
https://lib.uliege.be https://matheo.uliege.be

Master's Thesis : NetBERT: A Pre-trained Language Representation Model for

Computer Networking

Auteur : Louis, Antoine

Promoteur(s) : Louppe, Gilles

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée

Année académique : 2019-2020

URI/URL : http://hdl.handle.net/2268.2/9060

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège - Faculty of Applied Sciences

In collaboration with Cisco Systems

NetBERT: A Pre-trained Language Representation

Model for Computer Networking

Advisor:
Prof. G. Louppe

Jury:
Prof. G. Louppe
Prof. P. Geurts
Prof. L. Mathy

H. De Pra

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Data Science & Engineering

by Antoine Louis

Academic year 2019-2020

Abstract

Obtaining accurate information about products in a fast and efficient way is becoming increas-
ingly important at Cisco as the related documentation rapidly grows. Thanks to recent progress
in natural language processing (NLP), extracting valuable information from general domain doc-
uments has gained in popularity, and deep learning has boosted the development of effective text
mining systems. However, directly applying the advancements in NLP to domain-specific docu-
mentation might yield unsatisfactory results due to a word distribution shift from general domain
language to domain-specific language. Hence, this thesis aims to determine if a large language
model pre-trained on domain-specific (computer networking) text corpora improves performance
over the same model pre-trained exclusively on general domain text, when evaluated on in-domain
text mining tasks.

To this end, we introduce NetBERT (Bidirectional Encoder Representations from Transform-
ers for Computer Networking), a domain-specific language representation model based on BERT
(Devlin et al., 2018) and pre-trained on large-scale computer networking corpora. Through sev-
eral extrinsic and intrinsic evaluations, we compare the performance of our novel model against
the general-domain BERT. We demonstrate clear improvements over BERT on the following
two representative text mining tasks: networking text classification (0.9% F1 improvement) and
networking information retrieval (12.3% improvement on a custom retrieval score). Additional
experiments on word similarity and word analogy tend to show that NetBERT capture more
meaningful semantic properties and relations between networking concepts than BERT does.
We conclude that pre-training BERT on computer networking corpora helps it understand more
accurately domain-related text.

i

Acknowledgements

First and foremost, I would like to express my special thanks of gratitude to my advisor Gilles
Louppe, who has always been present at the slightest of my concerns, and who has ensured a
more than regular follow-up of my work, giving me constructive feedback and valuable advice at
every stage of my thesis.

Next, I would like to thank more than generously Hugues De Pra, who gave me the golden
opportunity to do this wonderful internship at Cisco, and made me feel like an integral part of
his team from day one, by including me in meetings and events, introducing me to a very large
number of employees, and keeping in regular and interested contact with me.

Thank you to Dmitry Goloubew, who gave me the chance to work on a subject that interests
me immensely (state-of-the-art NLP models), putting at my disposal an impressive computing
power, and allowing me a very pleasant freedom in my research while giving me his expert opinion
on some interesting directions to explore.

Thank you to Antoine Wehenkel and Tom Crasset for useful feedback on the manuscript.
Finally, thank you to my family, friends and loved ones for always helping me find a balance

between work and life.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 The Cisco Search Problem . 1
1.2 Text Mining . 2
1.3 Research Questions . 3
1.4 Thesis Outline . 3

2 Related Work 5
2.1 A Brief History of Natural Language Processing 5

2.1.1 NLP before the Deep Learning Era . 5
2.1.2 NLP in the Deep Learning Era . 7

2.2 Word Embedding . 9
2.2.1 Count-based Models . 10
2.2.2 Prediction-based Models . 11
2.2.3 Deep Contextual Models . 14

2.3 Domain-specific BERT-based Models . 15

3 BERT 16
3.1 Self-attention . 16

3.1.1 Multi-head Attention . 19
3.2 Model . 20

3.2.1 Architecture . 20
3.2.2 Input Representations . 21
3.2.3 Parameters . 23

3.3 Pre-training Procedure . 24
3.3.1 Masked Language Modeling . 24
3.3.2 Next Sentence Prediction . 26

3.4 Downstream Tasks . 26
3.4.1 Fine-tuning Approach . 26
3.4.2 Feature-based Approach . 27

4 NetBERT 29
4.1 Model Choice . 29

4.1.1 The Google Search Update . 29
4.1.2 BERT as Knowledge Base . 30
4.1.3 Model Size . 30

4.2 Pre-training Data . 32
4.2.1 Data Collection . 32
4.2.2 Data Preparation . 32

i

4.2.3 Processed Dataset . 33
4.3 Pre-training . 34

4.3.1 Strategies . 34
4.3.2 Setup . 36
4.3.3 Results . 36

5 Experiments 39
5.1 Text Classification . 39

5.1.1 Dataset . 40
5.1.2 Fine-tuning . 41
5.1.3 Results . 42
5.1.4 Further Analysis . 43
5.1.5 Conclusions . 49

5.2 Information Retrieval . 50
5.2.1 Dataset . 50
5.2.2 Search Score . 52
5.2.3 Results . 53
5.2.4 Further Analysis . 55
5.2.5 Conclusions . 57

5.3 Word Similarity . 57
5.3.1 Task Description . 57
5.3.2 Evaluations . 58
5.3.3 Conclusions . 60

5.4 Word Analogy . 60
5.4.1 Task Description . 60
5.4.2 Evaluations . 61
5.4.3 Conclusions . 63

6 NetBERT Search Engine 64
6.1 Implementation . 64

6.1.1 Index Creation . 64
6.1.2 Real-time Search . 65

6.2 Applications . 66
6.2.1 Cisco Corpus . 66
6.2.2 RFC Corpus . 66

6.3 Limitations and Possible Improvements . 67
6.3.1 Sentence Representation . 67
6.3.2 Speed and Memory . 68

7 Conclusions 69
7.1 Future Directions . 70

Appendices 71

A Additional Details about BERT 72
A.1 Model Parameters . 72
A.2 Model Architecture . 74
A.3 BERT in Google Search . 75

B Additional Resources about the Experiments 76
B.1 Text Classification . 76

B.1.1 Classification Performance Metrics . 76
B.1.2 Optimal Hyperparameters Search . 78

ii

C About Cisco Systems 80

Bibliography 80

iii

Chapter 1

Introduction

Language played an enormous role in the development of the human race. It is co-operation
through interaction and communication that made Homo Sapiens the first, fully dominant species
in Earth’s history. Over time, we progressively realized that social intelligence equaled power.
The reason we have power over tigers is not because we have bigger muscles or sharper teeth,
it is because we are able to communicate in detail a well thought-out tactic to defeat it, using
complex human language. According to the two-time winner of the Pulitzer Prize Edward O.
Wilson (2014), it is our increasing ability to communicate, recognise, evaluate, co-operate and
compete that rapidly took us to the top of the food chain.

Today, the digital era allows us to share an impressive amount of knowledge expressed in
human language through books, articles, blog posts, podcasts and videos, available online any-
where in the world to anyone with an internet connection. Because most of this knowledge is
stored and accessed via computer systems, we have seen a growing interest in the development
of methods allowing humans to communicate, or at least be understood by machines.

In this thesis, we primarily focus on such methods, also referred as natural language processing
(NLP) techniques. Specifically, we develop a model which is able to process domain-specific
language, by learning in a self-supervised way from a huge in-domain text corpus. The goal of
this thesis is then to study if that model leads to a better understanding of the domain-specific
language, compared to a model that learned from general-domain language. More information
about this research question is presented in Section 1.3. But first, Section 1.1 introduces one of
the challenges encountered at Cisco, and which mainly motivates this work. Then, Section 1.2
describes the current state-of-the-art approach for text mining. Finally, Section 1.4 outlines the
structure of this thesis.

1.1 The Cisco Search Problem

Cisco is the worldwide leader in IT, networking, and cybersecurity solutions. They help com-
panies of all sizes transform how people connect, communicate, and collaborate. To this end,
Cisco offers a portfolio of more than 650 products in a variety of areas: networking, wireless
and mobility, security, analytics, video, internet of things (IoT), and many others.1 As shown in
Figure 1.1, 75% of the company’s turnover comes from the sales of these products (i.e., 39 billion
dollars in 2019) the remaining 25% coming from their services such as technical support, digital
training, and business optimization.

Cisco products are sold by Systems Engineers, whose job is to understand the need of a cus-
tomer, find the appropriate product, and sell that solution to the client. Their work requires an
extensive knowledge of the products that are being sold, as well as the underlying technologies.
Frequently, Systems Engineers have to face technical engineers who don’t hesitate to ask metic-

1https://www.cisco.com/c/en/us/products/a-to-z-series-index.html

1

https://www.cisco.com/c/en/us/products/a-to-z-series-index.html

ulous questions in order to judge whether the proposed product is suitable for their problem or
not.

Figure 1.1: Financial highlights for Cisco fiscal year 2019.2

Like every human being, Systems Engineers are not infallible databases. Memory is some-
times lacking. They may not be aware of the exact functioning of a product or the latest changes
after a software update. They could face questions to which the answers are not obvious, and
which require a deep dive into the documentation. That is why a large part of their job actu-
ally consists in looking for the right information in the thousands and thousands of documents
describing products, technologies and standards. For now, most employees perform their search
using Cisco’s internal search engine, which is based on a simple instance of the well-known Elas-
ticsearch. According to the public notice, the latter is not satisfactory at all. The ranking of
the results is often very bad and these results are mostly entire documents that can sometimes
be several thousand pages long. Unsurprisingly, the search process is tiresome and frustrating.
Consequently, there is a strong desire among the employees for accurate text mining tools in
order to extract specific information from the documentation.

To give an order of magnitude, the Sales and Marketing Department represents about 34%
of employees working at Cisco in 2019 (i.e., 26,200 people).3 By improving the way they retrieve
information, we improve the productivity of thousands of people, who then spend less time
searching for answers and more time helping customers.

1.2 Text Mining

By definition, text mining refers to the process of extracting interesting information and knowl-
edge from unstructured text (Hotho et al., 2005). In the past years, text mining models have
been greatly improved by the advancements of deep learning techniques used in NLP. Recently,
major progress has been driven by the adoption of pre-trained language models such as ELMO
(Peters et al., 2018), GPT (Radford et al., 2018) or BERT (Devlin et al., 2018). These models
all rely on a two-step learning approach. First, they learn contextual word representations from
a large amount of text in a self-supervised way. This stage is commonly referred as the pre-
training. Then, these pre-trained language representations can be applied to downstream NLP
tasks by choosing between two supervised learning strategies: feature-based and fine-tuning. The

2https://www.cisco.com/c/dam/en_us/about/annual-report/cisco-annual-report-2019.pdf
3https://www.statista.com/statistics/350534/cisco-employees-by-line-item/

2

https://www.cisco.com/c/dam/en_us/about/annual-report/cisco-annual-report-2019.pdf
https://www.statista.com/statistics/350534/cisco-employees-by-line-item/

feature-based approach uses another task-specific architecture that include the pre-trained repre-
sentations as additional features for learning the given task. In contrast, the fine-tuning approach
introduces minimal task-specific parameters and is trained on the downstream tasks by simply
fine-tuning all pre-trained parameters. Arguably, the main advantage of such models comes from
their large-scale self-supervised pre-training, i.e., their ability to learn word representations from
large unannotated text corpora. This is especially beneficial when learning a domain-specific
language, where annotated data is difficult and expensive to collect due to the expertise re-
quired for quality annotations. With pre-trained language models, labeled data is only needed
in small quantity for the supervised learning step on downstream tasks. Recently, these models
have shown to be effective for improving many sentence-level tasks, including natural language
inference (NLI) and semantic textual similarity (STS).

