjugate of
the same equation, multiplied by ψ (r, t), which leads to the expression

∂n

∂t
(r, t) = − ~

2mi

[
ψ∗ (r, t)∇2

rψ (r, t)− ψ (r, t)∇2
rψ
∗ (r, t)

]
,

which can be linked to the density of current vector J (r, t), defined as

J (r, t) =
~

2mi
[ψ∗ (r, t)∇rψ (r, t)− ψ (r, t)∇rψ

∗ (r, t)] (1.19)

by taking its divergence. The final results is a continuity equation for the density, which reads

∂n

∂t
(r, t) +∇ · J (r, t) = 0.
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If the sought wavefunction ψ (r, t) is written under the form ψ (r, t) =
√
n (r, t)eiθ(r,t), with

θ (r, t) a local phase, the current density defined in (1.19) takes the form

J (r, t) =
~
m
n (r, t)∇rθ (r, t) ,

which allows to define a local velocity v (r, t) = J(r,t)
n(r,t)

= ~
m
∇rθ (r, t), which means that the

velocity of the condensate is curl-free, like the velocity field of a non-viscous classical fluid. From
there, the time evolution of that speed can be computed. By taking the time derivative of the
new form of ψ (r, t), the left hand side of the Gross-Pitaevskii equation can be computed, and
is given by

i~
∂

∂t
ψ (r, t) =

[
i~
∂

∂t

√
n (r, t)− ~

√
n (r, t)

∂

∂t
θ (r, t)

]
eiθ(r,t).

From there, the time variation of the phase θ (r, t) can be easily extracted by taking the following
combination

i~
[
ψ∗ (r, t)

∂

∂t
ψ (r, t)− ψ (r, t)

∂

∂t
ψ∗ (r, t)

]
= −2~n (r, t)

∂

∂t
θ (r, t) .

The left hand side of that equation can be computed thanks to the Gross-Pitaevskii equation.
The first term to compute is the Laplacian ∇2

rψ (r, t) = ∇r · ∇rψ (r, t), which gives

∇2
rψ (r, t) =

{
∇2

r

√
n (r, t) + 2i

[
∇r

√
n (r, t)

]
· ∇rθ (r, t) + i

√
n (r, t)∇2

rθ (r, t)

−
√
n (r, t) [∇rθ (r, t)]2

}
eiθ(r,t)

By further manipulations described in [8], the time evolution of the phase θ (r, t) or, equivalently,
of the speed, reads

m
∂

∂t
v (r, t) = −∇r

{
Vext (r, t) + gn (r, t) +

m ‖v (r, t)‖2

2
+

~2

2m

1√
n (r, t)

∇2
r

[√
n (r, t)

]}
,

(1.20)
which looks like the classical second Newton’s law of motion for a system submitted to a potential
given by the expression between {}. The different terms of that expression are

• Vext (r, t), the external confining potential,

• gn (r, t), the mean interaction potential between the particles of the system,

• m‖v(r,t)‖2
2

, the kinetic energy of the system,

• ~2
2m

1√
n(r,t)
∇2

r

[√
n (r, t)

]
, a purely quantum term (has the prefactor ~2 clearly indicates),

called quantum pressure.
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Chapter 2
Bose-Einstein condensation in reduced
dimensionality

Introduction
The phase transition a system can undergo, as well as the types of order existing in physical
system is strongly influenced by its dimensionality. For instance, it is known in condensed
matter physics that no (anti)ferromagnetism can exist in one or two dimensional systems for
arbitrarily small positive temperatures [23].

Even though it was strictly proven that no Bose-Einstein condensate could be formed in
a 2D Bose gas, with or without interactions [18], because of the enhanced effect of thermal
fluctuations, a phase transition can still occur for small finite temperatures in a 2D interacting
system. This phase transition from a normal state to a superfluid one can be studied in the
general framework of the Berezinski-Kosterlitz-Thouless phase transition, and take place because
the thermal fluctuations are not strong enough to kill the superfluidity of the system.

The first half of this part is dedicated to the Bose gas in 2 dimensions. Going from an ideal
uniform infinite gas, the analysis is pushed further to include the effects of interactions between
particles. Pushing further the analysis, the case of a gas trapped in an harmonic trap will be
discussed. Some particular effects, such as the transition from a normal state to a superfluid
state, or the Josephson effect, will be briefly discussed

The second half of this part is dedicated to the 1D Bose gas. In particular, the transition
from a traditional Bose gas to a gas of impenetrable bosons, which acts as a fermion gas, will
be briefly discussed.

2.1 The 2D Bose gas

Introduction

It was already stated that the 2D Bose gas is an interesting system because of the phase
transition that can happen: even though no true condensate can be realized in such a system, it
can however exhibit a superfluid behaviour, well-studied in the BKT phase transition regime.

Attention should nevertheless be paid when a 2D Bose gas is evoked: indeed, two situations
have to be distinguished
(i) the case in which the gas is geometrically bidimensional, but locally behaves as a tridimen-

sional object, which means that one degree of freedom is frozen out by a thigh confinement
but the inter-particle scattering is still tridimensional, and
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(ii) the case in which the gas is truly bidimensional, which means that one degree of freedom
has been frozen out and that the scattering amplitude depends logarithmically on the
energy [17].

2.1.1 The infinite uniform Bose gas at low temperature

If an ideal gas gas is considered, it is known that its energy is purely kinetic. From that fact,
using the occupation number of state with energy k given by relation (1.7), the mean number
of particles contained in the system is given by〈

N̂
〉

=
∑
k

1

exp [β (εk − µ)]− 1
, with εk =

~2 ‖k‖2

2m
.

Once again, using the semiclassical approximation (which allows to rewrite the sum as an integral),
identifying the geometrical progression and permuting the summation and the integration, the
phase space density can be written

nλ2T = − ln [1− exp (βµ)] , (2.1)

where the equality g1 (z) = − ln (1− z) was used. The previous relation can be inverted to give
the expression of the chemical potential as a function of the density, i.e.

µ = kBT ln
[
1− exp

(
−nλ2T

)]
.

This relation shows that for any non-infinite density, there exist a negative chemical potential
µ, which means that no Bose-Einstein condensate can be realized in the case of an infinite 2D
Bose gas.

An interesting quantity interesting to consider is the first order correlation function, giving
the coherence length of the system, i.e. the length over the gas can be described by a single
wavefunction. For a gas contained in a box, this quantity is nothing else than the Fourier
transform of the momentum space distribution function since it is defined by g(1) (r, r′, t) =〈
ψ̂† (r, t) ψ̂ (r′, t)

〉
, with the basis functions appearing in the field operator being plane waves,

and thus read

g(1) (r, r′) =
1

(2π)2

∫
1

exp [β (εk − µ)]− 1
exp [−ik · (r − r′)] dk.

To check the behaviour of that quantity, two distinct regimes have to be considered: the
non-degenerate gas (in which case the wavefunctions of the different particles do not overlap),
and the degenerate gas (in which case the wavefunctions of the different particles do overlap).

The non degenerate gas

In such a case, the density nλ2T is very low, nλ2T � 1. This allows to rewrite expression
(2.1) under the form exp (βµ) ≈ nλ2T , which is obtained by inverting (2.1) into the form
exp (βµ) = 1− exp (−nλ2T ), and by using a Taylor expansion of the exponential.

In this regime, the chemical potential is |µ| � kBT , and thus all momentum states are
weakly occupied, which leads to a momentum distribution having a Boltzmann shape, i.e.
nk ≈ exp [−β (εk − µ)]. Combining that expression with the asymptotic form of eβµ ≈ nλ2T , the
momentum distribution can be written

nk ≈ nλ2T exp

(
−β~ ‖k‖

2

2m

)
= nλ2T exp

(
−λ

2
T ‖k‖

2

4π

)
� 1 ∀k.

From that expression, it is clear that the first order correlation function is Gaussian, since it is the
Fourier transform of nk, which is itself Gaussian. This Gaussian behaviour of g(1) (r) indicates
that correlations are only short range, over a range ξ = λT/

√
π, since g(1) (r) ∝ ne−πr

2/λ2T .
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The degenerate gas

In such a case, the density nλ2T is very high, nλ2T � 1. This allows to rewrite expression (2.1)
under the form exp (βµ) ≈ 1, which means that βµ� 1. Using that same relation with a Taylor
expansion of the exponential leads to nλ2T ≈ ln (kBT/ |µ|).

In that regime, the occupation of the high-energy modes (with βεk � 1) is still small and
given by a Boltzmann expression, while the low-energy modes (with βεk � 1) become highly
populated. This yield

(high-energy modes) nk ≈ exp (−βεk) = exp

(
−λ

2
T ‖k‖

2

4π

)
� 1, for ‖k‖2 � 4π

λ2T
,

(low-energy modes) nk ≈
kBT

εk + |µ|
=

4π

λ2T

1

‖k‖2 + k2c
� 1, for ‖k‖2 � 4π

λ2T
,

with k2c = 2m |µ| /~2, a critical wavenumber giving the separation between the high and low
energy modes. Because the behaviour of the momentum distribution changes from Gaussian to
Lorentzian, the correlation function is expected to be bimodal. For distances up to λT , it is
still Gaussian. However, at large distances, the Fourier transform of the Lorentzian gives an
approximately exponential decrease of g(1) (r), following the law [17]

g(1) (r) ≈ exp
(
−r
l

)
, with l = k−1c ≈

λT√
4π

exp

(
nλ2T

2

)
. (2.2)

The corresponding partial densities are then given by

DG ≈
λ2T

(2π)2

∫ +∞

√
4π/λ2T

nkdk ≈ 1

e
� nλ2T ,

DL =≈ λ2T
(2π)2

∫ √4π/λ2T

0

nkdk ≈ nλ2T ,

with DG corresponding to the Gaussian part and DL to the Lorentzian one. It is thus seen that,
even if no phase transition occurs in the system, the correlation function g(1) (r) goes from a
Gaussian with short correlation length in the non-degenerated regime, to an exponential in
the degenerated one. Moreover, in the case of a high density nλ2T > 1, the correlation length l,
which is proportional to enλ2T , grows. This shows that the scale over which g(1) (r) decays can
become exponentially big for a strongly degenerated system, owing to the equalities appearing
in (2.2).

2.1.2 The interacting 2D Bose gas

The idea here is to see how the particles in a gas with a frozen movement along one direction
(say, the z-direction) interact. At low temperature, and thus low energy, the asymptotic form of
the scattering state of two particles with relative wave vector k is a combination of the incoming
wave and the scattered circular wave, given by

ψk (r) ≈

[
exp (ik · r)−

√
i

8πk
f (k)

exp (ikr)√
r

]
ϕ0 (z) , (‖r‖ → +∞) (2.3)

with f (k) the scattering amplitude, depending on the relative momentum of the scattered
particles and not on the angle between the momentum of the particles, since at low temperature
the scattering is isotropic and ϕ0 (z) = (1/2πl20)

1/4
exp (−z2/4l20) the eigenfunction corresponding
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to the ground state of the harmonic oscillator along the z-direction (with l0 =
√
~/mωz the

characteristic size of the oscillator along that direction).
As in the previous 3D case, the atoms interact through a radial, finite range, potential U (r).