Despite these impressive advancements, directly applying state-of-the-art NLP methodologies
to domain-specific text mining might have some limitations. Indeed, recent word representation
models are pre-trained and tested mainly on general-domain datasets such as Wikipedia, which
might badly reflect the targeted word distribution and thus not be as performing when applied to
domain-specific text. This work hypothesizes that current state-of-the-art word representation
models need to be pre-trained on domain-specific corpora to be effective in related mining tasks.

1.3 Research Questions

The main research question this thesis aims to answer is the following:

Does a large language representation model pre-trained on domain-specific text
improve performance over the same model pre-trained on general-domain cor-
pora, when evaluated on domain-specific text mining tasks?

In order to find an answer to this research question, multiple minor equally interesting re-
search questions have to be considered. They can be summarized as follows:

• Which language representation model should be considered for the purpose of domain-
specific text mining given limited computational resources?

• What are some good pre-training strategies to consider in order to achieve the best possible
model with one unique run, given the huge computational time related to the pre-training
of current state-of-the-art language representation models?

• How can language representation models be efficiently evaluated on domain-specific tasks,
given little or no labelled data?

1.4 Thesis Outline

The rest of the thesis is structured as follows:

• Chapter 2, Related Work. This chapter briefly introduces the big steps in NLP research,
from the creation of the field in the 1940s until the latest state-of-the-art models nowadays.
Then, it dives into the concept of word embeddings and some common methods used to
create them. Finally, it briefly reviews existing approaches that use BERT for domain-
specific problems.

• Chapter 3, BERT. This chapter explains BERT (Devlin et al., 2018), the language
representation model which is at the core of this thesis. It describes in detail the self-
attention mechanism, the model architecture, its pre-training procedure and application to
downstream tasks.

3

• Chapter 4, NetBERT. This chapter covers the pre-training of NetBERT, our novel
language representation model pre-trained on large-scale computer networking corpora.
It starts by motivating the choice of using BERT for this work. Then, it describes the
collection and processing of the large text corpus used for pre-training the novel model.
Finally, it summarizes some robust pre-training strategies gathered from the literature, as
well as the pre-training setup and results.

• Chapter 5, Experiments. This chapter introduces several experiments on which Net-
BERT is extrinsically and intrinsically evaluated and compared to BERT. These include
computer networking text classification, information retrieval, word similarity and word
analogy.

• Chapter 6, NetBERT Search Engine. This chapter explains the implementation of
a similarity-based search engine that uses NetBERT embeddings for information retrieval.
It then describes its application to two different networking corpora. Finally, it discusses
its limitations and some possible improvements to the current system.

• Chapter 7, Conclusions. This chapter summarizes the main contributions of this work.
It then concludes the thesis with a brief discussion about the potential future directions
and applications for NetBERT.

4

Chapter 2

Related Work

This chapter provides a detailed introduction to previous related work. First, Section 2.1 intro-
duces the field of natural language processing, and describes the big innovations from the creation
of the domain to the current state-of-the-art models. Then, Section 2.2 explains the concept of
word embedding and discusses some popular word embedding models. Finally, Section 2.3 briefly
reviews BERT-based models that have been pre-trained on domain-specific corpora, similarly to
our work.

2.1 A Brief History of Natural Language Processing

Natural language processing (NLP) is a theoretically motivated range of computational tech-
niques for analyzing and representing naturally occurring texts at one or more levels of linguistic
analysis (Liddy, 2001). The purpose of these techniques is to achieve human-like language pro-
cessing for a range of tasks or applications. Although it has gained enormous interest in recent
years, research in NLP has been going on for several decades dating back to the late 1940s. This
review divides its history into two main periods: NLP before and during the deep learning era.

2.1.1 NLP before the Deep Learning Era

Weaver’s memorandum

Grammar Theories

Conceptual Ontologies

Symbolic Models

Statistical Models

1949

1960s

1970s

1980s

1990s

Figure 2.1: The big stages of NLP before the deep learning era.

It is generally agreed that Weaver’s memorandum (Shannon and Weaver, 1949) brought the idea
of the first computer-based application related to natural language: machine translation (MT). It
subsequently inspired many projects, notably the Georgetown experiment (Dostert, 1955), a joint
project between IBM and Georgetown University that successfully demonstrated the machine

5

translation of more than 60 Russian sentences into English. The researchers accomplished this
feat by using hand-coded language rules, but the system failed to scale up to general translation.
In fact, early work in MT was very simple: most systems used dictionary-lookup of appropriate
words for translation and reordered the words after translation to fit the word-order rules of the
target language. This obviously produced very poor results, as the lexical ambiguity inherent in
natural language was not taken into account. The researchers then progressively realized that
the task was a lot harder than anticipated, and they needed a more adequate theory of language.
It took until 1957 to introduce the idea of generative grammar (Chomsky, 1957), a rule based
system of syntactic structures that brought insight into how mainstream linguistics could help
machine translation.

Due to the development of the syntactic theory of language and parsing algorithms, the 1950s
were flooded with over-enthusiasm. People believed that fully automatic high quality translation
systems would be able to produce results indistinguishable from those of human translators, and
that such systems would be in operation within a few years. Given the then-available linguistic
knowledge and computer systems, this thought was completely unrealistic. In 1966, after more
than a decade of research and millions of dollars spent, machine translations were still more
expensive than manual human translations, and there were no computers that came anywhere
near being able to carry on a basic conversation. That year, the ALPAC1 released a report
(Pierce et al., 1966) that concluded that MT was not immediately achievable and recommended
the research community to stop funding it. This had the effect of substantially slowing down not
only MT research, but also most work in other applications of NLP.

Despite this significant slowdown, some interesting developments were born during the years
following the ALPAC report, both in theoretical issues and in construction of prototype systems.
Theoretical work in the late 1960s and early 1970s mainly focused on how to represent mean-
ing. Researchers developed new theories of grammar that were computationally tractable for the
first time, particularly after the introduction of transformational generative grammars (Chomsky,
1965), which were criticised for being too syntactically oriented and not lending themselves easily
to computational implementation. As a result, many new theories appeared to explain syntactic
anomalies and provide semantic representations, such as case grammar (Fillmore, 1968), seman-
tic networks (Collins et al., 1969), augmented transition networks (Woods, 1970), and conceptual
dependency theory (Schank, 1972). Alongside theoretical development, this period of time also
saw the birth of many interesting prototype systems. ELIZA (Weizenbaum, 1966) was built to
replicate the conversation between a psychologist and a patient, simply by permuting or echoing
the user input. SHRDLU (Winograd, 1971) was a simulated robot that used natural language
to query and manipulate objects inside a very simple virtual micro-world consisting of a num-
ber of color blocks and pyramids. LUNAR (Woods et al., 1972) was developed as an interface
system to a database that consisted of information about lunar rock samples using augmented
transition network. Lastly, PARRY (Colby, 1974) attempted to simulate a person with paranoid
schizophrenia based on concepts, conceptualizations, and beliefs.

The 1970s brought new ideas into NLP, such as building conceptual ontologies which struc-
tured real-world information into computer-understandable data. Examples are MARGIE (Schank
and Abelson, 1975), TaleSpin (Meehan, 1976), QUALM (Lehnert, 1977), SAM (Cullingford,
1978), PAM (Schank and Wilensky, 1978) and Politics (Carbonell, 1979).

In the 1980s, many significant problems in NLP were addressed using symbolic approaches

1The Automatic Language Processing Advisory Committee of the National Academy of Science (ALPAC)
was a committee of seven scientists led by John R. Pierce, established in 1964 by the United States government
in order to evaluate the progress in computational linguistics in general and machine translation in particular.

6

(Charniak, 1983; Dyer, 1983; Riesbeck and Martin, 1986; Grosz et al., 1987; Hirst, 1987), i.e.,
complex hard-coded rules and grammars to parse language. Practically, text was segmented
into meaningless tokens (words and punctuation). Representations were then manually created
by assigning meanings to these tokens and their mutual relationships through well-understood
knowledge representation schemes and associated algorithms. Those representations were even-
tually used to perform deep analysis of linguistic phenomena.

It wasn’t until the late 1980s and early 1990s that statistical models came as a revolution
in NLP (Bahl et al., 1989; Brill et al., 1990; Chitrao and Grishman, 1990; Brown et al., 1991),
replacing most natural language processing systems based on complex sets of hand-written rules.
This progress was the result of both the steady increase of computational power, and the shift
to machine learning algorithms. While some of the earliest-used machine learning algorithms,
such as decision trees (Tanaka, 1994; Allmuallim et al., 1994), produced systems similar in
performance to the old school handwritten rules, statistical models broke through the complexity
barrier of hand-coded rules by creating them through automatic learning, which led research to
increasingly focus on these models. At the time, these statistical models were capable of making
soft, probabilistic decisions.

2.1.2 NLP in the Deep Learning Era

Neural Language Models

Multi-task Learning

Word Embeddings

NLP Neural Nets

Seq-to-seq Learning

Attention

Pretrained Models

2003

2008

2013

2013

2014

2015

2018

Figure 2.2: The big stages of NLP in the deep learning era.

Starting in the 2000s, neural networks begin to be used for language modeling, a task which
aims at predicting the next word in a text given the previous words. In 2003, Bengio et al.
proposed the first neural language model, that consists of a one-hidden layer feed-forward neural
network. They were also one of the first to introduce what is now referred as word embedding, a
real-valued word feature vector in Rd (see Section 2.2). More precisely, their model took as input
vector representations of the n previous words, which were looked up in a table learned together
with the model. The vectors were fed into a hidden layer, whose output was then provided to
a softmax layer that predicted the next word of the sequence. Although classic feed-forward
neural networks have been progressively replaced with recurrent neural networks (Mikolov et al.,
2010) and long short-term memory networks (Graves, 2013) for language modeling, they remain
in some settings competitive with recurrent architectures, the latter being impacted by “catas-
trophic forgetting” (Daniluk et al., 2017). Furthermore, the general building blocks of Bengio
et al.’s network are still found in most neural language and word embedding models nowadays.

In 2008, Collobert and Weston applied multi-task learning, a sub-field of machine learning
in which multiple learning tasks are solved at the same time, to neural networks for NLP. They
used a single convolutional neural network architecture (CNN; LeCun et al., 1999) that, given a
sentence, was able to output many language processing predictions such as part-of-speech tags,

7

named entity tags and semantic roles. The entire network was trained jointly on all the tasks
using weight-sharing of the look-up tables, which enabled the different models to collaborate
and share general low-level information in the word embedding matrix. As models are being
increasingly evaluated on multiple tasks to gauge their generalization ability, multi-task learning
has gained in importance and is now used across a wide range of NLP tasks. Also, their paper
turned out to be a discovery that went beyond multi-task learning. It spearheaded ideas such as
pre-training word embeddings and using CNNs for text, that have only been widely adopted in
the last years.