To get the exact scattering state of the problem, the 2D radial Schrödinger has then to be
solved, i.e. the equation[

− ~2

2m
∇2 + U (r) + U (z)− ~ω0

2

]
ψk (r) = εψk (r) , (2.4)

with ε = ~2k2/2m the energy [30].
Taking into account the fact that the gas is at a very low temperature, the thermal de Broglie

wavelength (which scales as 1/k) of the particles greatly exceed the range of interaction Re. In
the case where kRe � 1, the scattering problem is determined through the sole contribution
of the s-wave. It has to be kept in mind that the atoms are tightly confined along z, which
means that the the length l0 plays an analogue role λT along that direction, which leads to the
the supplementary condition l0 � Re, which ensures that the harmonic confinement does not
influence the relative motion of atoms.

Solving eq. (2.4) in the case of a large interparticle separation, i.e. in the case r � Re, the
interaction potential U (r) can safely be set equal to 0. This means that the in-plane motion is
free, while the motion along the z-direction is dictated by the harmonic confinement along that
direction. The solution to the radial Schrödinger equation then reads [30]

ψk (r) = ϕ0 (z) J0 (kr)− f (k)

θ (0)
G (r, 0) ,

with θ the scattering angle and G (r, r′) the Green function corresponding to the Schrödinger
equation, i.e. the function verifying [2](

~2

2m
∇2 + E

)
G (r, r′) = δ (r − r′)

and having solution G (r, r′) = −im
2~H

(1)
0 (k ‖r − r′‖), where H(1)

0 is a Hankel function.
For an infinite interparticle separation, the asymptotic expression of the scattering state is

recovered [30]. In the regime Re � r � l0, the scattering state is, up to a constant multiplying
constant, equal to the 3D scattering state derived previously, i.e.

ψk (r) ≈ ηϕ (0)
(

1− a

r

)
.

Combining that expression with the asymptotic form of the Green function for r → 0 given in
[29] allows to find the expression of the scattering amplitude f (k), which then reads [30]

f (k) =
2
√

2π
l0
a

+ 1√
2π

[
iπ + ln

(
2mωz
π~k2 B

)] , B ≈ 0.915.

This last expression shows that, contrary to the 3D case, the 2D scattering problem is charac-
terized by a scattering amplitude which depends on the energy. In the low energy limit, that
scattering amplitude is rewritten [5]

f (k) =
4π

iπ − ln (kd∗)
, (2.5)

with d∗ linked to the 3D scattering length through the relation

d∗ =

√
π

B
l0 exp

(
−
√
π

2

l0
a

)
.
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A remarquable feature of the expression of the scattering amplitude is that the corresponding
total scattering cross-section becomes infinite in the 0 energy limit, i.e.

lim
k→0

σ (k) = lim
k→0

|f (k)|2

4k
→ +∞.

Having found the expression of the scattering amplitude, the scattering potential can be replaced
by an approximation which as the same effect as the exact one, in an analogous way to what
was done in 3D. This leads to the value

g =
4π~2

m

1√
2π l0

a
+ ln

(
2mωz
π~k2 B

) ,
showing that the interaction between the particles is a function of their relative energy, unlike
in the 3D case.

As in the previous 3D case, a finite range potential decreasing towards zero sufficiently fast
enough is considered. Using again the Rayleigh expansion for the incoming wave

exp (ik · r) = exp (ikr cos θ) =
+∞∑
m=0

εmi
m cos (mθ) Jm (kr) , with εm =

{
1 for m = 0

2 otherwise
(2.6)

and the asymptotic expressions of the Bessel and Neumann functions, given by

Jm (kr)
r→+∞−→

√
2

πkr
cos
(
kr −mπ

2
− π

4

)
,

Nm (kr)
r→+∞−→

√
2

πkr
sin
(
kr −mπ

2
− π

4

)
,

the scattering state ψk (r) can be expressed in term of the phase shifts introduced by the
scattering potential, as was the case for the three dimensional problem [2]. The asymptotic
expression for the scattering state is then given by

ψk (r)
r→+∞−→ 1√

kr

+∞∑
m=0

Am cos (mθ) cos
(
kr −mπ

2
+ δm

)
,

with δm the scattering phase shifts, which of course depend on the energy, i.e. δm = δm (k).
Substituting that last expression into relation (2.3), and using the Rayleigh expansion (2.6),
combined with the asymptotic expressions for the Bessel and Neumann functions, yields

Am =

√
2

π
εmi

m exp (iδm) and f (k) =

√
2

π

+∞∑
m=0

εme
iδm sin (δm) .

In the low energy limit, the scattering amplitude becomes [5]

f (k) =
4π

2 ln
(

1
ka2

)
+ iπ

, (2.7)

where a2 is the 2D scattering length. A remarkable feature of that expression is that it vanishes
in the 0 energy limit, i.e. limk→0 f (k) = 0, while it gave the non-zero result limk→0 f (k) = −a
in 3D. Moreover, the total cross section tends towards infinity in that same limit

lim
k→0

σ (k) = lim
k→0

|f (k)|2

4k
→ +∞.
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By equating the relations (2.5) and (2.7), the expression of the bi-dimensional scattering
length can be expressed in terms of the 2D scattering length of the confined gas. The relation
between the two is given by

a2 =

√
d∗
k
,

which shows that, even for a free gas, the 2D scattering length is related to the energy.

2.1.3 The trapped Bose gas

Introducing a confining potential with a frequency ωz along the z-direction such that ~ωz � kBT
allows the formation of a pancake-shaped cloud. Because the trapping frequency along the
z-direction is very high compared to the thermal energy, the movement of the particles in the
gas along that direction is frozen out, realizing a 2D system.

The mean number of particles contained in the system is then given by〈
N̂
〉

=
∑
k

1

exp [β (εk − µ)]− 1
,

where the energy spectrum is given by

εn =

(
nx +

1

2

)
~ωx +

(
ny +

1

2

)
~ωy

for a harmonic trapping having the form Vext (r) = m
2

(
ω2
xx

2 + ω2
yy

2
)
. Following the developments

that were made for the 3D trapped Bose gas, a new chemical potential µ̃ is defined, which takes
the zero-point energy into account, and allow to rewrite the expression of the mean number of
particles contained in the system under the form〈

N̂
〉

=
∑
n

1

exp [β~ (nxωx + nyωy − µ̃)]− 1
.

Separating the lowest energy state from the rest of the series and invoking once again the
semiclassical approximation, the series can be replaced by an integral. Following further the
line sketched in the 3D case, the integrand is then replaced by the corresponding geometric
progression, and the mean number of particles contained in the system is finally given by

〈
N̂
〉

=
〈
N̂0

〉
+

1

ωxωy

(
kBT

~

)2 +∞∑
j=1

exp (jβµ̃)

j2
.

From that expression, the critical temperature can be computed, and is given by

Tc =

√
6N

π2
ωxωy

~
kB
.

The temperature dependence of the number of particles contained in the system can be written
under the form [28]

N

[
1−

(
T

Tc

)2
]

= N0 −
1

ωxωy

(
kBT

~

)2
1 + ln (N0)

N0

. (2.8)

This last expression shows that there exist 2 regimes, namely
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• T < Tc: the last term of (2.8) can be neglected, and the occupation of the ground state is
approximatively given by

N0 ≈ N

[
1−

(
T

Tc

)2
]
,

which as a similar form to what was found in 3D, except for the value of the exponent.

• T > Tc: the first term of (2.8) can be neglected, and the occupation of the ground state is
approximatively given by the expression

N

[
1−

(
T

Tc

)2
]
≈ − 1

ωxωy

(
kBT

~

)2
1 + ln (N0)

N0

.

It should be noted that for T = Tc, the thermal de Broglie wavelength becomes comparable
to the mean distance between the particles, which scales as

√
Tc

Nmωxωy
, and is the condition

for entering in the quantum regime.

A graphical representation of the ground state population as a function of temperature for
different values of N is given in fig. 2.1. As can be seen from this figure, the effect of a finite

Figure 2.1 – Ground state population of the trapped 2D Bose gas as a function of temperature
for different values of the total number of particles N . Figure from [28].

number of particles in the system has the same effect than in 3D, namely is changes the value
of the critical temperature and leads to a smoother transition.

The previous calculations were performed in a basis in which the Hamiltonian was diagonal,
but they can also be performed in real space. In that case, phase-space density relation linking
the density to the chemical potential reads

n (r)λ2T = − ln
{

1− eβ[µ̃−Vext(r)]
}
,

which shows that, in the centre of the trap at r = 0, no condensation is possible as the density
on that point tends towards infinity. However, condensation away from the centre of the trap
cannot be excluded.

2.1.4 Some applications

Superfluidity

As already stated, one of the most striking feature of the 2D Bose gas is the absence of true
long range order for a temperature different from the absolute 0. Nevertheless, a quasi-long
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range order exists for temperatures small enough, which manifests itself by an algebraic decays
of the one-body correlation function.

At strictly 0 K, a weakly interacting 2D Bose gas is condensed and can be described by a
macroscopic wavefunction ψ (r, t) = n (r, t) eiθ(r,t), where n (r, t) and θ (r, t) are real classical
fields. If the temperature is raised from 0 K to a higher value, both the amplitude and the
phase of ψ (r, t) will show some fluctuations around an equilibrium value.

Even though the amplitude, and thus the density, oscillates when the temperature is reached,
those oscillations are suppressed for low enough temperature, leaving only a fluctuating phase.
If only contact interactions are considered between free particles, the Hamiltonian of the system
is given by

Ĥ =
~2

2m

∫
[∇rψ

∗ (r)] [∇rψ (r)] dr +
g

2

∫
[ψ∗ (r)]2 [ψ (r)]2 dr. (2.9)

The dynamics of the wavefunction describing the system is dictated by the the Gross-Pitaevskii
equation, which was derived previously and is given by eq. (1.16).

In order to find the local phase θ (r, t), the sought wavefunction is written under the
form ψ (r, t) = |ψ (r, t)| eiθ(r,t), with the amplitude linked to the local density through the
relation |ψ (r, t)|2 = n [1 + 2η (r, t)], with the small perturbation η (r, t) verifying η � 1 and∫
η (r, t) dr = 0. Injecting those expression in expression (2.9) lead to the following form for

the Hamiltonian

Ĥ =
n~2

2m

∫ {
[1 + 2η (r, t)] [∇rθ (r, t)]2 +

[∇rη (r, t)]2

1 + 2η (r, t)

}
dr+

gn2

2

∫ [
1 + 4η (r, t) + 4η2 (r, t)

]
dr.

Neglecting the constant term gn2L2/2 and using the assumption η � 1, the final expression of
the Hamiltonian is

Ĥ =
n~2

2m

∫ {
[∇rθ (r, t)]2 + [∇rη (r, t)]2

}
dr + 2gn2

∫
η2 (r, t) dr.

Moreover, the time evolution of θ (r, t) and η (r, t) is given by the solution to the coupled system

∂θ

∂t
(r, t) =

~2

2m
∇2η (r, t)− gn

~
[1 + 2η (r, t)] ,

∂η

∂t
(r, t) = − ~

2m
∇2θ (r, t) .

In order to solve that system, the unknowns can be expanded in Fourier series as

θ (r, t) =
∑
k

ck (t) eik·r and η (r, t) =
∑
k

dk (t) eik·r.

It should be noted that, by hypothesis, θ (r, t) and η (r, t) are real, and so the coefficients
appearing in the Fourier expansions verify the relations c∗k (t) = c−k (t) and d∗k (t) = d−k (t).
Moreover, by using the conservation of particles

∫
η (r, t) dr = 0, the first term in the series

expansion of η (r, t) must be null, i.e. d0 (t) = 0.
Using the Fourier expansion of the density and the phase in the Hamiltonian and the coupled

system, the Hamiltonian in Fourier space reads [17]

Ĥ = nL2
∑
k

[
~2k2

2m
|ck (t)|2 +

(
~2k2

2m
+ 2gn

)
|dk (t)|2

]
, (2.10)
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while the system giving the time evolution of the density and the phase becomes ċ0 = −gn
~ for

k = 0 and

ċk = −
(
~k2

2m
+

2gn

~

)
dk,

ḋk =
~k2

2m
ck

for k 6= 0. From there, the dispersion relation is found and is given by

ωk =

√
~k2
2m

(
~k2
2m

+
2gn

~

)
,

which is nothing else than the Bogoliubov dispersion relation, which was already found in the
part concerned with the dynamics of a 3D Bose gas.

The Hamiltonian given in (2.10) gives insight on the importance of the density and phase
fluctuations. Indeed, by checking the coefficients in front of

〈
|dk (t)|2

〉
and

〈
|ck (t)|2

〉
, which

gives 〈
|dk (t)|2

〉〈
|ck (t)|2

〉 =
~2k2/2m

~2k2/2m+ 2gn
,

it is clear that long wavelengths (≡ k → 0) involve only phase fluctuations, and short wavelengths
(≡ k → +∞) involve phase and density variations in equal parts. Moreover, the Hamiltonian
shows that the phase fluctuations do not cost energy in the k → 0 limit, whereas the energetic
cost of density fluctuations do not vanish in the same limit because of the interactions.

Since the gas is very cold, the most important part in the Hamiltonian (2.10) is the part
containing the phase fluctuations, but it has to be kept in mind that if only that part is
kept, short distance effects cannot be represented and a cutoff momentum kmax = 1/ξ, with
ξ = 1/

√
g̃n, is introduced. To incorporate the short-distance physics, the total density can be

replaced by the superfluid density, leading to an Hamiltonian having the form

Ĥ ≈ nsL
2
∑
k

‖k‖<ξ−1

~2k2

2m
|ck|2 = ns

~2

2m

∫
[∇rθ (r, t)]2 dr.

It was shown that at low temperature, only phase fluctuations are important. However, the
mechanism leading to the phase transition from the superfluid state to the normal state have
not been yet explained. It should be noted that even though the density fluctuations are small
compared to the phase fluctuations, those alone cannot explain the transition since at a given
critical point, the phonons, which are responsible for those fluctuations, destroy the long-range
order in a very smooth and “slow” way, since the first-order correlation function reads [17]

g(1) (r) = ns

(
ξ

r

)1/(nsλ2T )
.

Phase fluctuations are due to two different sources. The first one, already identified previously,
are the long wavelengths phonons. The other source of phase fluctuation, which is a key ingredient
in the BKT theory of superfluidity, is the apparition of vortices. Such vortices are points where
the superfluid density vanishes and around which the phase varies by a multiple of 2π.

For those vortices, two distinct regimes exist. The first one is the regime in which the
temperature is lower than some critical value, the BKT temperature TBKT . In such a case, the
vortices form pairs of opposite circulations, which means that the pair does not carry a net

Page 29 on 65



charge and that there is no phase fluctuation along a path greater than the size of the pair. Such
pairs do not influence the behaviour of ρ (r) at large distance and fall in the “short-range” physics,
together with the density fluctuations. The other regime is reached when T > TBKT , in which
case the pairs break and individual free vortices proliferate in the gas, creating a disordered gas
of phase defect, which means that a well-defined phase θ can no longer be assigned to the gas.

Josephson effect

Another application of the bidimensional Bose gas is the realization of a Josephson effect,
consisting in the exchange of atoms between 2 BECs. The principle is illustrated in fig. 2.2.

Figure 2.2 – Schematic illustration of the principle of the Josephson effect between 2 BECs.

If the potential separating the two condensates is symmetric, an approximate solution to the
Gross-Pitaevskii equation can be constructed1. By solving the GPE for Na and Nb atoms for
the different wells, the wavefunction of the system can be written

ψ (r, t) = ψa (r, Na (t)) eiθa(r,t) + ψb (r, Nb (t)) eiθb(r,t).

The total number of atoms in the system N = Na (t) +Nb (t) stays, of course, constant. Using
that wavefunction, an atomic current I = ∂

∂t
Na = − ∂

∂t
Nb between the wells exists, given that

the phase difference between the two condensates Φ (r, t) = θb (r, t)− θa (r, t) is nonzero. If the
double well potential is considered to be symmetric around the z = 0 position, the current is
given by [32]

I (r, t) = −IJ sin [Φ (r, t)] , (2.11)

with the amplitude IJ given by

IJ =
~
m

∫
dx dy

[
ψa (r, t)

∂ψb
∂z

(r, t)− ψb (r, t)
∂ψa
∂z

(r, t)

] ∣∣∣∣
z=0

.

To get the exact expression of the tunnelling current, an equation for the phase Φ (r, t) is needed.
Fortunately, it is known that the time dependence of the phase of the wavefunction describing a
BEC is in general defined by [32]

~
∂θ

∂t
(r, t) = −

(m
2
v2s + µ

)
,

with vs = ~
m
∇rθ (r, t) the superfluid velocity. Considering the system of the two condensates

and neglecting the (small) superfluid velocity created by the Josephson current, the equation
for the phase of the total system reads

∂Φ

∂t
(r, t) = −1

~
(µb − µa) , (2.12)

1This holds if the overlap of the wavefunctions associated to each condensate is small, which is indeed the
case if the barrier separating those BECs is “thick” enough.
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with µa,b the chemical potential of the condensate in well a, b. It should be noted that this last
equation is only valid in the case of two well-separated condensates.

If the variations of Na (t) and Nb (t) around their equilibrium value N/2 is small, a small
parameter k, defined as

k (t) =
Na (t)−Nb (t)

N
, with |k (t)| � 1,

allows to rewrite eqs. (2.11) and (2.12) under the form

∂k

∂t
(r, t) = −IJ sin [Φ (r, t)] and

∂Φ

∂t
(r, t) =

Ec
~
k (r, t) , (2.13)

with Ec = 2 dµa
dNa

. To get those new forms, the current I (r, t) appearing in eq. (2.11) is re-
expressed under the form I (r, t) = ∂Na

∂t
= ∂Na

∂k
∂k
∂t
, while the new expression for the phase

Φ (r, t) is obtained by combining the Taylor expansion of the chemical potentials around their
equilibrium value with the fact that dµa

dNa
= − dµb

dNb
, i.e.

µa,b = µeq
a,b + k

dµa,b
dNa,b

and
dµa
dNa

= − dµb
dNb

.

The set of equations (2.13) have the same form as the equations of motion of a classical pendulum,
and the solution depends on the initial conditions.

First, if the phase and k are small, the equations appearing in (2.13) can be linearised,
leading to an oscillatory solution with frequency

ωpl =

√
IJEc
~

,

which is the classical oscillation frequency between the wells. If |k| >
√

2~IJ/Ec, the solutions
to the equations correspond to a full rotation of the phase. Finally, if |k| �

√
2~IJ/Ec, the

phase evolves linearly in time according to the relation Φ = tEck0/~, with k0 an equilibrium
value around which k oscillates according to the law

k = k0

[
1 +

~IJ
Eck20

cos

(
Eck0
~

t

)]
,

which is possible only if
√

N2Ec
~IJ
� 1, given the condition |k| � N . It was already stressed that

the above results are valid for a weak overlap of the condensates. In fact, in order to decouple
the Josephson motion from the oscillations of each of the condensates, k and Φ should vary on
timescales bigger than 1/ωho, the trap frequency, which leads to the condition

√
~IJEc � ~ωho.

All this discussion was to highlight the fact that a tunnelling current exists between two
spatially separated BECs, in an analogous way to the tunnelling current that exists between
two superconductors separated by a thin enough insulator. However, if the wells are separated
by a big barrier, then the tunnelling of atoms can be considered as negligible, and the system
acts as if it where an insulator.

2.2 The 1D Bose gas

Introduction

After having discussed the 3D and 2D Bose gas, a natural extension is to discuss the 1D case.
In such a configuration, the behaviour of the gas can be dramatically different from the previous
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discussed cases as it can behave as a Fermi gas. Other strange effect, such as solitonic ones, can
manifest themselves.

If the confining potential is given by Vext (r) = m
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, the condition to

freeze out the oscillations along the x- and y- directions is ~ωx, ~ωy � kBT and ωx, ωy � ωz,
while the oscillation energy along the remaining direction is of the order of the thermal energy,
i.e. ~ωz ≈ kBT .

2.2.1 The ideal gas

If the particles constituting the gas do not interact and are totally free to move along one
dimension, there is only kinetic energy in the system, which reads εk = ~2k2

2m
+ ~

2
(ωx + ωy). In

this case, the mean number of particles contained in the system is given by〈
N̂
〉

=
∑
k

1

exp [β (εk − µ)]− 1
.

Following the by now standard procedure, the sum can be replaced by an integral, yielding〈
N̂
〉

=
L

λT
g1/2

(
eβµ̃
)
,

with µ̃ = µ − ~
2

(ωx + ωy), which leads to the density nλT = g1/2
(
eβµ̃
)
. If a condensate were

realized, that equality would become nλT = ζ (1/2), which means that an infinite density would
be needed to reach condensation, since ζ (x) diverges for x ≤ 1. This shows that no condensate
can be realized in a perfect uniform infinite 1D Bose gas, in good agreement with the Hohenberg
theorem.

Even though no real condensate can be formed in low dimensional systems, it was shown
previously that a 2D Bose gas could nevertheless exhibit a superfluid behaviour under a given
temperature and that a harmonic confinement could change the behaviour of the gas. It is thus
instructing to check whether a 1D Bose gas can undergo a phase transition to a superfluid state
and if a harmonic confinement can change the conclusions with respect to what was concluded
for the ideal free case.

2.2.2 The trapped Bose gas

The case of a gas confined by a harmonic potential along the previously free space direction is
now considered. The energy spectrum of the Hamiltonian is thus εn =

(
n+ 1

2

)
~ωz + ~

2
(ωx + ωy).

In the case of a one-dimensional system, the density of states reads ρ (ε) = 1/~ωz and the total
number of particles contained in the system is given by

N = N0 +

∫
ρ (ε)

exp [β (ε− µ̃)]− 1
dε,

with µ̃ = µ − ~
2

(ωx + ωy + ωz). The problem with such an expression is that the integrand
diverges for µ̃→ 0. This divergence comes from the fact that the discrete nature of the energy
spectrum was not correctly taken into account. To correct this, low energy modes have to be
separated from high energy modes, yielding

N = N0 + kBT
M∑
n=1

1

n~ωz − µ̃
+

+∞∑
n=M+1

1

exp [β (n~ωz − µ̃)]− 1
, (2.14)
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with the number M satisfying 1�M � kBT/~ωz. The last term of the right hand-side can be
transformed to an integral to give

+∞∑
n=M+1

1

exp [β (n~ωz − µ̃)]− 1
≈
∫ +∞

M

dn

exp [β (n~ωz − µ̃)]− 1
.