In 2013, Mikolov et al. introduced arguably the most popular word embedding model:
Word2Vec. Although dense vector representations of words have been used as early as 2003
(Bengio et al.), the main innovation proposed in their paper was an efficient improvement of the
training procedure, by removing the hidden layer and approximating the objective. Together
with the efficient model implementation, these simple changes enabled large-scale training of
word embeddings on huge corpora of unstructured text. Later that year (2013b), they improved
the Word2Vec model by employing additional strategies to enhance training speed and accuracy.
While these embeddings are not different conceptually than the ones learned with a feed-forward
neural network, training on a very large corpus enables them to capture certain relationships
between words such as gender, verb tense, and country-capital relations, which initiated a lot
of interest in word embeddings as well as in the origin of these linear relationships (Mimno and
Thompson, 2017; Arora et al., 2018; Antoniak and Mimno, 2018; Wendlandt et al., 2018). But
what made word embeddings a mainstay in current NLP was the evidence that using pre-trained
embeddings as initialization improved performance across a wide range of downstream tasks.
Since then, a lot of work has gone into exploring different facets of word embeddings (as indi-
cated by the staggering number of citations of the original paper).2 Despite many more recent
developments, Word2Vec is still a popular choice and widely used today.

The year 2013 also marked the adoption of neural network models in NLP, in particular three
well-defined types of neural networks: recurrent neural networks (RNNs; Elman, 1990), convolu-
tional neural networks (CNNs), and recursive neural networks (Socher et al., 2013). Because of
their architecture, RNNs became popular for dealing with the dynamic input sequences ubiqui-
tous in NLP. But Vanilla RNNs were quickly replaced with the classic long-short term memory
networks (LSTMs; Hochreiter and Schmidhuber, 1997), as they proved to be more resilient to
the vanishing and exploding gradient problem. At the same time, convolutional neural networks,
that were then beginning to be widely adopted by the computer vision community, started to
get applied to natural language (Kalchbrenner et al., 2014; Kim, 2014). The advantage of using
CNNs for dealing with text sequences is that they are more parallelizable than RNNs, as the
state at every time step only depends on the local context (via the convolution operation) rather
than all past states as in the RNNs. Finally, recursive neural networks were inspired by the
principle that human language is inherently hierarchical: words are composed into higher-order
sentences, which can themselves be recursively combined according to a set of production rules.
Based on this linguistic perspective, recursive neural networks treated sentences as trees rather
than as a sequences. Some research (Tai et al., 2015) also extended RNNs and LSTMs to work
with hierarchical structures.

In 2014, Sutskever et al. proposed sequence-to-sequence learning, a general end-to-end ap-
proach for mapping one sequence to another using a neural network. In their method, an encoder
neural network processes a sentence symbol by symbol, and compresses it into a vector represen-
tation. Then, a decoder neural network predicts the output sequence symbol by symbol based

2At the time of writing this thesis, “Distributed representations of words and phrases and their composition-
ality” has 19,071 citations at its credit.

8

on the encoder state and the previously predicted symbols that are taken as input at every
step. Encoders and decoders for sequences are typically based on RNNs, but other architectures
have also emerged. Recent models include deep-LSTMs (Wu et al., 2016), convolutional en-
coders (Kalchbrenner et al., 2016; Gehring et al., 2017), the Transformer (Vaswani et al., 2017),
and a combination of an LSTM and a Transformer (Chen et al., 2018). Machine translation
turned out to be the perfect application for sequence-to-sequence learning. The progress was so
significant that Google announced in 2016 that it was officially replacing its monolithic phrase-
based machine translation models in Google Translate with a neural sequence-to-sequence model.

In 2015, Bahdanau et al. introduced the principle of attention, which is one of the core
innovations in neural machine translation (NMT) and the key idea that enabled NMT models
to outperform classic sentence-based MT systems. It basically alleviates the main bottleneck
of sequence-to-sequence learning, which is its requirement to compress the entire content of the
source sequence into a fixed-size vector. Indeed, attention allows the decoder to look back at
the source sequence hidden states, that are then combined through a weighted average and
provided as additional input to the decoder. Attention is potentially useful for any task that
requires making decisions based on certain parts of the input. For now, it has been applied to
constituency parsing (Vinyals et al., 2015), reading comprehension (Hermann et al., 2015), and
one-shot learning (Vinyals et al., 2016). More recently, a new form of attention has appeared,
called self-attention, being at the core of the Transformer architecture. In short, it is used to
look at the surrounding words in a sentence or paragraph to obtain more contextually sensitive
word representations (see Section 3.1 for detailed explanation).

The latest major innovation in the world of NLP is undoubtedly large pre-trained language
models. While first proposed in 2015 (Dai and Le), only recently were they shown to give a
large improvement over the state-of-the-art methods across a diverse range of tasks. Pre-trained
language model embeddings can be used as features in a target model (Peters et al., 2018), or a
pre-trained language model can be fine-tuned on target task data (Devlin et al., 2018; Howard
and Ruder, 2018; Radford et al., 2019; Yang et al., 2019), which have shown to enable efficient
learning with significantly less data. The main advantage of these pre-trained language models
comes from their ability to learn word representations from large unannotated text corpora,
which is particularly beneficial for low-resource languages where labelled data is scarce.

2.2 Word Embedding

By definition, a word embedding is a dense, fixed-length, real-valued vector representation of a
word. Consequently, a word embedding model W → Rn is a parameterized function that maps
words w ∈W to high-dimensional real vectors.

In the last decade, word embeddings have established themselves as a core element of many
NLP systems. Indeed, NLP methods deal with natural language, which often appears in the
form of text. This text is itself composed of smaller units like words and characters, which are
not directly understandable by computers in any human sense. As a result, word embeddings are
needed to numerically represent textual input which can be read, understood and processed by
computer programs. This need was emphasized with the recent explosion of deep learning, which
proved to solve a huge amount of problems in various fields. NLP researchers who wanted to use
promising deep models on text data had to think at a numerical way to represent words. This
resulted in an extensive research for best representing textual data such that the representations
capture both semantic and syntactic meanings of words.

In practice, there are several ways to represent a word by a vector. The simplest one is
probably one-hot encoding. Given a vocabulary of N words, this method consists in assigning
an integer index i ∈ {1, ..., N} to each word. With this word-to-integer mapping, a word is

9

then represented as a N -dimensional sparse vector mostly composed of zeros, except for a single
entry at the position corresponding to the word’s index in the vocabulary that takes the value
1. These one-hot vectors are a quick and easy way to represent words numerically, but present
two main problems. First, this approach suffers from an obvious feature size downside, as the
vector size increases with the size of the vocabulary. More features mean more parameters to
estimate, which in turn require exponentially more data for their estimation as well as additional
computational power. Second, one-hot encoding does not take similarities between word into
accounts, as shown on the left-hand side of Figure 2.3. Ideally, we would like an embedding to
linguistically capture meaningful relationships between words, as shown on the right-hand side
of Figure 2.3. For these reasons, one-hot encoding is very little used directly as a word vector
representation but rather as an input to more elaborated embedding methods.Chapter 1. Introduction

cat

dog

three

two

france

england

cat

dog

three

two

france

england

Figure 1.1 – Two different approaches for encoding words into vector spaces. One-hot encoding
on the left-hand side. Word embedding on the right-hand side.

1.2 Objectives

Modeling natural language is a diverse and complex problem which involves many underlying
mechanisms, as mentioned previously. This thesis focuses on bringing efficient and effective
methods for computers to understand the foundations of human language: the meaning of
words and their compositionality. The objectives are the following:

• Capturing the meaning of words into dense vectors. Compared with other fields of
artificial intelligence where inputs are represented as vector spaces (images in computer
vision, temporal signals in speech processing), machines are facing the challenge of
getting words as inputs when dealing with natural language. A classical approach to
address this issue is to define a |W |-dimensional vector where all entries are set to 0
except for a single entry that identifies a word wt ∈W (a fixed vocabulary of words);
this is called one-hot encoding. As illustrated in Figure 1.1, a one-hot vector is a poor
way to encode the meaning of words, since a separate dimension represents each word.
A better solution is rather to encode words into dense vectors where the dimensions
capture syntactic and semantic properties about words, such that related words are
close in this continuous vector space. Such representation in a much lower dimension
space compared to the vocabulary W is called word embedding.

• Composing words into phrases. Following the Principle of Compositionality, we then
want to define a function that combines word embeddings to get representations of
phrases (i.e. sequences of words). Similar phrases are often composed of different num-
ber of words. As illustrated in Figure 1.2, such a composition function must combine
word embeddings independently of their number to represent words and phrases into
the same semantic space.

Having semantic representations of words and phrases, the objective is then to use them for
solving NLP tasks. In this thesis, we leverage these embeddings for attacking two tasks in both
supervised and unsupervised manners:

2

Figure 2.3: Two different approaches for encoding words into vector spaces. One-hot encoding
on the left-hand side; semantically-meaningful word embedding on the right-hand side.

To address the similarity issue encountered with one-hot encoding, NLP researchers turned
to a very powerful idea introduced by the American linguist Zellig S. Harris: the distributional
hypothesis (Harris, 1954). It states that words that occur in the same contexts tend to have
similar meanings. This theory was further popularized by the English linguist John R. Firth
who famously said: “You shall know a word by the company it keeps” (Firth, 1957). Commonly
used word embedding methods all rely on this assumption in some way. However, the techniques
used to implement it differ. Basically, word embedding models fall into two main categories. On
one hand, count-based models use corpus-wide statistics such as word counts and frequencies to
build word representations. On the other hand, prediction-based models learn embeddings by
maximizing their predictive ability, i.e by trying to predict a word given its context or inversely.
Very recently, a third category has appeared: deep contextual models, which have the particular-
ity of using local context to create a word representation. This section briefly introduces some
of the more popular word embedding methods for the three categories.

2.2.1 Count-based Models

Count-based models are based on a co-occurrence matrix. This matrix is built by looping over
a massive dataset of textual documents in order to accumulate word co-occurrence counts, i.e.,
the number of times two or more words occur together in the dataset. In practice, there exists
two types of co-occurrence: word-document and window-based. A word-document matrix X ∈
NN×D (N is the number of words in the vocabulary and D is the total number of documents
in the dataset) is such that the entry Xij corresponds to the number of times word i appears
in document j. The window-based matrix X ′ ∈ NN×N , however, is such that the entry X ′ij
represents the number of times the word i appears in a specified sized window around another
word j. An example of such matrix is given in Figure 2.4. Once the co-occurrence matrix

10

has been computed, its dimensionality is typically reduced using Singular Value Decomposition
(SVD) such thatX (respectivelyX ′) is factorized into USV >, where U and V are orthonormal
matrices. Finally, the rows of U are used as the word embeddings for all words in the vocabulary.

cs224n: natural language processing with deep learning lecture notes: part i word
vectors i: introduction, svd and word2vec 4

3.2 Window based Co-occurrence Matrix

The same kind of logic applies here however, the matrix X stores
co-occurrences of words thereby becoming an affinity matrix. In this
method we count the number of times each word appears inside a
window of a particular size around the word of interest. We calculate
this count for all the words in corpus. We display an example below.
Let our corpus contain just three sentences and the window size be 1: Using Word-Word Co-occurrence

Matrix:

• Generate |V| ⇥ |V| co-occurrence
matrix, X.