Using the by now well-known trick to replace the integrand by the corresponding geometric
progression and then permuting the summation with the integration leads to

kBT

~ωz

+∞∑
j=1

exp [−jβ (M~ωz − µ̃)]

j
= −kBT

~ωz
ln
[
1− e−β(M~ωz−µ̃)

]
.

To compute the first sum appearing in eq. (2.14), the digamma function ψ (z) has to be used,
which leads to [30]

M∑
n=1

1

n− µ̃/~ωz
= ψ

(
M + 1− µ̃

~ωz

)
− ψ

(
1− µ̃

~ωz

)
.

Injecting all those results in eq. (2.14), the total number of particles contained can be computed
and is given by

N = N0 + ψ

(
M + 1− µ̃

~ωz

)
− ψ

(
1− µ̃

~ωz

)
− kBT

~ωz
ln
[
1− e−β(M~ωz−µ̃)

]
.

By further taking into account that when the system is in the lowest state, µ̃ → 0, which
means that the chemical potential is linked to the lowest energy population by the relation
µ̃ = −kBT

N0
(obtained by Taylor expanding the repartition function), the expression for the

number of particles in the system can be approximated by the expression

N ≈ N0 +
kBT

~ωz
ln (N0) +

kBT

~ωz
ln

(
kBT

N0~ωz

)
− ψ

(
1 +

kBT

N0~ωz

)
= N0 +

kBT

~ωz
ln

(
kBT

~ωz

)
− ψ

(
1 +

kBT

N0~ωz

)
.

As was previously the case in 2D, there are two distinct regimes, separated by a temperature
given by [30]

T1D ≈
N

ln (N)
~ωz.

2.2.3 The interacting 1D Bose gas

It is now time to include interactions between the particles of the gas. As in all previous cases,
the only interactions that will be considered are pairwise, since the gas is supposed to be dilute.
The case of the 1D interacting gas is quite different from its 2D and 3D counterparts, since
there are not an infinity of directions in which the scattered particles can go.

As was the case for higher dimensions, the scattering state of the system has to solve the
radial Schrödinger equation, which in this case reads[

− ~2

2m

d2

dx2
+ V (x)

]
ψk (x) = Eψk (x) ,
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with V (x) a symmetric finite range potential, and E = ~2k2
2m

the energy. Moreover, the asymptotic
behaviour of the scattering state is the superposition of the incoming plane wave and the scattered
one, which reads

ψk (x) ≈ exp (ikx) +
i

k
fk (ε) exp (ikx0) , (x→ +∞) ,

with ε = x/x0 and x0 the range of the potential [4]. In order to define the partial wave
decomposition, which will allow to find the partial wave projections of ψk (x) and the phase shifts
δ (k) introduced by the potential, the asymptotic form for the scattering state is parametrized as

ψk (x) ≈
L∑
j=0

εjAj cos
[
kx0 + j

π

2
+ δj

(
k2
)]
, (x→ +∞) ,

where the Aj’s are unknown coefficients, and where the sum contains only 2 terms because
there are only two possible scattering directions. Comparing the asymptotic form of ψk (x) with
its partial wave decomposition and using the decomposition exp (ikx) = cos (kx0) + iε sin (kx0)
allows to identify [4]

Aj = (−i)j exp (iδj) and fk (ε) = k
1∑
j=0

εj exp (iδj) sin (δj) .

The total scattering cross section can then be computed, and read σ (k) = 2
∑1

j=0 sin2 (δj),
where the expression of the partial scattering amplitude fj = k exp (iδj) sin (δj) was used.

Another way of doing things is to consider that, like in the 3D case, the pairwise interactions
between atoms are modelled by the pseudopotential

U (r) = gδ (r)
∂

∂r
(r·) ,

with r = r2 − r1 the vector going from one particle to the other, g = 2π~2a
µ

the strength of the
pseudopotential, a the s-wave scattering length of the true interaction and µ the reduced mass.
Since the confining potential is harmonic, the center-of-mass motion can be decoupled from the
relative motion, which obeys the Schrödinger equation[

− ~2

2µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ gδ (r)

∂

∂r
(r·) +

µ

2

(
ω2
xx

2 + ω2
yy

2
)]
ψ = Eψ.

To proceed further, the sought wavefunction is assumed to have the following asymptotic
behaviour

ψ (z, ρ) ≈
{
eikz + [feven + sign (z)] eik|z|

}
φ0,0 (ρ) , (z → +∞) ,

with ρ =
√
x2 + y2, feven/odd the scattering amplitudes for the even/odd partial waves and φ0,0 (ρ)

the lowest energy eigenmode of the transverse harmonic oscillator. Following the developments
of [24], it can be shown that

feven ≈ −
1

1 + ika1D
and fodd = 0,

with a1D the one-dimensional scattering length, given by the relation

a1D = −a
2
⊥

2a

(
1− C a

a⊥

)
, with a2⊥ =

~
m
√
ωxωy

, C ≈ 1.4603.
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2.2.4 Dynamics

Rather than describe an application of the 1D interacting Bose gas (as was previously done
for a bidimensional gas), the one-dimensional Gross-Pitaevskii equation will be derived. It will
be shown that the expression obtained for the time evolution of the wavefunction along the
z-direction is the same as in 3D, the only difference being the value of the constant g.

The full three-dimensional Gross-Pitaevskii equation takes the form given in eq. (1.16). Since
the motion is frozen out along the x- and y-directions, the wavefunction of the system can be
written under the form

ψ (r, t) = φ0,0 (x, y)ψ (z, t)

= φ0 (x)φ0 (y)ψ (z, t) , (2.15)

where φ0 (x) and φ0 (y) are the lowest-energy wavefunction of the harmonic oscillator along x
and y, respectively given by

φ0 (x) =

√
1

ax
√
π

exp

(
− x2

2a2x

)
and φ0 (y) =

√
1

ay
√
π

exp

(
− y2

2a2y

)
,

with ax and ay the characteristic size along the x- and y-directions, respectively. Injecting the
ansatz (2.15) into the full Gross-Pitaevskii equation leads to

i~φ0 (x)φ0 (y)
∂

∂t
ψ (z, t) =

− ~2

2m

{[
d2

dx2
φ0 (x)

]
φ0 (y)ψ (z, t) +

[
d2

dy2
φ0 (y)

]
φ0 (x)ψ (z, t) +

[
∂2

∂z2
ψ (z, t)

]
φ0 (x)φ0 (y)

}
+
m

2

{[
ω2
xx

2φ0 (x)
]
φ0 (y)ψ (z, t) +

[
ω2
yy

2φ0 (y)
]
φ0 (x)ψ (z, t) +

[
ω2
zz

2ψ (z, t)
]
φ0 (x)φ (y)

}
+ g |ψ (z, t)|2 ψ (z, t)φ3

0 (x)φ3
0 (y) .

To keep only the equation for the wavefunction along the z-direction, only the terms having
coefficients φn0 (x)φn0 (x) are kept (with n being equal to 1 or 3 here). The corresponding equation
is then averaged by multiplying both sides by φ0 (x)φ0 (y) and integrating over the whole space.
The final expression, which corresponds to an effective 1D Gross-Pitaevskii equation then takes
the form

i~
∂

∂t
ψ (z, t) =

[
− ~2

2m

∂2

∂z2
+

1

2
mω2

zz
2 + g̃ |ψ (z, t)|2

]
ψ (z, t) , (2.16)

which has exactly the same form as the full 3D GPE eq. (1.16), except for the parameter g̃,
which takes the form g̃ = 2a~√ωxωy. This equation can be made adimensional. By calling

a⊥ =
√

~
m
√
ωxωy

the radial extension of the condensate and by introducing the adimensional
variables

t̃ = ωzt, z̃ =
z

a⊥
, and ψ̃

(
z̃, t̃
)

=
√
a⊥ψ (z, t) ,

the expression of the adimensional 1D Gross-Pitaevskii equation takes the form

iε
∂

∂t̃
ψ̃
(
z̃, t̃
)

=

[
−ε

2

2

∂2

∂z̃2
+

1

2
z̃2 + δ

]
ψ̃
(
z̃, t̃
)
,

where ε and δ are adimensional quantities given by

ε =
~

mωza2⊥
and δ =

g̃

mω2
za

2
⊥
.
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Chapter 3
Solitons

3.1 Generalities
In the literature, the distinction between solitary wave and soliton is blurred, and that those
terms are used interchangeably. It is thus convenient to start the discussion by defining1 precisely
what a solitary wave and a soliton are.

Definition 1 (Solitary wave) A solitary wave is a localized non-singular solution to any
non-linear field equation (or system of coupled equations if several fields are involved) with a
localized energy density behaving as

ε (x, t) = ε (x− vt) ,

with v a velocity vector.

This definition of the solitary wave shows that the energy density moves undisturbed with a
constant speed in space, and shows that any time-independent localized solution is a solitary
wave with velocity v = 0.

Definition 2 (Soliton) Consider some (possibly coupled) non-linear equation(s). Let them
have a solitary wave solution whose energy density is some localized function ε0 (x− vt). Con-
sider any other solution of this system which in the far past consists of N such solitary waves,
with arbitrary initial velocities and positions. Then the energy density ε (x, t) of this solution
will have the form

ε (x, t)→
N∑
i=1

ε0 (x− xi − vit) , (t→ −∞) .

Given this configuration at t = −∞, it will then evolve in time as governed by the non-linear
equations. Suppose this evolution is such that

ε (x, t)→
N∑
i=1

ε0 (x− xi − vit+ δi) , (t→ +∞) ,

where δi are some constant vectors. Then such a solitary wave is called a soliton.

The definition of a soliton is thus a solitary wave whose energy density profile is asymptotically
restored to its initial profile, with the possibility of a spatial shift. That definition of a soliton
can be understood in a less formal way: if N infinitely hard particles are considered and collide,

1Those definition are from [33].
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they will continue to move with the same speed, only their trajectories are possibly modified.
Such particles can be seen as solitons. An interesting point, particularly true for solitons in
Bose-Einstein condensates, is that, even if the governing equation(s) is/are wave equations, the
behaviour of the solution is particle-like.

With those definitions, it is now clear what is a soliton. A last general remark that can be
made is that, depending on the sign of the nonlinearity in the one-dimensional Gross-Pitaevskii
equation (g < 0 for attractive interactions and g > 0 for repulsive ones), different behaviours
are observed. In particular, for repulsive interactions, dark solitons can be generated, while, for
attractive interactions, bright solitons can be generated.

The free 1D Nonlinear Schrödinger equation is a field equation that is exactly integrable in
the sense that its solutions possess an infinite number of conserved quantities (such as energy,
momentum, number of particles, etc.). Bree 1D Gross-Pitaevskii equation is exactly integrable,
a complete spectrum of solution exist, hence solitonic solutions are plausible existing solution
(that arise due to the nonlinearity). Those solitonic solution can be obtained in the general
framework of the Inverse Scattering Transform. That technique, introduced by Zakharov and
Shabat, consists in drawing an analogy between the studied equation and a system of the form

iζ

[
u (x, t)
v (x, t)

]
=

[
− ∂
∂x

ψ (x, t)
−ψ∗ (x, t) ∂

∂x

] [
u (x, t)
v (x, t)

]
.

with ψ (x, t) is the solution to the 1D Gross-Pitaevskii equation. The solution to such a problem
consists in three mains steps:

• first, the eigenvalues of the above matrix have to be found at an initial time ti, with
ψ (x, ti) as initial condition. The spectrum of the problem consists in a set of discrete
eigenvalues, and a continuous component, corresponding to the solitons and the radiations,
respectively.

• Then, the quantities u (x, t) and u (x, t) can be chosen such that the compatibility condition
∂
∂xt

[
u (x, t) , v (x, t)

]T
= ∂

∂tx

[
u (x, t) , v (x, t)

]T ensures that ψ (x, t) solves the equation.

• Finally, the time evolution of ψ (x, t) can be found by inverting the scattering problem
given initially.

3.2 Dark soliton

3.2.1 Generalities

In the previous section, it was explained that a dark soliton is realized in a BEC if the interaction
between particles is negative, i.e. g < 0. What was not said is that, even for such attractive
interactions, two distinct solutions exist: dark solitons, and grey solitons. The first ones can be
associated to a hole in the gas, in the sense that it correspond to a locally null density. The
other one can be associated to a “quasi-hole” in the sense that, locally, the density is lowered
with respect to its equilibrium value, but does not go to 0.

In the following, rather than considering the form of the previously derived 1D GPE eq. (2.16),
a slight modification of the equation will be considered, in order to stick to the literature and
to the code that has been written to deal with bright solitons (see later). The new form is
expressed in natural units, i.e. units in which ~ = 1 and m = 1. The equation then reads

i
∂

∂t
ψ (z, t) =

[
−1

2

∂2

∂z2
+ V (z) + |ψ (z, t)|2

]
ψ (z, t) . (3.1)
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In the case in which there is no trapping potential, the simpler non-trivial solution to the
former equation takes the form of a plane wave,

ψ (z, t) =
√
n0 exp [i (kz − ωt+ θ0)] ,

where n0 is the equilibrium density and θ0 an arbitrary phase. Injecting that solution into the
last equation leads to the dispersion relation ω = 1

2
k2 − n0. As explained in [13], the dark

soliton solutions can be seen as strong nonlinear excitations of the plane wave solution given
previously. In the most general case in which the density moves, a single dark soliton solution
may be expressed as

ψ (z, t) =
√
n0 [B tanh (ζ) + iA] exp [i (kz − ωt+ θ0)] ,

where ζ =
√
n0B [z − z0 (t)], with z0 (t) = z0 + vt the position of the centre of the soliton (with

v the relative speed of the soliton and the moving density, given by v = A
√
n0 + k).

In the simpler case where the background density is at rest (k = 0), the square of the
modulus of the wavefunction is given by

|ψ (z, t)|2 = n0

[
1−B2 sech2 (ζ)

]
= n0

[
1− cos2 (φ) sech2 (ζ)

]
where the fundamental relation cosh2 (z) + sinh (z) was used and where, sticking to [13], the
angle φ is introduced so as to verify A = sin (φ) and B = cos (φ).

3.2.2 Link with the Korteweg - de Vries equation

In the case of a small amplitude black soliton, which travels with a speed close to the speed of
sound [13], the black soliton can be described by an effective KdV equation, which reads, for a
field u (z, t),

∂

∂t
u (z, t) + 6u (z, t)

∂

∂z
u (z, t) +

∂3

∂z3
u (z, t) = 0

and has a single-soliton solution of the form

u (z, t) = 2κ2 sech2
[
κ
(
z − 4κ2t

)]
,

with κ, an arbitrary constant.
In order to see the similarities, the adimensional generalized free 1D GPE

i
∂

∂t
ψ (z, t) = −1

2

∂2

∂22
ψ (z, t) + f (n)ψ (n) ,

is used, with f (n) a nonlinear function that take into account the fact that the transverse density
can depend upon the longitudinal coordinate z, is used. Injecting the Madelung transformation
ψ (z, t) =

√
n (z, t) exp [iθ (z, t)] into that equation leads to the following nonlinear coupled

system of equations
∂

∂t
n (z, t) = −

∂

∂z

[
n (z, t)

∂

∂z
θ (z, t)

]
,

∂

∂t
θ (z, t) =

1

2

1√
n (z, t)

∂2

∂z2

√
n (z, t)−

1

2

[
∂

∂z
θ (z, t)

]2
− f (n) .

(3.2)

The simplest solution of that system is a constant density n (z, t) = |ψ (z, t)|2 = n0 and a phase
evolving linearly with time, i.e. θ (z, t) = f (n0) t. To get a more general solution to that system
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of equations, a perturbation method approach can be undertaken. By using a Taylor expansion
around their equilibrium values, the functions n (z, t), θ (z, t) and f (n) take the form

n (Z, T ) = n0 + εn1 (Z, T ) + ε2n2 (Z, T ) + . . . ,

θ (Z, T ) = −f (n0) t+ ε1/2θ1 (Z, T ) + ε3/2θ2 (Z, T ) + . . . ,

f (n) = f (n0) + εn1 (Z, T ) df
dn

∣∣
n=n0

+ ε2
[
n2
1(Z,T )

2
d2f
dn2

∣∣∣
n=n0

+ n2 (Z, T ) df
dn

∣∣
n=n0

]
+O(ε3),

where ε is a small parameter and the spatial and temporal variations of the functions are
assumed to be smooth, allowing to rescale space and time to the new variables

Z = ε1/2 (z − ct) and T = ε3/2t.

Thanks to those rescaled quantities, and by using the chain rule for the derivatives, the derivatives
can be re-expressed under the form

∂

∂z
=

∂

∂Z

∂Z

∂z

= ε1/2
∂

∂Z

∂

∂t
=

∂

∂Z

∂Z

∂T

∂T

∂t
+

∂

∂T

∂T

∂t

= −ε1/2c ∂
∂Z

+ ε3/2
∂

∂T

Combining those new expressions with the Taylor development of
√
n (z, t) and 1√

n(z,t)
, the

equations appearing in (3.2) can be re-expressed. Keeping the O
(
ε3/2
)
term in the first equation

and the O(ε) term in the second equation leads to the system
c
∂

∂Z
n1 (Z, T ) = n0

∂2

∂Z2
θ1 (Z, T ) ,

∂

∂Z
θ1 (Z, T ) = n1 (Z, T ) df

dn

∣∣
n=n0

,

while, if the terms of order O
(
ε5/2
)
and O(ε2) are kept, the system becomes

∂

∂T
n1 (Z, T )− c

∂

∂Z
n2 (Z, T ) = −n0

∂2

∂Z2
θ2 (Z, T )−

∂

∂Z

[
n1 (Z, T )

∂

∂Z
θ1 (Z, T )

]
,

∂

∂T
θ1 (Z, T )− c

∂

∂Z
θ2 (Z, T ) =

1

4n0

∂2

∂Z2
n1 (Z, T )−

1

2

[
∂

∂Z
θ1 (Z, T )

]2
−

[
n2
1 (Z, T )

2

d2f

dn2

∣∣∣∣
n=n0

+ n2 (Z, T )
df

dn

∣∣∣∣
n=n0

]
.

The compatibility condition linked to that system reads c2 = n0
df
dn

∣∣
n=n0

, along with a KdV
equation for the unknown density n1 (Z, T ) [13]

2c
∂

∂T
n1 (Z, T ) +

[
3

df

dn

∣∣∣∣
n=n0

+ n0
d2f

dn2

∣∣∣∣
n=n0

]
n1 (Z, T )

∂

∂Z
n1 (Z, T )− 1

4

∂3

∂Z3
n1 (Z, T ) = 0.

The density of a shallow dark soliton can thus be expressed as a KdV soliton. Returning to the
original coordinates, n1 takes the form

n1 (z, t) = − 3κ2

2

[
3 df

dn

∣∣
n=n0

+ n0
d2f
dn2

∣∣∣
n=n0

] sech2
[
ε1/2κ (z − vt)

]
,
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where κ is an arbitrary constant, and v is the soliton’s speed given by the relation v = c− εκ2
2c
,

which shows that the soliton moves slower than the speed of sound. Because of the minus sign
appearing in the expression of the density n1 (z, t), the dark soliton corresponds in a dip in
density. The phase can also be found and is given by [13]

θ1 (z, t) = − 3κc

2n0

[
3 df

dn

∣∣
n=n0

+ n0
d2f
dn2

∣∣∣
n=n0

] tanh
[
ε1/2κ (z − vt)

]
Those relations shows that, as was stated in the beginning, a dark soliton is characterized by a
dip in its density. It is also seen, from the last relation, that a sharp phase difference exists at
the point of minimum density. Only in the case of a static soliton is the phase shift between the
two sides of the density minimum equal to ∆θ = π [7].

3.2.3 Effect of the potential

In the previous discussion, the effect of the trapping potential was neglected. It is now time
to include its effect and see how it affects the conclusions of the previous discussion. First, by
considering the ansatz

ψ (z, t) = φ (z) exp (−iµt+ iθ0)

and injecting it in the adimensional 1D GPE eq. (3.1), the following expression arises

µφ (z) +
1

2

d2

dz2
φ (z)− φ3 (z) = V (z)φ (z) . (3.3)

The next step is to seek a solution of eq. (3.1) on top of the inhomogeneous background that satisfy
eq. (3.3). Such a solution is sought through the ansatz ψ (z, t) = φ (z) exp (−iµt+ iθ0)ψs (z, t),
where ψs (z, t) is an unknown wavefunction representing a dark soliton. Injecting that ansatz in
eq. (3.1), in combination with (3.3) leads to the new expression

i
∂

∂t
ψs (z, t) +

1

2

∂2

∂z2
ψs (z, t)− φ2 (z)

[
|ψs (z, t)|2 − 1

]
ψs (z, t) = − d

dz
ln [φ (z)]

∂

∂z
ψs (z, t) .

Since the relation (3.3) was used, it is clear that if the potential V (z) varies slowly on the length
scale of the soliton, the right hand side of that equation, as well as a part of the nonlinear
term can be treated as a perturbation. Following the suggestion of [13], the perturbation is
rewritten under an explicit form thanks to the Thomas-Fermi approximation (which consists
in writing the background density under the form φ (z) =

√
1− V (z)). The logarithm is then

approximated by the expression

− d

dz
ln [φ (z)] ≈ 1

2

[
1 + V (z) + V 2 (z)

] d

dz
V (z) ,

and the perturbed equation can then be rewritten under the form

i
∂

∂t
ψs (z, t) +

1

2

∂2

∂z2
ψs (z, t)−

[
|ψs (z, t)|2 − 1

]
ψs (z, t) = Q [ψs (z, t)] ,

where the perturbation is given by

Q [ψs (z, t)] = −
[
|ψs (z, t)|2 − 1

]
V (z)ψs (z, t) +

1

2

∂

∂z
ψs (z, t)

[
1 + V (z) + V 2 (z)

] d

dz
V (z) .