• Apply SVD on X to get X = USVT .

• Select the first k columns of U to get
a k-dimensional word vectors.

• Âk
i=1 si

Â|V|
i=1 si

indicates the amount of

variance captured by the first k
dimensions.

1. I enjoy flying.

2. I like NLP.

3. I like deep learning.

The resulting counts matrix will then be:

X =

2

6666666666664

I like enjoy deep learning NLP f lying .

I 0 2 1 0 0 0 0 0
like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0
deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1
NLP 0 1 0 0 0 0 0 1

f lying 0 0 1 0 0 0 0 1
. 0 0 0 0 1 1 1 0

3

7777777777775

3.3 Applying SVD to the cooccurrence matrix

We now perform SVD on X, observe the singular values (the diago-
nal entries in the resulting S matrix), and cut them off at some index
k based on the desired percentage variance captured:

Âk
i=1 si

Â|V|
i=1 si

We then take the submatrix of U1:|V|,1:k to be our word embedding
matrix. This would thus give us a k-dimensional representation of
every word in the vocabulary.

Applying SVD to X:

2

64

|V|

|V| X

3

75 =

2

64

|V|

| |
|V| u1 u2 · · ·

| |

3

75

2

664

|V|

s1 0 · · ·
|V| 0 s2 · · ·

...
...

. . .

3

775

2

664

|V|

� v1 �
|V| � v2 �

...

3

775

X’

Figure 2.4: Example of a window-based co-occurrence matrix computed with a window size of
3 (one word on either side of the input word, in addition to the input word itself), over the
following corpus: “I enjoy flying.”, “I like NLP.” and “I like deep learning.”.

Well-known count-based models include Latent Semantic Analysis (LSA; Landauer and Du-
mais, 1997), Hyperspace Analog to Language (HAL; Lund and Burgess, 1996), Correlated Occur-
rence Analogue to Lexical Semantics (COALS; Rohde et al., 2004) and Hellinger-PCA (Lebret
and Collobert, 2013). Although these methods effectively leverage global statistical information,
they are primarily used to capture word similarities and do poorly on tasks such as word analogy,
indicating a sub-optimal vector space structure.

2.2.2 Prediction-based Models

Neural Network Language Model

The neural network language model (NNLM; Bengio et al., 2003) jointly learns a word vector
representation and a statistical language model with a feed-forward neural network that contains
a linear projection layer and a non-linear hidden layer. Given a sequence w1...wn of n words
wt ∈ V , where n is the window size and V the vocabulary, the objective is to learn a function
f (wt, . . . , wt−n+1) = p (wt|wt−1, . . . , wt−n+1). In their model, this function is a composition of
two mappings C and g such that

f (i, wt−1, . . . , wt−n+1) = g (i, C (wt−1) , . . . , C (wt−n+1)) , (2.1)

where

• the mapping C represents the distributed feature vectors associated with each word in the
vocabulary. In practice, it appears as a |V | × m matrix of free parameters, and maps a
word index to its m-dimensional feature representation C(i) : i→ Rm, i = {1, · · · , |V |}.

• the mapping g takes an input sequence of feature vectors for words in context C (wt−n+1),
. . ., C (wt−1) and maps it to a conditional probability distribution over words in V for the
next word wt. In practice, it outputs a vector whose i-th element estimates the probability
p (wt = i|wt−1, · · ·wt−n+1) thanks to a softmax layer, as shown in Figure 2.5.

Training is achieved by looking for θ that maximizes the training corpus log-likelihood:

L =
1

T

∑
t

log f (wt, wt−1, . . . , wt−n+1;θ)

=
1

T

∑
t

log p (wt|wt−1, . . . , wt−n+1) .

(2.2)

11

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Figure 2.5: Neural network language model (NNLM) architecture (Bengio et al., 2003).
f (i, wt−1, . . . , wt−n+1) = g (i, C (wt−1) , . . . , C (wt−n+1)), where g is the neural network and C(i)
is the i-th word feature vector.

The main drawback of such language models is undoubtedly the final softmax layer, as the cost
of computing the softmax is proportional to the number of words in V, which is typically on the
order of hundreds of thousands or millions. Therefore, NNLM models are very computationally
expensive.

Continuous Bag-of-Words Model

While a language model is only able to look at the past words for its predictions (as it is evaluated
on its ability to predict each next word given a sequence of previous words), a model that just
aims to generate accurate word embeddings can bypass this restriction. The continuous bag-of-
words model (CBOW; Mikolov et al., 2013b) uses both the n words before and after the target
word wt for its prediction (hence the name “continuous”, as it uses continuous representations
whose order is of no importance). Hence, the training objective is slightly different than the one
of the NNLM, presented in Equation (2.2). Instead of feeding the n previous words into the
model, it receives a window of n words around the target word wt at each time step t such that
the loss becomes

L =
1

T

∑
t

log p (wt|wt−n, . . . , wt−1, wt+1, . . . , wt+n) . (2.3)

In addition, the model architecture differs from the feed-forward NNLM in the sense that
the non-linear hidden layer has been removed, reducing the computational cost. The CBOW
architecture is shown in Figure 2.6a.

In practice, the weights between the input layer and the hidden layer can be represented by
a matrix W ∈ R|V |×d, where V is the vocabulary and d the hidden layer size. Each row of W
is the d-dimensional vector representation of the associated word from the input layer. Given a
context word, it is first represented as a one-hot encoded vector x, where only the k-th unit out
of |V | is 1 while all other units are 0. The vector x is then multiplied against W so that

h =W>x =W>
(k,·) = vwI

>, (2.4)

12

which essentially comes down to copying the k-th row of W to h. In a multi-word context
setting, the CBOW model takes the average of the input vector representations such that

h =
1

n
W> (x1 + x2 + · · ·+ xn)

=
1

n
(vw1 + vw2 + · · ·+ vwn)

> ,

(2.5)

where n is the number of words in the context. Similarly, the weights between the hidden layer
and the output layer are represented by another matrix W ′ ∈ Rd×|V |. Using these weights, a
score sj is computed for each word in the vocabulary such that

sj = v
′
wj

>
h, (2.6)

where v′wj
is the j-th column of the matrix W ′. Then, the softmax operation is used to obtain

a posterior distribution of words, expressed as

p (wj |wI) = yj =
exp (sj)∑|V |

j′=1 exp
(
sj′
) , (2.7)

where yj is the output of the j-th unit in the output layer. Once the parameters of both matrices
W and W ′ have been learned, they can either be used directly or averaged together to obtain
the final word embedding matrix. The CBOW model is at the core of the first implementation of
arguably the most popular word embedding method: Word2Vec (Mikolov et al.; 2013a, 2013b).

Skip-Gram Model

The skip-gram model (SG; Mikolov et al., 2013b) is very similar to CBOW, but instead of
predicting the current word based on the context, it predicts the surrounding context words
given a center word wt. Hence, the skip-gram objective thus sums the log probabilities of the
surrounding n words to the left and to the right of the target word wt and maximizes the average
log probability, written as

L =
1

T

>∑
t=1

∑
−c≤j≤c,j 6=0

log p (wt+j |wt) . (2.8)

In skip-gram, the transition from input layer to hidden layer works similarly to CBOW
in a one-word context, as presented in Equation (2.4). It means h is simply copying (and
transposing) a row of the “input → hidden” matrix W , associated with the unique input word
wI . The difference comes in the output layer, which instead of outputting one multinomial
distribution, outputs n multinomial distributions. The architecture of the skip-gram model is
shown in Figure 2.6b.

The skip-gram model is at the basis of the second implementation of the famous Word2Vec
method (Mikolov et al.; 2013a, 2013b), as well as the well-known FastText (Bojanowski et al.,
2017). The particularity of FastText is that, instead of learning representations for words directly,
it represents each word as an n-gram3 of characters and learns a representation for each character
n-gram, so that the overall word embedding is a sum of these n-gram representations. The main
advantage of this approach is that it can handle rare and out-of-corpus words, what Word2Vec
fails to do.

In addition to the CBOW and SG models, Mikolov et al. came up with additional strategies
to enhance speed and accuracy (2013b), which were as revolutionary as the models themselves.

3In the fields of computational linguistics, an n-gram is a contiguous sequence of n items from a given sample
of text or speech, where the items can be phonemes, syllables, letters or subwords according to the application
(e.g., the word “artificial” with n=3 might give the following n-grams: art, rti, tif, ifi, fic, ici, ial).

13

These methods mainly focus on improving the final probability distribution computation, which
was initially inefficiently performed by a softmax function as presented in Equation (2.7). Al-
ternatives include negative sampling and hierarchical softmax. In short, negative sampling is a
method that maximizes the log-likelihood of the softmax model by only summing over a smaller
subset ofm (m < |V |) words. Regarding hierarchical softmax, it uses a binary tree representation
of the output layer where the words are leaves and every node represents the relative probabilities
of its child nodes. These two methods greatly improve the performance of the initial CBOW and
SG models.

use the product of the input!hidden weight matrix and the average vector as the output.

h =
1

C
W

T (x1 + x2 + · · ·+ xC) (17)

=
1

C
(vw1 + vw2 + · · ·+ vwC

)T (18)

where C is the number of words in the context, w1, · · · , wC are the words the in the context,
and vw is the input vector of a word w. The loss function is

E = = � log p(wO|wI,1, · · · , wI,C) (19)

= �uj⇤ + log
VX

j0=1

exp(uj0) (20)

= �v
0
wO

T · h+ log
VX

j0=1

exp(v0
wj

T · h) (21)

which is the same as (7), the objective of the one-word-context model, except that h is
di↵erent, as defined in (18) instead of (1).

Input layer

Hidden layer Output layer

WV×N

WV×N

WV×N

W'N×V yjhix2k

x1k

xCk

C×V-dim

N-dim
V-dim

Figure 2: Continuous bag-of-word model

6

(a) Continuous bag-of-words model.

Input layer
Hidden layer

Output layer

WV×N!

W'N×V!

C×V-dim!

N-dim!
V-dim!

xk! hi! W'N×V!

W'N×V!

y2,j!

y1,j!

yC,j!

Figure 3: The skip-gram model.

The derivation of parameter update equations is not so di↵erent from the one-word-
context model. The loss function is changed to

E = � log p(wO,1, wO,2, · · · , wO,C |wI) (27)

= � log
CY

c=1

exp(uc,j⇤c)P
V

j0=1 exp(uj0)
(28)

= �
CX

c=1

uj⇤c + C · log
VX

j0=1

exp(uj0) (29)

where j
⇤
c is the index of the actual c-th output context word in the vocabulary.

We take the derivative of E with regard to the net input of every unit on every panel
of the output layer, uc,j and obtain

@E

@uc,j
= yc,j � tc,j := ec,j (30)

which is the prediction error on the unit, the same as in (8). For notation simplicity, we
define a V -dimensional vector EI = {EI1, · · · ,EIV } as the sum of prediction errors over all

8

(b) Skip-gram model.

Figure 2.6: Continuous bag-of-words (CBOW) and skip-gram (SG) architectures (Rong, 2014).
The CBOW architecture predicts the current word based on the context, and SG predicts sur-
rounding words given the current word.

2.2.3 Deep Contextual Models

Until then, all word embeddings techniques were missing a crucial element for fully capturing se-
mantic and syntactic meanings of words: local context. Indeed, widely used word representation
methods such as Word2Vec or FastText are all context-independent. These methods actually
learn to capture the general (i.e., the most common) context of words in their representations,
by observing that a given word often occurs within one context or another, but they are by no
means able to handle polysemy,4 as a single word with multiple meanings is always mapped to
one unique vector. Hence, such techniques usually work incredibly well with words that represent
a unique concept (e.g., an animal or a country), but miss to capture the real meaning of a word
which unavoidably depends on its local context.

To address this problem, researchers have taken an increasing interest to deep contextual
word representations. The idea is simple: a token is assigned a representation that is a function
of the entire input sentence. Early work focused on learning context-dependent representations
included Context2Vec (Melamud et al., 2016), CoVe (McCann et al., 2017), ELMO (Peters et al.,
2018) and ULMFiT (Howard and Ruder, 2018), that all rely on a bidirectional LSTM to encode

4Polysemous words are words with two or more meanings (e.g., “run” is currently the largest polysemous entry
in the Oxford English Dictionary with 645 meanings).

14

the context. More recently, the introduction of the Transformer architecture (Vaswani et al.,
2017) resulted in a series of powerful pre-trained language representation models such as BERT
(Devlin et al., 2018), XLNet (Yang et al., 2019) and ERNIE (Zhang et al., 2019a), that proved
their effectiveness in a wide variety of language tasks.

2.3 Domain-specific BERT-based Models

Related to this thesis, the idea of investigating how state-of-the-art language representation
models can be adapted to a specific domain has recently generated interest in a few areas.

For example, Huang et al. (2019) pre-trained a BERT model on clinical notes. In one of
their experiments, they compared their novel model, ClinicalBERT, to popular word embedding
models, using a clinical word similarity task. They found that ClinicalBERT exhibits higher
correlation with human evaluation than BERT on some medical concepts. In addition, they
showed that ClinicalBERT outperforms BERT on clinical language modeling tasks. However,
no comparison was performed between ClinicalBERT and BERT on domain-specific downstream
NLP tasks. Instead, they fine-tuned their novel model on clinical predictions, and compared it
with two baselines, including a bag-of-words model and an LSTM model with Word2Vec embed-
dings as inputs. Their results showed that ClinicalBERT largely outperforms these baselines for
clinical predictive tasks. In their work, the parameters of ClinicalBERT were initialized with the
released BERT parameters.

Similarly, Lee et al. (2020) introduced BioBERT, a BERT model pre-trained on a very large
biomedical corpus (about 5.5 times larger than the corpus used to pre-train BERT). By further
fine-tuning their model on three representative biomedical text mining tasks, including named
entity recognition (NER), relation extraction (RE) and question answering (QA), they showed
that BioBERT largely outperforms BERT and previous state-of-the-art models on these tasks
for a variety of biomedical datasets. Here again, BioBERT was initialized with the weights from
the original BERT.

Lastly, Beltagy et al. (2019) released SciBERT, a BERT model pre-trained on a large corpus
of scientific publications (about the same size as the corpus on which BERT was pre-trained). In
this work, they particularly investigated the effect of fine-tuning the pre-trained model on down-
stream tasks versus using task-specific architectures atop frozen pre-trained embeddings. By
evaluating both methods on text classification, sequence labeling and dependency parsing, they
found that the fine-tuning approach led to much better results than the feature-based approach.
Interestingly, they even showed that BERT with fine-tuning slightly outperforms (or performs
similarly to) another task-specific model using frozen SciBERT embeddings. In general, fine-
tuned SciBERT largely outperforms fine-tuned BERT on the three downstream tasks mentioned
earlier. Another key contribution of their work is their study on the differences between pre-
training BERT from scratch with an in-domain vocabulary or initializing the model parameters
with BERT’s weights. Eventually, they found that the optimal hyperparameters for SciBERT
pre-trained from scratch often coincided with those of SciBERT initialized with BERT’s param-
eters. They suspect that while an in-domain vocabulary might be helpful, SciBERT benefits
most from the scientific corpus pre-training.

15

Chapter 3

BERT

BERT (Devlin et al., 2018), which stands for Bidirectional Encoder Representation from Trans-
former, is a deep contextual language representation model introduced by Google AI researchers.
It is designed to pre-train deep bidirectional representations of words from unlabeled text by
jointly conditioning on both the left and right contexts in all its layers. As a result, the pre-
trained model can be fine-tuned with just one additional output layer to create very performing
models for a wide range of NLP tasks, such as text classification, as shown in Figure 3.1.

This chapter introduces BERT and its detailed implementation. In particular, Section 3.1
explains the self-attention mechanism adopted in the model. Then, Section 3.2 describes the
model itself, its architecture, input representations and parameters. Next, Section 3.3 details the
pre-training procedure of the model. Finally, Section 3.4 explains the different approaches for
applying the model to downstream tasks.

Model: BERT

BERT
Model:

Dataset:

(1) Self-supervised Learning Step (2) Supervised Learning Step

Classifier

Objectives: Predict - the masked words (MLM)
- the next sentences (NSP)

75%

25%

Spam

Not Spam

BooksCorpus Wikipedia

+
Dataset:

(pre-trained
from step #1)

Buy these pills… Spam

Win cash prizes… Spam

Dear Mr. Dupont, please find… Not Spam

Email messages Class

Figure 3.1: Learning steps of BERT. (1) Pre-training: self-supervised training on large amounts
of text (books & Wikipedia). (2) Fine-tuning: supervised training on a specific task with a
labeled dataset.

3.1 Self-attention

Self-attention is a particular form of attention (Bahdanau et al., 2014) that was first introduced
with the Transformer model (Vaswani et al., 2017). Simply put, it is an attention mechanism

16

relating different positions of a single sequence in order to compute a contextual representation
for each term of that sequence, as illustrated in Figure 3.2.

Figure 3.2: Visualization of the self-attention mechanism. This example shows the attention
brought to the word “it” from all the words in the sentence (in one of the heads of the last
attention-layer in BERT).1

Formally, self-attention can be described as mapping a query and a set of key-value pairs
to an output, where the queries, keys, values and outputs are all vectors. More precisely, given
an input sequence of size N , the self-attention mechanism performs the following steps for each
term i (i = 1, ..., N) in the sequence:

1. Compute a query vector qi and a key vector ki both of dimension dk, as well as a value
vector vi of dimension dv. These vectors are obtained by multiplying an initial embedding
xi ∈ Rdmodel of the term i with three weight matricesWQ ∈ Rdmodel ×dk ,WK ∈ Rdmodel ×dk

and W V ∈ Rdmodel ×dv learned during the training process:

qi = xiW
Q

ki = xiW
K

vi = xiW
V .

(3.1)

2. Score the term i against all the other terms in the sequence by taking the dot product of
its query vector qi with all the key vectors kj of the sequence:

sij = qikj , ∀j = 1, ..., N. (3.2)

3. Divide the scores of the term i by the square root of the key vector dimension dk:

s′ij =
sij√
dk
, ∀j = 1, ..., N. (3.3)

1Example created from https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/
master/tensor2tensor/notebooks/hello_t2t.ipynb

17

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

4. Pass the new scores of the term i through a softmax operation to normalize them:

s′′ij =
es

′
ij∑N

j=1 e
s′ij
, ∀j = 1, ..., N. (3.4)

5. Multiply each value vector vj with their corresponding normalized score:

v′ij = s′′ijvj , ∀j = 1, ..., N. (3.5)

6. Sum up the weighted value vectors as the final output of the self-attention calculation:

zi =

N∑
j=1

v′ij . (3.6)

Note that the third step of the computation aims at solving a problem suspected by Vaswani
et al. (2017), who claim that for large values of dk, the dot products grow large in magnitude,
pushing the softmax function into regions where it has extremely small gradients. The division
operation by dk counteracts this effect.

Figure 3.3 gives an example of the self-attention mechanism in vector form. The left-hand
side of the figure describes the step 1 of the self-attention computation, while the right-hand
shows the steps 2 to 6.

(a) Computation of the query, key and value
vectors qi, ki and vi, respectively.

(b) Computation of the self-attention output
vectors zi.

Figure 3.3: Illustration of the self-attention mechanism computed in vector form (Jay Alammar,
2018).

In practice, the self-attention function is computed on a set of queries simultaneously, packed
together into a matrix Q ∈ RN×dk . The keys and values are also packed together into respective
matrices K ∈ RN×dk and V ∈ RN×dv , as shown in Figure 3.4a. That way, the output matrix is
computed as follows:

Attention(Q,K,V) = softmax
(
QK>√
dk

)
V . (3.7)

Figure 3.4b illustrates the latter computation.

18

(a) Computation of the query, key and value
matrices Q, K and V , respectively.

(b) Computation of the self-attention output
matrix Z.

Figure 3.4: Illustration of the self-attention mechanism computed in matrix form (Jay Alammar,
2018).

3.1.1 Multi-head Attention

Instead of performing a single self-attention operation with dmodel-dimensional keys, values and
queries, the Transformer-based models actually go a step further by using a mechanism called
“multi-head” attention. With multi-head attention, the queries Q, keys K and values V are
linearly projected h times with different learned linear projections PQ

i ∈ Rdmodel ×dk , PK
i ∈

Rdmodel ×dk , P V
i ∈ Rdmodel ×dv (i = 1, ..., h). This allows to jointly attend to information from

different representation subspaces at different positions. Hence, the self-attention function is
performed on h different projections of the query, key and value matrices in parallel. This yields
h different output matrices Zi ∈ RN×dmodel called “attention heads”, as depicted in Figure 3.5a.
The attention heads are then concatenated and projected into another representation subspace
with a matrix WO ∈ Rdmodel ×dmodel , resulting in the final multi-head attention output matrix
Z ∈ RN×dmodel , as shown in Figure 3.5b. In brief, the final output is computed as follows:

MultiHead(Q,K,V) = Concat (Z1, . . . ,Zh)W
O

where Zi = Attention
(
QPQ

i ,KP
K
i ,V P V

i

)
, i = 1, ..., h.

(3.8)

Note that in multi-head attention, it is usual that dk = dv = dmodel/h.

(a) Computation of the attention heads Zi (i =
1, ..., h).

(b) Computation of the final multi-head atten-
tion output Z.

Figure 3.5: Illustration of the multi-head attention mechanism (Jay Alammar, 2018). This
example shows h = 8 different attention heads, as in the original Transformer implementation.
Note that BERT actually has 12 or 16 attention heads depending on its version.