In the case where there is no potential, it is known that the solution to the unperturbed
equation takes the form of a dark soliton

ψs (z, t) = cos (θ) tanh (ζ) + i sin (θ) ,
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with ζ = cos (θ) [x− sin (θ) t] [13]. From there, a soliton moving adiabatically is expected to
have parameters that move slowly with time t. This means that the soliton’s phase becomes θ (t)
and that the soliton’s coordinate becomes ζ (t) = cos [θ (t)] [z − z0 (t)], with z0 (t) the centre of
the soliton connected to the phase by the relation

d

dt
z0 (t) = sin [θ (t)] . (3.4)

This last relation shows that in order to find the time evolution of the soliton’s position, the
time evolution of the phase has to be known. To get that equation, the normalized soliton
energy can be used, whose time evolution can be found thanks to the perturbation Q [ψs (z, t)]
and is given by

d

dt
E (t) = −

∫
R

{
Q [ψs (z, t)]

∂

∂t
ψ∗s (z, t) +Q∗ [ψs (z, t)]

∂

∂t
ψs (z, t)

}
dz.

From there, the time evolution of the phase is given by [20]

d

dt
θ (t) =

1

2 cos2 [θ (t)] sin [θ (t)]
Re

{∫
R
Q [ψs (z, t)]

∂

∂t
ψ∗s (z, t) dz

}
.

Going further in the developments and considering that the soliton moves near the trap centre,
a Taylor expansion of the potential around z0 allows to neglect the terms in V (z) and V 2 (z) in
the perturbation Q [ψs (z, t)], which allows to write

d

dt
θ (t) = −1

2
cos [θ (t)]

∂V

∂z0
.

Considering a small phase, the approximation cos [θ (t)] ≈ θ (t) can be used. Combining that
approximation with eq. (3.4), the last equality can be rewritten under the form

∂2

∂t2
z0 (t) = −1

2

∂V

∂z0
,

which indicates that the centre of the soliton moves like a classical particle in the potential
V : indeed, the equation has the form of the Newton equation of motion for a particle of mass
m = 2 in the external potential V . Furthermore, if the trapping potential is harmonic, the
equation becomes the classical equation of motion of a linear oscillator

d2

dt2
z0 (t) = −1

2
ω2
zz

2
0 (t) ,

which shows that the centre of the dark soliton oscillates with a frequency given by ωosc = ωz/
√

2,
i.e. it oscillates with a smaller frequency than the trapping potential.

3.2.4 Experimental realization techniques

Phase imprinting

The first technique that can be mentioned to create a dark soliton in the phase imprinting
method. It consists in manipulating the phase of the condensate without touching its density.
To achieve that result, a part of the condensate is illuminated by a short off-resonance laser
beam pulse. The procedure can be described in the framework of the 1D Gross-Pitaevskii
equation, with a potential that is the sum of the confining potential and a potential of the
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form V (z, t) ∝ θ (z) f (t), where f (t) is the function describing the evolution of the laser pulse
envelope and θ (z) is the imprinted phase, given by [7]

θ (z) =
∆θ

2

[
1 + tanh

(
z − z∗
bW

)]
,

where ∆θ is the phase gradient, W is the width of the pulse that sets the phase gradient at
location z∗, and b is an experimental factor.

Density engineering

If a black soliton can be created by simply modifying the phase of the BEC, it should be possible
to create such a soliton by just changing the condensate’s density. This is the philosophy of
density engineering method. A classical analogy is the creation of dark optical solitons by
modulating the intensity of a light field that propagated in a nonlinear medium.

Engineering the density of a BEC is not difficult experimentally: it can be achieved by
modifying the trapping potential, for example.

Quantum state engineering method

The quantum state engineering method is a combination of both the phase and density engi-
neering, i.e. a method in which both the condensate’s phase and density are modified. The
techniques requires two steps: first, a density minimum is created by adiabatically illuminating
a uniform BEC with a focused laser beam. That laser beam is then abruptly switched off and a
second far-detuned laser beam, with uniform intensity, is shone on half of the BEC, which is
responsible for imprinting a certain phase on that part of the gas. The density minimum then
acquires the desired phase distribution.

3.3 Bright soliton

3.3.1 Generalities

As can be read in a previous section, so-called bright soliton can be formed in the case of a
Gross-Pitaevskii equation with attractive interactions. Before analysing the behaviour of such
solitons, it can be instructive to check whether those structures are stable or not. To see this, as
scaling analysis can be conducted. The starting point of such an analysis is the D-dimensional
Gross-Pitaevskii equation, given by the expression

i~
∂

∂r, t
=

[
− ~2

2m
∇2

r + Vext (r)− gDD |ψ (r, t)|2
]
ψ (r, t)

where r is now a D-dimensional vector. The corresponding energy functional is given by

E [ψ (r, t)] =

∫ [
~2

2m
|∇rψ (r, t)|2 + Vext (r) |ψ (r, t)|2 − gDD

2
|ψ (r, t)|4

]
dr.

Considering that energy functional, along with the normalization condition
∫
|ψ (r, t)|2 dr = N ,

the different terms scale as, for a system with typical size L

• for the wavefunction itself: ψ (r, t) ∼ 1/LD/2,

• for the kinetic energy: Ekin ∼ 1/L2,
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• for the potential energy (for V (r) ∼ rn): Epot ∼ LD,

• and for the interaction energy: Eint ∼ 1/LD.

Considering those scaling laws and a harmonic-like confining potential, it is directly seen that,
in 1D, the energy scales as

E ∼ ckin

L2
+ cpotL

2 − cint

L
,

while it scale as

E ∼ ckin

L2
+ cpotL

3 − cint

L3
and E ∼ ckin − cint

L2
+ cpotL

2

for D = 3 and D = 2, respectively. Those scaling laws show that there exist a L for which the
energy is minimum in 1D, while there exist a critical number of atoms in the condensate above
which a collapse occur [1].

3.4 Numerics

3.4.1 Linear stability analysis

In this section, a linear stability analysis is performed around a steady-state solution to the
Gross-Pitaevskii equation. If ψ0 (x) is a steady-state solution, its linear stability is studied by
checking its behaviour if it is slightly perturbed. That perturbed function can be written

ψ (z, t) =
{
ψ0 (z) + ε

[
u (z) e−iωt + v∗ (z) eiω

∗t
]}

exp
(
−iµ

~
t
)
,

where µ is the chemical potential an ε is a small perturbation. The perturbation is thus time
dependent with frequency ω and complex amplitudes u (x), v (x). It should be noted than
in order for the solution to not blow up exponentially with time, the frequency should verify
Im{ω} < 0.

Injecting the ansatz into the 1D Gross-Pitaevskii equation

i~
∂

∂t
ψ (z, t) =

[
− ~2

2m

∂2

∂z2
+ Vext (z) + g |ψ (z, t)|2

]
ψ (z, t)

and keeping only the first order in ε leads to the following system[− ~2
2m

∂2

∂z2
+ Vext (z) + 2g |ψ0 (z)|2 − µ

]
ψ2
0 (z)

−ψ2
0 (z) −

[
− ~2

2m
∂2

∂z2
+ Vext (z) + 2g |ψ0 (z)|2 − µ

][u (z)
v (z)

]
= ~ω

[
u (z)
v (z)

]
.

The Laplace operator appearing in the matrix of the left hand side has to be discretized, using
a finite-difference approximation method, for example. This procedure will allow to compute
the eigenvalues of the system. It can however already be seen that the matrix representing the
system will be extremely sparse and have a diagonal-like shape.

3.4.2 Discretization

Generalities

Formally, the GPE can be written under the form

i~
∂

∂t
ψ (z, t) =

(
T̂ + V̂

)
ψ (z, t) ,
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where T̂ and V̂ are the kinetic energy operator and the potential energy operators, respectively.
The solution to that equation is simply

ψ (z, t) = exp

[
− i
~

(
T̂ + V̂

)
t

]
ψ (z, 0) (3.5)

= exp

{
− i
~

[
− ~2

2m

∂2

∂z2
+ Vext (z) + g |ψ (z, t)|2

]
t

}
ψ (z, 0) .

Written like that, the solution to the equation does not seem easy to handle. However, if the
solution is written under the form

ψ (z, t) = exp

(
− i
~
T̂ t
)

exp

(
− i
~
V̂t
)
ψ (z, 0) , (3.6)

the solution becomes much more easy to handle since, owing to the spectral theorem, it is
known that applying a function to an operator is equivalent to applying the same function to
the eigenvalues of that operator if it is expressed in a basis in which its expression is diagonal.
The next question is then to know if such bases exist for T̂ and V̂. Fortunately, the potential
energy operator is diagonal in space representation, while the kinetic energy operator is diagonal
in the reciprocal space. There is, however, one point that has not been discussed: the transition
from the expression appearing in (3.5) to that appearing in (3.6) is allowed only if the operators
T̂ and V̂ commute, which is not the case here. In order to be able to perform computations,
something has to be done to approximate in the right way the expression of the solution (3.5).

The BCH approximation

The Baker-Campbell-Hausdorff (BCH) approximation is very handy in the present case since it
allows to write [35]

exp
(
T̂
)

exp
(
V̂
)

= exp

{
T̂ + V̂ +

1

2

[
T̂ , V̂

]
+

1

12

([
T̂ ,
[
T̂ , V̂

]]
+
[
V̂ ,
[
V̂ , T̂

]])
+ . . .

}
.

Thanks to that relation, the expression appearing in (3.6) can be re-expressed into another form.
Applying the above BCH approximation, the following expressions arise

e−
i
~ T̂ te−

i
~ V̂t = exp

{
− i
~

(
T̂ + V̂

)
t− t2

~2
[
T̂ , V̂

]
+ i

t3

12~3
([
T̂ ,
[
T̂ , V̂

]]
+
[
V̂ ,
[
V̂ , T̂

]])
+ · · ·

}
≈ exp

[
− i
~

(
T̂ + V̂

)
t

]
exp

(
− t2

2~2
[
T̂ , V̂

])
exp

{
i
t3

12~3
([
T̂ ,
[
T̂ , V̂

]]
+
[
V̂ ,
[
V̂ , T̂

]])}
.

By further using the equalities

exp

[
− i
~

(
T̂ + V̂

)
t ] ≈

exp

{
− i
~
T̂ t
}

exp

{
− i
~
V̂t
}

exp

{
t2

2~2
[
T̂ , V̂

]}
exp

{
−i t3

12~3
([
T̂ ,
[
T̂ , V̂

]]
+
[
V̂ ,
[
V̂ , T̂

]])}
exp

[
− i
~

(
T̂ + V̂

)
t ] ≈

exp

{
− i
~
V̂t
}

exp

{
− i
~
T̂ t
}

exp

{
t2

2~2
[
V̂ , T̂

]}
exp

{
−i t3

12~3
([
T̂ ,
[
T̂ , V̂

]]
+
[
V̂ ,
[
V̂ , T̂

]])}
and the fact that exp

[
− i

~

(
T̂ + V̂

)
t
]
can be rewritten under the form

exp

[
− i
~

(
T̂ + V̂

)
t

]
= exp

[
− i

2~

(
T̂ + V̂

)
t

]
exp

[
− i

2~

(
T̂ + V̂

)
t

]
,
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The expression appearing in (3.5) can be rewritten under the form

ψ (z, t ) ≈

exp

(
− i

2~
V̂t
)

exp

(
− i
~
T̂ t
)

exp

(
− i

2~
V̂t
)

exp

{
−i t3

48~3
([
T̂ ,
[
T̂ , V̂

]]
+
[
V̂ ,
[
V̂ , T̂

]])}
ψ (z, 0) ,

(3.7)
which, once the last term Taylor-expanded, shows that the discretization is O(t3). Those
developments allowed to re-express the exact solution into a suitable approximation. The action
of the operators appearing inside the different exponentials have still to be determined. Those
actions will be determined in the following.