19

3.2 Model

3.2.1 Architecture

BERT’s architecture is a multi-layer bidirectional Transformer encoder (Vaswani et al., 2017).
In other words, BERT is composed of a stack of L identical Transformer encoder layers. Each
encoder layer contains two types of sublayer. The first is a multi-head self-attention mecha-
nism, which helps look at other words in the sequence while encoding a specific word. The
second is a simple, position-wise fully connected feed-forward network (FFN), which is ap-
plied to each position separately and identically, and consists of two linear transformations(
W1 ∈ Rdmodel ×dff , b1 ∈ Rdff

)
,
(
W2 ∈ Rdff ×dmodel , b2 ∈ Rdmodel

)
such that

FFN(x) = max(0,xW1 + b1)W2 + b2. (3.9)

The dimensionality of input and output is dmodel and the inner-layer has dimensionality dff =
4dmodel. The feed-forward network also uses a GELU activation (Hendrycks and Gimpel, 2016),
defined as

GELU(x) = 0.5x
(
1 + tanh

(√
2/π

(
x+ 0.044715x3

)))
, (3.10)

which was shown to work better than the standard ReLU (Nair and Hinton, 2010) within a
Transformer encoder. In addition, an encoder layer employs a residual connection (He et al.,
2016) around each of the two sublayers, followed by a layer normalization (Ba et al., 2016) such
that the output of each sublayer is

LayerNorm(x+ Sublayer(x)), (3.11)

where Sublayer(x) represents the function implemented by the sublayer itself. To facilitate these
residual connections, all sublayers in the model produce outputs of the same dimension dmodel.
The architecture of a single encoder is shown in Figure 3.6, and an additional 3D visualization
of BERT’s structure is shown in Figure A.1. Note that while the linear transformations are the
same across different positions within the same sublayer, BERT uses different parameters from
layer to layer.

Figure 3.6: Architecture of the Transformer Encoder (Jay Alammar, 2018).

As shown in Figure 3.7, BERT comes in two versions:

• BERT-base: L=12, dmodel=768, h=12, dff=3072 (110M total parameters).

• BERT-large: L=24, dmodel=1024, h=16, dff=4096 (340M total parameters).

20

Here, L denotes the number of layers, dmodel the dimensionality of input and output of each
layer, h the number of attentions heads in a self-attention sublayer, and dff the number of hidden
units in a feed-forward sublayer.

Figure 3.7: High-level illustration of BERT architecture in its two versions (Jay Alammar, 2019).

3.2.2 Input Representations

Given a sequence of words as inputs (limited to 512 tokens), BERT performs a first transfor-
mation of these words in order to obtain numerical input representations to pass to the model.
In practice, these input representations are constructed by summing three different types of em-
bedding: token, segment and positional embeddings. A visualization of this construction can be
seen in Figure 3.8.

>&/6@ KH OLNHV SOD\ ��LQJ >6(3@P\ GRJ LV FXWH >6(3@,QSXW

(>&/6@ (KH (OLNHV (SOD\ (��LQJ (>6(3@(P\ (GRJ (LV (FXWH (>6(3@
7RNHQ
(PEHGGLQJV

($ (% (% (% (% (%($ ($ ($ ($ ($
6HJPHQW
(PEHGGLQJV

(� (� (� (� (� (��(� (� (� (� (�
3RVLWLRQ
(PEHGGLQJV

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-

rectional cross attention between two sentences.
For each task, we simply plug in the task-

specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-? pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C 2 RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W 2
RK⇥H , where K is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW

T)).
7For example, the BERT SQuAD model can be trained in

around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

Figure 3.8: BERT input representation (Devlin et al., 2018). For each token in an input sequence,
its input representation is the sum of its token, segment and positional embeddings.

Token Embedding

Given a word in the input sequence, BERT uses WordPiece embedding (Wu et al., 2016) to
tokenize it. Basically, WordPiece is a model that creates a fixed-size vocabulary of individual
characters, subwords and words that best fits a given language corpus. To tokenize a word under
this model, the tokenizer first checks if the whole word is in the vocabulary. If not, it tries
to break it into the largest possible subwords contained in the vocabulary, and as a last resort
will decompose the word into individual characters. Once the word has been processed into
one or multiple WordPiece tokens, the vocabulary ids of these tokens are used to retrieve the
corresponding embeddings in the learned token embedding matrix, shown in Figure 3.9.

21

The vocabulary used by BERT contains the ∼30,000 most common words and subwords
found in the English language, in addition to all English characters and three special tokens:

• [CLS], which is used as a special classification token that appears at the beginning of
every sequence. The final hidden state corresponding to this token is used as the aggregate
sequence representation for classification tasks. It is ignored in non-classification tasks.

• [SEP], which is used as a delimiter when dealing with sentence pairs packed together into
a single sequence. It also always ends the sequence.

• [MASK], which is used for the masked language modeling (MLM) training objective, dis-
cussed in Section 3.3.1.

Segment Embedding

When dealing with sentence pairs, a learned segment embedding is added to every token indi-
cating whether it belongs to sentence A or sentence B. Segment embeddings are similar to token
embeddings with a simple vocabulary of size 2, as illustrated in Figure 3.9.

Positional Embedding

In order to inject some information about the relative or absolute position of the tokens in
the input sequence, BERT uses positional embeddings, as in the original Transformer. These
embeddings have the same dimension dmodel as the token and segment embeddings so that
they can easily be summed up. They are computed using sine and cosine functions of different
frequencies:

PE(pos,2i) = sin
(pos

100002i/dmodel

)
PE(pos,2i+1) = cos

(pos

100002i/dmodel

)
,

(3.12)

where pos is the position and i is the dimension. Hence, each dimension of the positional
embedding corresponds to a sinusoid, and the wavelengths form a geometric progression from 2π
to 10000 · 2π. Vaswani et al. (2017) hypothesized that this function allows the model to easily
learn the relative positions, since for any fixed offset k, PEpos+k can be represented as a linear
function of PEpos.

dmodel

aardvark

aarhus

aaron

zyzzyva

…

…

…

…

…

…

…

…

…

…

…

…

…

1

2

3

512

A

B

Token Embeddings

Segment Embeddings

Position Embeddings

context size
(512)

vocabulary size
(30,000)

segment size
(2)

dmodel

dmodel

Figure 3.9: Parameters of the input embedding layer.

22

3.2.3 Parameters

As mentioned earlier, BERT comes in two versions. The base version has about 110M parameters
in total, while the large one has 340M parameters in total. These parameters include:

• the token, positional and segment embedding matrices of the input embedding layer, re-
spectively defined as

W TE ∈ Rdvoc×dmodel ,W PE ∈ Rdcontext×dmodel ,W SE ∈ R2×dmodel .

• the query, key and value weight matrices of each self-attention sublayer, respectively defined
as

WQ ∈ Rdmodel×dk ,WK ∈ Rdmodel×dk ,W V ∈ Rdmodel×dv .

• the h triplets of multi-head linear projections in each self-attention sublayer (where h refers
to the number of attention heads), defined as(

PQ
i ∈ Rdmodel×dk ,PK

i ∈ Rdmodel×dk ,P V
i ∈ Rdmodel×dv

)
, i = 1, ..., h.

• the multi-head output projection matrix in each self-attention sublayer, defined as

WO ∈ Rdmodel×dmodel .

• the feed-forward network parameters in each feed-forward sublayer, defined as(
W1 ∈ Rdmodel×dff , b1 ∈ Rdff

)
,
(
W2 ∈ Rdff×dmodel , b2 ∈ Rdmodel

)
.

• the residual connection parameters in each layer, defined as

WR ∈ Rdmodel .

In practice, we have

dmodel = 768 for BERT-base (dmodel = 1024 for BERT-large);
dvoc = 30, 522 for the cased vocabulary (dvoc = 28, 996 for the uncased vocabulary);
dcontext = 512;

dff = 4dmodel;

dk = dv = dmodel
h .

A visualization of all these parameters is given in Figure 3.9 and Figure 3.10. Additionally,
a detailed breakdown of BERT parameters is given in Table A.1 for the base version, and in
Table A.2 for the large one.

23

⨉ h

d m
od

el

d m
od

el

d m
od

el

d m
od

el

d m
od

el

d m
od

el
d m

od
el

dmodel

dk

dk

dk

dk dv

dv

WQ WK WV

WO

Pi
Q Pi

K Pi
V

(a) Parameters of a Self-Attention sublayer.

d m
od

el

dmodel

dff

d f
f

W1

W2

b1

b2

(b) Parameters of a FFN sublayer.

Figure 3.10: Parameters of an Encoder Layer.

3.3 Pre-training Procedure

BERT is pre-trained simultaneously on two tasks: masked language modeling (MLM) and next
sentence prediction (NSP). The training loss is simply the sum of the mean MLM likelihood and
the mean NSP likelihood.

3.3.1 Masked Language Modeling

Unlike language modeling (LM), which aims at predicting the next word given the sequence of
previous words, masked language modeling is the task of predicting a percentage of input tokens
which are randomly masked.

The MLM training objective was chosen over the traditional LM objective because of the
bidirectionality of BERT (i.e., BERT uses both left and right context in the sequence to predict
the target word). For such models, standard conditional language modeling cannot be used as
training objective, as the bidirectional conditioning would allow each word to indirectly “see
itself”, and the model could trivially predict the target word in a multi-layered context. Hence,
BERT is trained using masked language modeling, also referred as a Cloze task in the literature
(Taylor, 1953). As shown in Figure 3.11, the prediction is given by the final hidden vectors
corresponding to the masked tokens, that are fed into an output softmax over the vocabulary, as
in a standard LM.

24

Figure 3.11: Illustration of the masked language modeling (MLM) training objective (Jay Alam-
mar, 2019).

Formally, given an input sequence x = [x1, x2, ..., xN] ofN tokens, MLM first selects a random
set of k positions (integers between 1 and N) to mask out m = [m1, ...,mk]. The tokens in the
selected positions are then replaced with a [MASK] token, resulting in the masked input sequence
xmasked. BERT eventually learns to predict the original identities of the k masked-out tokens by
computing an output word distribution ŷ(h) (h = 1, ..., k) for each one of them. More precisely,
given the h-th masked word xmh

from sequence x, the MLM loss function is the cross-entropy
between the predicted probability distribution ŷ(h), and the true next word distribution y(h),
which is simply the one-hot vector for xmh

. Therefore, we have

L
(h)
MLM(θ) = CE(y(h), ŷ(h))

=
∑
w∈V
−y(h)

w log ŷ(h)
w

= − log ŷ(h)
xmh

.

(3.13)

The overall loss of the sequence is simply the average loss for all the k masked-out tokens in
xmasked,

LMLM(θ) =
1

k

k∑
h=1

L
(h)
MLM(θ)

=
1

k

k∑
h=1

− log ŷ(h)
xmh

=
1

k

∑
i∈m
− log p

(
xi|xmasked

)
.

(3.14)

The masking procedure works as follows: BERT selects 15% of all WordPiece tokens in each
training sequence at random. If the i-th token is chosen, it is replaced with:

1. the [MASK] token 80% of the time;

2. a random token 10% of the time;

3. the unchanged i-th token 10% of the time.

25

The selected words are not always replaced with the [MASK] token because it would then create
a mismatch between pre-training and fine-tuning, since the masked token would never be seen
before fine-tuning.

3.3.2 Next Sentence Prediction

Next sentence prediction (NSP) is a binary classification task in which the model receives pairs
of sentences as input and learns to predict if the second sentence in the pair is the subsequent
sentence in the original corpus. This training objective helps understand the relationship between
pairs of sentences, which is not directly captured by language modeling but still very important
for many downstream tasks such as question-answering (QA) and natural language inference
(NLI).

This prediction task can can be easily generated from any monolingual corpus. Specifically,
when choosing the sentences A and B for each pre-training example, 50% of the time B is the
actual next sentence that follows A (labeled as IsNext), and the other 50% of the time it is
a random sentence from the corpus (labeled as NotNext). In this case, the final hidden vector
corresponding to the [CLS] token is fed into an output softmax over the two possible predictions,
as shown in Figure 3.12.

Figure 3.12: Illustration of the next sentence prediction (NSP) training objective (Jay Alammar,
2019).

3.4 Downstream Tasks

There are two strategies for applying pre-trained language representations to downstream NLP
tasks: fine-tuning and feature-based. On one hand, the fine-tuning approach introduces min-
imal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning
all pre-trained parameters. On the other hand, the feature-based approach uses task-specific
architectures that include the pre-trained representations as input features for learning the task.

3.4.1 Fine-tuning Approach

The two pre-training objectives of BERT allow it to be used on any single sequence and sequence-
pair tasks without substantial task-specific architecture modifications. For each task, one only

26

needs to plug in the task-specific inputs and outputs into BERT and fine-tune all the parameters
end-to-end for a few epochs. Figure 3.13 illustrates the fine-tuning of BERT on different common
tasks.

%(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@
7RN�
� �>6(3@��� 7RN�

1
7RN�
� ��� 7RN

0

4XHVWLRQ 3DUDJUDSK

%(57

(>&/6@ (� �(�
�(1

& 7� �7� �71

6LQJOH�6HQWHQFH�

���

���

%(57

7RN�� �7RN�� �7RN�1���>&/6@

(>&/6@ (� �(�
�(1

& 7� �7� �71

6LQJOH�6HQWHQFH�

%�3(52 2

���

���(>&/6@ (� �(>6(3@

&ODVV�
/DEHO

��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

6WDUW�(QG�6SDQ

&ODVV�
/DEHO

%(57

7RN�� �7RN�� �7RN�1���>&/6@ 7RN��>&/6@>&/6@
7RN�
� �>6(3@��� 7RN�

1
7RN�
� ��� 7RN

0

6HQWHQFH��

���

6HQWHQFH��

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.

SST-2 The Stanford Sentiment Treebank is a
binary single-sentence classification task consist-
ing of sentences extracted from movie reviews
with human annotations of their sentiment (Socher
et al., 2013).

CoLA The Corpus of Linguistic Acceptability is
a binary single-sentence classification task, where
the goal is to predict whether an English sentence
is linguistically “acceptable” or not (Warstadt
et al., 2018).

STS-B The Semantic Textual Similarity Bench-
mark is a collection of sentence pairs drawn from
news headlines and other sources (Cer et al.,
2017). They were annotated with a score from 1
to 5 denoting how similar the two sentences are in
terms of semantic meaning.

MRPC Microsoft Research Paraphrase Corpus
consists of sentence pairs automatically extracted
from online news sources, with human annotations

for whether the sentences in the pair are semanti-
cally equivalent (Dolan and Brockett, 2005).

RTE Recognizing Textual Entailment is a bi-
nary entailment task similar to MNLI, but with
much less training data (Bentivogli et al., 2009).14

WNLI Winograd NLI is a small natural lan-
guage inference dataset (Levesque et al., 2011).
The GLUE webpage notes that there are issues
with the construction of this dataset, 15 and every
trained system that’s been submitted to GLUE has
performed worse than the 65.1 baseline accuracy
of predicting the majority class. We therefore ex-
clude this set to be fair to OpenAI GPT. For our
GLUE submission, we always predicted the ma-

14Note that we only report single-task fine-tuning results
in this paper. A multitask fine-tuning approach could poten-
tially push the performance even further. For example, we
did observe substantial improvements on RTE from multi-
task training with MNLI.

15https://gluebenchmark.com/faq

Figure 3.13: Illustrations of fine-tuning BERT on different tasks (Devlin et al., 2018).

At the input, sentence A and sentence B from pre-training are similar to:

1. sentence pairs in paraphrasing ;

2. hypothesis-premise pairs in entailment ;

3. question-passage pairs in question-answering ;

4. a degenerate text-∅ pair in text classification or sequence tagging.

At the output, the token representations are fed into an output layer for token-level tasks (e.g.,
sequence tagging or question-answering), and the [CLS] representation is fed into an output layer
for text classification (e.g., entailment or sentiment analysis).

3.4.2 Feature-based Approach

In addition to the fine-tuning approach, where a simple output layer is added to the pre-trained
model and all parameters are jointly fine-tuned on a downstream task, BERT can also be used
with a feature-based approach, where word representations are extracted from the pre-trained
model and serve as inputs to other task-specific architectures. This approach has certain advan-
tages over the fine-tuning one. First, not all tasks can be easily represented by a Transformer

27

encoder architecture, and therefore require a task-specific model architecture to be added. Sec-
ond, there are major computational benefits to pre-compute an expensive representation of the
training data once and then run many experiments with cheaper models on top of this represen-
tation.

There are several ways of extracting contextual word embeddings from BERT representations,
and which approach works best mainly depends on the task it is being evaluated on. For example,
Devlin et al. (2018) led a study for the task of named entity recognition (NER), where they
applied a feature-based approach by extracting the activations from one or more layers without
fine-tuning any parameters of BERT on the task, and then used these contextual embeddings
as inputs to a randomly initialized two-layer 768-dimensional BiLSTM before the classification
layer. The results showed that concatenating the last four hidden layers as the contextual word
embeddings led to the best F1 scores for that specific task, as shown in Figure 3.14.

Figure 3.14: Results on named entity recognition (NER) using BERT embeddings with a feature-
based approach (Jay Alammar, 2019).

28

Chapter 4

NetBERT

This chapter covers the pre-training of a novel language representation model for computer
networking, called NetBERT. It is divided into three sections. First, Section 4.1 motivates the
choice of using BERT over other existing NLP techniques. Then, Section 4.2 introduces the
collection and processing of the large computer networking text corpus used for pre-training our
novel model. Finally, Section 4.3 describes some strategies for efficient pre-training, as well as
the training setup and results.

4.1 Model Choice

BERT is far from being the only model giving impressive results on language tasks. Lately, the
field of NLP has been the subject of growing interest since the emergence of the Transformer
architecture (Vaswani et al., 2017), which completely revolutionized the way of doing machine
translation. While BERT was one of the first model to use a pre-trained Transformer encoder as
a building block to perform state-of-the-art on several NLP tasks outside of machine translation,
new models have since appeared almost every month, tweaking alternately some aspects of the
initial network to achieve greater and greater results in many language tasks. Such models include
GPT (Radford et al., 2018), Transformer-XL (Dai et al., 2019), XLM (Lample and Conneau,
2019), GPT-2 (Radford et al., 2019), ERNIE (Zhang et al., 2019a), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019a), ERNIE 2.0 (Sun et al., 2019) and CTRL (Keskar et al., 2019).
Nevertheless, BERT was chosen for this thesis because of three main reasons that are explained
in this section.

4.1.1 The Google Search Update

Going back to the original problem of poor search results, presented in Section 1.1, one might
wonder how the Cisco search engine could be improved. The best way to look at this question
is to understand what makes a given search engine better than another. Currently, Google
Search dominates the search engine market with an estimated market share of 92%, as shown in
Figure 4.1. In late October 2019, Google made what they called the biggest change to Google
search in the past 5 years, the so-called “BERT update”. According to the company, this update
affects both ranking and featured snippets in Search, and helps better understand one out of
10 searches in the U.S. in English1. Examples that demonstrate BERT’s ability to understand
the intent behind a query are given in Appendix A.3. The fact that the best search engine on
the market makes such a change on its gem is an incentive, according to our opinion, to take a
greater interest to that particular model for our related purpose.

1https://www.blog.google/products/search/search-language-understanding-bert/

29

https://www.blog.google/products/search/search-language-understanding-bert/

1.7%

0.6%

1.2%

1.8%

2.6%

92.1%

0 10 20 30 40 50 60 70 80 90 100

Other

Yandex

Baidu

Yahoo

bing

Google

Percentage Market Share

Figure 4.1: Search Engine Market Share in 2020.2

4.1.2 BERT as Knowledge Base

Lately, research has been made on the viability of using state-of-the-art pre-trained language
models (especially BERT) as factual knowledge bases. For example, Liu et al. (2019b) built a
knowledge base question-answering (KBQA) system by using a pre-trained BERT model, which
leverages prior linguistic knowledge to obtain deep contextual representations. Their experimen-
tal results showed state-of-the-art performance on KBQA datasets. In the same vein, Petroni
et al. (2019) found that a pre-trained BERT model contains relational knowledge competitive
with traditional NLP methods that have some oracle knowledge, demonstrating a huge potential
as an unsupervised question-answering (QA) system. Poerner et al. (2019) questioned this evi-
dence by showing that the surprising performance of BERT on QA benchmark is partly due to
reasoning about entity names rather than factual knowledge (e.g., guessing that a person with an
Italian-sounding name speaks Italian). As a remedy, they proposed a simple extension of BERT
that replaces entity mentions with symbolic entity embeddings. They showed that their exten-
sion, E-BERT, outperforms BERT on hard-to-guess queries. Going even further, Peters et al.
(2019) proposed a general method to embed multiple knowledge bases (including WordNet3 and
a subset of Wikipedia) into BERT, and thereby enhance their representations with structured
human-curated knowledge. Their knowledge enhanced model, KnowBERT, demonstrates im-
proved ability over BERT to recall facts.

These encouraging results obviously strengthened our choice of using BERT for this thesis,
as our novel BERT-based model could then potentially be used as a factual knowledge base to
solve the search problem discussed in Section 1.1.

4.1.3 Model Size

In general, as with many other deep learning models, the bigger the model, the better the
performance. Hence, the NLP research community has recently begun a frantic race for top

2https://gs.statcounter.com/search-engine-market-share
3WordNet is a lexical database of semantic relations between words in more than 200 languages. For further

information, see: https://wordnet.princeton.edu/.

30

https://gs.statcounter.com/search-engine-market-share
https://wordnet.princeton.edu/

performance by implementing larger and larger language models. For example, during the sum-
mer of 2019, researchers at NVIDIA announced Megatron-LM (Shoeybi et al., 2019), a massive
Transformer-based model with 8.3 billion parameters (i.e., 75 times larger than BERT-base) that
achieved state-of-the-art performance on a variety of language tasks. While this was undoubtedly
an impressive technical achievement, the parameters alone weigh in at just over 33 GB on disk
and pre-training the final model took 512 V100 GPUs running continuously for 9.2 days. One
month later, Google AI researchers introduced T5 (Raffel et al., 2019), a text-to-text Transformer
model with 11 billion parameters. Earlier this year, Microsoft Research announced Turing-NLG
(Rosset, 2019), a 17-billion-parameters Transformer-based generative language model. Lastly,
OpenAI researchers announced in late May GPT-3 (Brown et al., 2020), the largest language
model ever seen at the time of writing with a total of 175 billion parameters, i.e., nearly 1,600
times larger than BERT-base. Figure 4.2 shows the size of some of the most popular NLP models
in the past two years.