Action of the operators

The spectral theorem has already been evoked, and it is now time to use it. The discretization
of the Laplacian by a centred difference method was evoked, and will thus be used. Considering
a one-dimensional straight line composed of elements of length ∆z, the position of the ith point
xi is then

zi = z0 + i∆z,

with z0 the origin of the grid. Time can be approximated in the same way: tn = t0 + n∆t,
with t0 the origin of time and ∆t the time interval between iterations. With those notations,
the exact value of the wavefunction at point xi and time tn is given by ψ (xi, tn), while its
approximate value is noted, at the same point and time, ψni . With those notations, the discrete
equivalent of (3.7) is

ψ (zi, tn+1) ≈ exp

(
− i

2~
V̂∆t

)
exp

(
− i
~
T̂ ∆t

)
exp

(
− i

2~
V̂∆t

)
ψ (zi, tn) . (3.8)

To now get the action of the operators on the wavefunction, the periodicity of the domain
has to be taken into account. Decomposing the unknown wavefunction in a discrete Fourier
series according to the definition given in [14] (with N the number of nodes contained in the
domain) leads to

ψ̃ (ki, tn) =
1√
N

N−1∑
l=0

ψ (zl, tn) exp

(
−2iπ

ki
N
l

)
.

From there, the action of the kinetic energy operator T̂ can be computed. It reads

(
T̂ ψ
)
j

= −J (ψj+1 − 2ψj + ψj−1) , with J =
~2

2m (∆z)2
.

Applying the operator on the Fourier transform of ψ gives

(
T̂ ψ̃
)
j

=
1√
N

N−1∑
l=0

(
T̂ ψ
)
j
exp

(
−2iπ

ki
N
l

)

= − J√
N

N−1∑
l=0

(ψj+1 − 2ψj + ψj−1) exp

(
−2iπ

ki
N
l

)
.

By further taking the periodic boundary conditions into account, that last expression can be
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re-expressed nuder the form

(
T̂ ψ̃
)
j

= − J√
N

N−1∑
l=0

ψl

[
exp

(
−2iπki

l + 1

N

)
− 2 exp

(
−2iπki

l

N

)
+ exp

(
−2iπki

l − 1

N

)]

= − J√
N

N−1∑
l=0

2ψl exp

(
−2iπki

l

N

)[
cos

(
2π
ki
N

)
− 1

]
= −2

J√
N

[
cos

(
2π
ki
N

)
− 1

]
ψ̃j.

Those computations show that the eigenvalue of the kinetic energy operator is given by
−2 J√

N

[
cos
(
2π ki

N

)
− 1
]
, and is thus the value that has to be placed inside the exponential

containing that operator.
Concerning the potential energy operator V̂ , the computation of the eigenvalues is straight

forward since its eigenbasis is the physical space. It is thus direct to write(
V̂ψ
)
j

=
(
Vj + g |ψj|2

)
ψj,

with Vj the value of the external potential at node xj.

Resume of the code

Now that the eigenvalues of the different operators are known, the expression appearing in (3.8)
can be rewritten as

ψ (zj, tn) ≈ exp

[
− i

2~
(
Vj + g |ψj|2

)]
F−1

{
exp

[
2i

~
J√
N

(
cos

(
2π

k

N

)
− 1

)
∆t

]
F
(

exp

[
− i

2~
(
Vj + g |ψj|2

)
∆t

]
ψj

)}
where F and F−1 represent a Fourier and inverse Fourier transform, respectively.

Results

In order to compute the time evolution of the sought wavefunction, a C-code was written. As is
discussed here above, Fourier transforms have to be used. Those were realized thanks to the
FFTW2 library. All the computations were performed on the NIC4 supercomputer, one of the
several supercomputers of the CECI3. A pseudo-code is given in Algorithm 1. The idea is to
vary the number of particles contained in the system and to see how the error between a known
analytical expression (see Chapter A) and the numerical approximation obtained thanks to the
code described in Algorithm 1 evolves. Those computations can be done for different values of
the grid spacing ∆x.

However, the implemented space discretization (based on finite differences) does not seem
to converge to the exact solution, even for very small time and space steps, which is in good
agreement with the results in [27]. To see this, different timesteps (i.e. ∆t = 3·10−2, ∆t = 3·10−3,
∆t = 3 · 10−4 and ∆t = 10−4) were used and, for each of those timesteps, different spatial steps
(i.e. ∆x = 6 · 10−2, ∆x = 6 · 10−3, ∆x = 3 · 10−3 and ∆x = 6 · 10−4) were tried. Figure 3.1 shows
the comparison between the analytic and numerical results for ∆t = 10−4 and ∆x = 3 · 10−3.
On that figure, it is clear that the numerical solution travels with a speed that is different from

2http://www.fftw.org/
3http://www.ceci-hpc.be/
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Algorithm 1 Compute the time evolution ψ (z, t).
Ensure: Time evolution ψ (z, t)
Initiate L, nbNodes, nbTimesteps, tend and position vector z
∆x = L

nbNodes and ∆t = tend
nbTimesteps

ψ (z, t)← ψ (z, 0)
Initiate confining potential Vext (z)
saveResult = true/false and frequency
n = 0
while n < nbTimesteps do
ψ (z, n∆t)← computeEffectV [V (z) , ψ (z, n∆t) ,∆t]
ψ̃ = F [ψ (z, n∆t)]

ψ̃ ← computeEffectT
[
ψ̃,∆t,∆x

]
ψ (z, n∆t) = F−1

[
ψ̃
]

ψ (z, n∆t)← computeEffectV [V (z) , ψ (z, n∆t) ,∆t]
if saveResult && !(n%frequency) then
Save Re{ψ (z, t)}, Im{ψ (z, t)} and |ψ (z, t)|2 at desired iteration

end if
end while
Free all dynamically allocated quantities

the analytic solution. Even more, the speed seems to decrease. Those results can come from the
fact that the timestep chosen is not small enough to linearise the last exponential appearing in
relation (3.7), and consequently numerical errors build up.

The influence of the timestep is illustrated in fig. 3.2, where it is clearly visible that a smaller
timestep allows to come closer to the analytic solution. This comes from the fact that the
linearisation of the last exponential appearing in relation (3.7) becomes more accurate.

On the contrary, for a free Schrödinger’s equation, whose solution is analytically known (see
(B)), the numerical results are in very good agreement with the analytic ones, which shows
that the nonlinearity appearing in the 1D Gross-Pitaevskii equation needs to be treated more
carefully. To see the matching between analytic and numeric results, fig. 3.3 can be checked.

Page 48 on 65



position
0 5 10 15 20 25 30

jA
(x

;t
=

0:
00

)j2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Analytic
Numeric

(a) t = 0.
position

0 5 10 15 20 25 30

jA
(x

;t
=

0:
20

)j2

0

2000

4000

6000

8000

10000

12000

Analytic
Numeric

(b) t = 2000∆t.

position
0 5 10 15 20 25 30

jA
(x

;t
=

0:
40

)j2

0

2000

4000

6000

8000

10000

12000

Analytic
Numeric

(c) t = 4000∆t.
position

0 5 10 15 20 25 30

jA
(x

;t
=

0:
60

)j2

0

2000

4000

6000

8000

10000

12000

Analytic
Numeric

(d) t = 6000∆t.

position
0 5 10 15 20 25 30

jA
(x

;t
=

0:
80

)j2

0

2000

4000

6000

8000

10000

12000

Analytic
Numeric

(e) t = 8000∆t.
position

0 5 10 15 20 25 30

jA
(x

;t
=

1:
00

)j2

0

2000

4000

6000

8000

10000

12000

Analytic
Numeric

(f) t = 10000∆t.

Figure 3.1 – Comparison between analytic and numeric solutions to the 1D GPE for a
condensate of 2000 particles and discretization parameters ∆t = 10−4 and ∆x = 6 · 10−3,
showing that the numerical solution propagates at a (wrong) decreasing speed.
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Figure 3.2 – Comparison between the analytic and numerical results for different timesteps
and ∆x = 3 · 10−3. The influence of the timestep is clearly visible: a smaller timestep allows to
come closer to the analytic solution.
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(f) t = 10000∆t.

Figure 3.3 – Comparison between analytic and numeric solutions to the 1D free Schrödinger
equation for a condensate of 2000 particles and discretization parameters ∆t = 10−4 and
∆x = 3 · 10−3, showing the agreement between numerical and analytical results.
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Chapter 4
Conclusion

Ultracold atoms is a vast field of physics that spans over many other “subfield”. Ranging from
theoretical fundamental physics to more “down-to-the-Earth” applications, the possibilities
offered by those ultracold systems seems to be extraordinary vast. On of the sub-fields related
to Bose-Einstein condensates is that of fundamental nonlinear excitations known as solitons.

Such solitons are excitations well known in nonlinear optics, where they appear in nonlinear
dispersive media, such as optical fibres. However, their experimental observation in Bose-Einstein
condensates is much more recent than their optical colleges, mainly because the first experimental
realization of BEC dates back from the mid-90s. Since then, solitons have effectively been
observed in condensates. This masters thesis tries to fit in that field of research by providing a
quite general picture of solitons in BECs described by a mean-field theory.

In order to sketch that general picture, different steps had to be undertaken, and can be
resumed as follow:

• In the first chapter, the necessary tools to understand the basics about the Bose-Einstein
condensation phenomenon were introduced. From there, general relations were derived,
such as the mean number of particles contained in the system, the mean energy contained
in that system, or even its specific heat, both in the cases of free and trapped three
dimensional ideal Bose gas. The next step is to take interactions between particles into
account to see how they modify the previously derived results. Even if a proper treatment
of those interactions imply to solve the full many-body Schrödinger equation, it was shown
that, given the low temperature of the system, the interactions can be described by a
single parameter. From there, considering that the system can be described by a unique
wavefunction, the well-known Gross-Pitaevskii equation, which gives access to the time
evolution of that wave function, was derived. Further considering that at low temperature
the wavefunction oscillates around its ground state, the Bogoliubov-de Gennes system was
obtained, which gives a picture of the collective mode of the condensate and the dispersion
relation. That dispersion relation allows to notice that two different regimes exist: for
high momenta, the dispersion relation is the same as a quantum particle, whereas at low
momenta, it becomes linear, the proportionality constant being the speed of sound in the
condensate. The last part was concerned with an extension of the theory to case out of
thermal equilibrium. In particular, by using the Madelung transformation, it can be seen
that the dynamics of the condensates is dictated by a Newtonian like law (see eq. (1.20)),
with a purely quantum contribution coming from the kinetic part of the Hamiltonian.

• The next step before being able to talk about solitons in BEC is to consider such gases in
lower dimensions, for reasons that will be explained later on. Beginning with Bose gases
in two-dimensional configurations, the cases of infinite ideal and interacting systems is
considered. In particular, it is shown that an ideal gas cannot undergo a phase transition
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to the condensate state, but that the first order correlation function is bimodal in the
degenerated gas, which means that long range effects can still exist. From there, interactions
are added to this picture, in two types of configurations: configurations in which the system
is geometrically 2D but locally behaves as a 3D object, and configurations that are truly
two-dimensional. In particular, the relation between the 2 scattering length is derived,
which allows to express the “true” bidimensional system in function of the scattering
length of the “false” one, and vis-versa. The computations are then repeated for a trapped
bidimensional gas. Finally, two applications those 2D systems are discussed (superfluidity
and the Josephson efect). For the first one, it is shown that it is the fluctuations of the
phase that destroy the long range order characteristic of a condensate. The second effect is
just a short presentation of the phenomenon. The last part is concerned with 1D systems.
In particular, the corresponding Gross-Pitaevskii is derived, and is shown to have the
same aspect as the full three dimensional one, the difference between the two being the
expression of the interaction parameter g.

• Those considerations lead to the study of the solitons themselves. First, some definitions
are given in order to make a clear distinction between solitary waves and solitons. From
there, the case of dark and bright solitons are treated separately. For the first ones, the
derivations are purely analytical, while for the second ones, only numerical tests and results
are provided. For the bright solitons, the discussion starts with generalities showing that
bright solitons cannot exist in a 3D system, while it could exist in lower dimensional systems
under certain conditions. The discussion then continues with numerical considerations.
In particular, the discussion starts with the scheme used to discretize time, the so-called
spectral method. From there, the action of the different operators appearing in the
Gross-Pitaevskii are derived. It is then shown that the choice of discretization technique
does not lead to convergence when interactions between particles are taken into account,
meaning that a more involved numerical method is needed.

As a final remark, it has to be said that all the developments and results of this work were
derived in the framework of a mean field theory. Such a theory is, however, not strictly speaking,
applicable to solitons since they generally contain a limited number of particles. A more realistic
model should be used and full quantum computations should be performed numerically to get
trustable results.
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Appendix A
Soliton: analytical derivation

In this appendix, the solution to the 1D Gross-Pitaevskii equation

i~
∂

∂t
ψ (x, t) = − ~2

2m

∂2

∂x2
ψ (x, t) + Vtrap (x)ψ (x, t) + g |ψ (x, t)|2 ψ (x, t) , (A.1)

will be derived thanks to the ansatz

ψ (x, t) = A (x− vt) exp {i [B (x− vt) + Ct]} , (A.2)

with B and C, two independent real constants. Injecting the ansatz into Equation (A.1) and
renaming x− vt = X yields different parts:

• the kinetic energy

− ~2

2m

∂2

∂x2
ψ (x, t) = − ~2

2m

{
d2A (X)

dX2
+ 2iB

dA (X)

dX
+B2A (X)

}
exp [i (BX + Ct)]

• the trapping energy

Vtrap (x)ψ (x, t) = A (X) exp [i (BX + Ct)]Vtrap (x)

• the interaction energy

g |ψ (x, t)|2 ψ (x, t) = g |A (X)|2A (X) exp [i (BX + Ct)]

Putting all those different parts together yields a new equation for the amplitude A (X) reading

i~
[
−vdA (X)

dX
+ i (C − vB)A (X)

]
= − ~2

2m

[
d2A (X)

dX2
+ 2iB

dA (X)

dX
−B2A (X)

]
+ Vtrap (X + vt)A (X) + g |A (X)|2A (X) .

By regrouping the different derivative orders together, and by replacing d
dX

by ′, the last
expression takes the form

− ~2

2m
A′′ + i~

(
v − ~

m
B

)
A′ + g |A|2A+ ~

(
C − vB +

~
2m

B2 + Vtrap

)
= 0.

The constants B and C being arbitrary, the above expression can be somewhat simplified by
choosing B = m

~ v, yielding

− ~2

2m
A′′ + g |A|2A+ ~

(
C − 1

2

mv2

~
+ Vtrap

)
A = 0.
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By further considering that the function A (X) is real, i.e. A (X) ∈ R, the modulus can be
removed in the last expression, yielding

− ~2

2m
A′′ + gA3 + ~

(
C − 1

2

mv2

~
+ Vtrap

)
A = 0. (A.3)

This last equation is absolutely not trivial to solve, since the potential energy term Vtrap is a
function of X rather than a constant. In what follows, it will thus be considered that there is
no trapping potential. In such a case, eq. (A.3) can be solved by multiplying both sides by A′
and integrating with respect to X, which gives

−1

2

~2

2m

(
dA (X)

dX

)2

+
g

4
A4 (X) +

1

2
~
(
C − 1

2

mv2

~

)
A2 = E = 0,

where E is the integration constant representing the total energy of the system. Such an equation
can be rewritten under the form

dA

dX
= ±

√
mg

~2
A4 +

2m

~

(
C − 1

2

mv2

~

)
A2,

which is separable, and can be directly integrated to give∫
dA√

mg
~2 A

4 + 2m
~

(
C − 1

2
mv2

~

)
A2

= ± (x− vt) + C1.

That expression can be further simplified by writing∫
dA

A
√
A2 + 2m

g

(
C − 1

2
mv2

~

) = ±
√
mg

~2
(x− vt) + C2 (A.4)

To proceed further, two cases have to be considered, namely (i) the repulsive interaction (g > 0),
and (ii) the attractive interaction (g < 0). Those cases will be treated separately.

Repulsive interactions

In this case, eq. (A.4) can be easily computed. By first performing the change of variable u 7→ 1
A
,

eq. (A.4) becomes

−
∫

du√
1 + 2m

g

(
C − 1

2
mv2

~

)
u2

= ±
√
mg

~2
(x− vt) + C2.

By performing the new change of variable u 7→ sinh(y)√
2~
g

(
C− 1

2
mv2

~

) , the integral becomes

−
∫

1√
1 + sinh2 (y)

cosh (y)√
2~
g

(
C − 1

2
mv2

~

)dy = ±
√
mg

~2
(x− vt) + C2,

which finally leads to

y = ∓

√
2m

~

(
C − 1

2

mv2

~

)
(x− vt) + C4,
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or, by keeping in mind all the previous changes of variable,

A =

√
2~
g

(
C − 1

2

mv2

~

)
1

sinh

[
∓
√

2m
~

(
C − 1

2
mv2

~

)
(x− vt) + C4

] , (A.5)

which, once injected in the ansatz (A.2), leads to the expression

ψ (x, t) =

√
2~
g

(
C − 1

2

mv2

~

)
1

sinh

[
∓
√

2m
~

(
C − 1

2
mv2

~

)
(x− vt) + C4

] exp
{
i
[m
~
v (x− vt) + Ct

]}
.

The final step is to determine the expression of the constant C, which is done through the
normalization condition

∫
|ψ (x, t)|2 dx =

∫
|ψ (x, 0)|2 dx = N , which leads to

Ng

2~
1

C − 1
2
mv2

~

=

∫
1

sinh2

[
∓
√

2m
~

(
C − 1

2
mv2

~

)
x+ C4

]dx

=
1√

2m
~

(
C − 1

2
mv2

~

) ∫ d

dx
cotanh

[
±

√
2m

~

(
C − 1

2

mv2

~

)
x+ C4

]
dx

Attractive interactions

In this case, g should be replaced by −g in eq. (A.4), leading to the equation∫
dA

A
√

2~
g

(
C − 1

2
mv2

~

)
− A2

= ±
√
mg

~2
(x− vt) + C5.

By performing the change of variable u 7→ 1
A
, this last expression becomes

−
∫

du√
2~
g

(
C − 1

2
mv2

~

)
u2 − 1

= ±
√
mg

~2
(x− vt) + C5.

By performing the new change of variable u 7→ cosh(y)√
2~
g

(
C− 1

2
mv2

~

) , the last expression becomes

−
∫

1√
cosh2 (y)− 1

sinh (y)√
2~
g

(
C − 1

2
mv2

~

)dy = ±
√
mg

~2
(x− vt) + C5,

and finally leads to the expression

y = ∓

√
2m

~

(
C − 1

2

mv2

~

)
(x− vt) + C6.

Keeping in mind all the previous changes of variable, that last expression can be rewritten under
the form

A =

√
2~
g

(
C − 1

2

mv2

~

)
sech

[
∓

√
2m

~

(
C − 1

2

mv2

~

)
(x− vt) + C6

]
,
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which, once injected in the ansatz (A.2), leads to

ψ (x, t) =

√
2~
g

(
C − 1

2

mv2

~

)
sech

[
∓

√
2m

~

(
C − 1

2

mv2

~

)
(x− vt) + C6

]
exp

{
i
[m
~
v (x− vt) + Ct

]}
.

The last step is to determine the constant C through the normalization condition
∫
|ψ (x, t)|2 dx =∫

|ψ (x, 0)|2 dx = N , which yields

Ng

2~
1

C − 1
2
mv2

~

=

∫
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[
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2m

~

(
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2

mv2
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]
dx
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dx
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2
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) .
From this expression, the value of C can be found and reads

C =
1

2

m

~

(
v2 +

N2g2

4~2

)
.
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Appendix B
Schrödinger’s equation: analytical solution

Let the problem to consider be{
i~ ∂

∂t
ψ (x, t) = − ~2

2m
∂2

∂x2
ψ (x, t) on R× ]0,+∞[ ,

ψ (x, 0) =
√

N
σ0
√
π

exp
[
− (x−x0)2

2σ2
0

]
eik0x on R× {t = 0} .

(B.1)

It is known that such a problem can be solved thanks to Fourier transforms. In Fourier space,
the solution to that equation reads

ψ̃ (k, t) = ψ̃ (k, 0) exp

(
−i~k

2

2m
t

)
,

where ψ̃ (k, 0) is the Fourier transform of the initial condition of the problem. It is given by

ψ̃ (k, 0) =

√
N

σ0
√
π

1√
2π

∫
R

exp

[
−(x− x0)2

2σ2
0

]
eik0x exp (−ikx) , dx,

X=x−x0=
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2σ0π3/2
exp [−i (k − k0)x0]

∫
R

exp

(
−X

2

2σ2
0

)
exp [−i (k − k0)X] dX.

By putting the exponentials together, the expression can be identified to a second order
expression. This allows to rewrite

ψ̃ (k, 0) =

√
N

2σ0π3/2
e−i(k−k0)x0e−

σ20
2
(k−k0)2

∫
R

exp

{
−
[

X√
2σ0

+ i
σ0√

2
(k − k0)

]2}
dX.

By making the change of variable Y 7→ X√
2σ0

+ i σ0√
2

(k − k0) and using the result of the Poisson
integral, the Fourier transform of the initial condition reads

ψ̃ (k, 0) =

√
σ0N√
π

exp [−i (k − k0)] exp

[
−σ

2
0

2
(k − k0)2

]
,

which leads to the final result in Fourier space

ψ̃ (k, t) =
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σ0N√
π

exp [−i (k − k0)] exp

[
−σ

2
0

2
(k − k0)2

]
exp

(
−i~k

2
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)
.
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To get the final solution to the problem (B.1), that last expression has to be re-expressed in the
physical space, which is done by performing an inverse Fourier transform. The result is given by

ψ (x, t) =

√
σ0N

2π3/2

∫
R

exp [−i (k − k0)x0] exp

[
−σ

2
0

2
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]
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(
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m
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)
K

]
dK.

Once again, the expression of the argument of the exponential can be associated to a second order
expression. By performing the same kind of computations as was done to find the expression of
ψ̃ (k, t), the final result to the problem (B.1) reads

ψ (x, t) =

√
σ0N

2
√
π

exp (ik0x)√
σ2
0

2
+ i ~t
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