ELMO
0.09B

GPT
0.11B

BERT-large
0.34B

GPT-2
1.5B

CTRL
1.6B

Megatron-LM
8.4B

T5
11B

Turing-NLG
17B

GPT-3
175B

0

20

40

60

80

100

120

140

160

180

200

Dec-17 Apr-18 Jul-18 Oct-18 Feb-19 May-19 Aug-19 Dec-19 Mar-20 Jun-20 Sep-20

Pa
ra

m
et

er
s (

bi
lli

on
s)

Release date

Figure 4.2: Parameter counts of popular pre-trained language models released in the past two
years.

At some point, researchers have begun to realize that this trend towards bigger models might
raise several concerns (Lan et al., 2019; Sanh et al., 2019; Turc et al., 2019). First, it hinders
democratization. Indeed, if we believe in a world where thousands of engineers are going to
use deep learning to make every application and device better, we won’t get there with massive
models that take large amounts of time and money to train. Second, it restricts scale. As a
matter of fact, there are about 100 million servers that are currently being used all around the
world,4 but there are already 3.5 billion mobile phones5 and 22 billion IoT devices.6 In the long
term, it will be these small, low power devices that will use the most deep learning, and massive
models will simply not fit into them.

For this thesis, the computational power at our disposal was limited to one machine of

4https://www.racksolutions.com/news/data-center-trends/400-million-new-servers-might-be-
needed-by-2020/

5https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
6https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-

technology/

31

https://www.racksolutions.com/news/data-center-trends/400-million-new-servers-might-be-needed-by-2020/
https://www.racksolutions.com/news/data-center-trends/400-million-new-servers-might-be-needed-by-2020/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

8 × 32GB NVIDIA Tesla V100 GPUs. While this may seem a lot in general, it is not for pre-
training a large Transformer-based language model. Basically, it allows to efficiently pre-train
“small” (∼ 100M parameters) Transformer-based networks on a corpus of about 15GB with good
parallelization algorithms within 11 days.7 While pre-training “medium” (∼ 350M parameters)
models is technically possible, it would lead to a much longer training time (about 21 days
with the same configuration) due to the reduced batch size that can fit in memory. Finally,
pre-training “large” (> 500M parameters) models is simply not feasible with the computational
power and time available. By excluding all “medium” and “large” pre-trained models, as well
as those that were exclusively pre-trained on a specific task such as machine translation, the
remaining candidates included BERT-base (110M), XLNet-base (110M) and ERNIE 2.0 (114M).

Eventually, the extensive documentation on BERT, its open-source code and the proofs (Liu
et al., 2019a) that an optimized version of its pre-training procedure made it competitive with
more recent state-of-the-art methods (such as XLNet) motivated the choice of using BERT-base
for this thesis, as for other related works (see Section 2.3).

4.2 Pre-training Data

4.2.1 Data Collection

The domain-specific corpus was collected by scraping all the text content from wwwin.cisco.com,
the Cisco confidential employee website. It resulted in about 30GB of uncleaned text, collected
from 442,028 web pages in total, and gathered into thirteen large JSON files where each item
corresponds to one text document (i.e., the text extracted from one web page) and appears in the
form {’uri’:"...", ’text’:"..."}. Note that the corpus had already been collected previous
to this work. However, no cleaning or pre-processing had been performed on it before.

4.2.2 Data Preparation

The data preparation of the original uncleaned 30GB text corpus consists in two main cleaning
stages. The first one is a high-level cleaning step focused on the collected documents, while the
second one is a low-level cleaning step focused on individual sentences.

High-level Cleaning

This first cleaning step is in charge of making a first selection among the original 442,028 web
pages, also referred as documents. It is inspired from the text cleaning process used for Megatron-
LM (Shoeybi et al., 2019). It performs the following operations:

• Correct malformed documents, using the ftfy Python library.8 This library allows to
fix bad Unicode in text (e.g., the word "schön" might appear as "schÃ¶n" due to an
incompatibility between the encoding-decoding standards).

• Remove non-English documents, using the langdetect Python library9 (adapted from
Google’s language-detection library in Java). This operation allows the model not to
be confused with a minority of documents written in a foreign language, while the vast
majority appears in English, as shown in Table 4.1.

• Remove short documents of less than 128 tokens, as it appeared that such documents are
mainly contact information, copyrights, references or a variety of subsequent text symbols
and HTML tags. As these do not bring valuable information for pre-training the model,
they are removed.

7https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
8https://ftfy.readthedocs.io/en/latest/
9https://pypi.org/project/langdetect/

32

https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
https://ftfy.readthedocs.io/en/latest/
https://pypi.org/project/langdetect/

Table 4.1 summarizes the number of documents impacted by each cleaning operation de-
scribed previously. Using multi-processing with an Intel Xeon Processor E5-2698 v4 (50M Cache,
2.20 GHz, 20 cores), it took about 0.08s to process one document (i.e., 9.5 hours for processing
all documents).

Original documents 442,028
Small documents 14,853
Non-English documents 593
Fixed documents 367,568
Saved documents 426,582

Table 4.1: Statistics about the high-level cleaning step on the original documents.

Low-level Cleaning

The second cleaning stage takes care of removing or correcting individual sentences. To do so,
each document is first split into sentences. This operation is performed using the nltk library.10

Then, the following operations are performed on each individual sentence:

• Remove sequences of more than three consecutive special symbols from the following list:
{, ?; . :!/ = +% ∗ −_()[]”′̂ <> •◦&#@$£e c©}. Such sequences (e.g., “=====”) often
appear in figures, tables or tables of contents.

• Remove numbers or special characters appearing at the beginning of the sentence (e.g., “•”
or “1.1”). These appear at the beginning of sections and subsections, as well as in ordered
and unordered lists.

• Remove sentences of less than 2 words and more than 200 words. Very short sentences were
mainly letters or numbers from ordered and unordered lists surrounded by brackets (e.g.,
“((a))” or “[2.3]”). Very long sentences were often complex text structure such as pieces
of code (e.g., “<?xml version="1.0" encoding="UTF-8"?><note>...</note>”), tables or
figures which were not correctly handled by the sentence tokenization.

These elements are removed from the sentences as they don’t bring any valuable information for
learning the domain-specific language (on the contrary, they tend to add noise in the corpus).

4.2.3 Processed Dataset

The pre-processing of the original corpus results in a cleaned dataset of about 170.7M sentences,
for a total size of 22.7GB. This dataset is further split into train/validation/test sets with a ratio
90%-5%-5% respectively. Statistics about the processed dataset is given in Table 4.2.

Number of Number of Vocabulary size Data
Data set sentences words (unique words) size
Train 153.5M 3.3B 4.7M 20.4GB
Validation 8.8M 0.2B 1.6M 1.2GB
Test 8.4M 0.2B 1.5M 1.1GB

Table 4.2: Statistics about the processed cisco.com text corpus.

10https://www.nltk.org/

33

https://www.nltk.org/

Lastly, Table 4.3 lists the different corpora that were used directly or indirectly for achieving
NetBERT (as discussed in Section 4.3.1, NetBERT starts its pre-training from BERT weights,
and therefore benefits from BERT’s pre-training on general-domain corpora).

Corpus Number of words Data size Domain
English Wikipedia 2.5B 12.4GB General
BooksCorpus11 0.8B 3.6GB General
cisco.com 3.7B 22.7GB Computer networking

Table 4.3: List of text corpora used for achieving NetBERT. The English Wikipedia & BooksCor-
pus datasets were used to pre-train the original BERT, from which NetBERT extends the pre-
training with the cisco.com corpus.

4.3 Pre-training

4.3.1 Strategies

Given the large expected pre-training time of the model (estimated to about one month given the
size of the data and the computational power at our disposal), it was clear from the beginning that
efficient pre-training strategies were necessary to achieve the best model possible in one unique
pre-training run. These strategies were chosen according to an extensive review of previous
related work.

Next Sentence Prediction

In the original BERT pre-training procedure, the model observes two concatenated sentences,
which are either subsequently sampled from the same document (with p = 0.5) or randomly
sampled from the whole corpus. In addition to the masked language modeling (MLM) objective
(see Section 3.3.1), the model is trained to predict whether the observed sentences entail each
other via an auxiliary next sentence prediction (NSP) loss (see Section 3.3.2). The NSP loss
was hypothesized to be an important factor in pre-training the original BERT model, as De-
vlin et al. (2018) observed that removing NSP hurts performance in multiple downstream tasks.
However, some recent work has questioned the necessity of this training objective (Lample and
Conneau, 2019; Yang et al., 2019; Joshi et al., 2020). By comparing different BERT-based models
pre-trained with and without the NSP loss, Liu et al. (2019a) eventually proved that removing
it matches (or slightly improves) performance on downstream NLP tasks, while reducing com-
putational cost. Given these conclusions, NetBERT was trained on masked language modeling
only.

Static vs. Dynamic Masking

In the original BERT implementation, random masking (see Section 3.3.1) is performed once
on the whole corpus during data pre-processing, resulting in a single static masked dataset.
To avoid using the same mask for each training instance in every epoch, pre-training data was
duplicated 10 times so that each sequence is masked in 10 different ways (resulting in a pre-
training dataset of about 150GB from to the original corpus of 15GB). In contrast, RoBERTa
(Liu et al., 2019a), a BERT-based model pre-trained with a robust approach, experimented a
dynamic masking strategy, where the masking pattern was generated every time a sequence was
fed into the model. They showed that dynamic masking was comparable or slightly better than

11BooksCorpus is a dataset consisting of 11,038 unpublished books from 16 different genres.

34

static masking when compared on downstream tasks performance, while significantly reducing
the amount of training data through the removal of the data duplication process. Given these
results, NetBERT was trained using dynamic masking.

Scratch vs. Checkpoint Pre-training

Intuitively, it seems more advantageous to start the domain-specific pre-training of our novel
model from BERT pre-trained weights rather than starting the pre-training from scratch. Indeed,
with the former option, the already learned word/token embeddings are only fine-tuned to adapt
to the domain, while these embeddings need to be learned from the very beginning with the latter
approach. Hence, we utilize knowledge from the general-domain model to improve learning in the
target domain-specific model, benefiting from transfer learning. Regarding related work, both
ClinicalBERT (Huang et al., 2019) and BioBERT (Lee et al., 2020) were initialized with BERT
pre-trained parameters, whereas SciBERT (Beltagy et al., 2019) experimented a pre-training
from scratch and another one from BERT weights, and eventually noticed very few changes in
performance when evaluated on downstream tasks. For these reasons, NetBERT was initialized
with the pre-trained BERT-base parameters.

Custom vs. General Vocabulary

The original BERT model uses WordPiece tokenization (see Section 3.2.2) whose fixed-size vo-
cabulary was created on general-domain corpora (namely, English Wikipedia). At first glance, it
might seem useful to learn a new WordPiece vocabulary built specifically on the domain-specific
corpus. Indeed, this corpus contains a number of in-domain proper nouns (e.g., IEEE, LAN,
SSL) and terms (e.g., Ethernet, WiFi) that are frequently used in the field and therefore would
probably appear as they are in a new domain-specific vocabulary. As a result, while most in-
domain words are split into subwords with a general-domain vocabulary, they would instead
be used directly with a domain-specific vocabulary, which might possibly lead to a better un-
derstanding of these terms when learning the word representations. However, doing so did not
prove to be so useful in practice. Indeed, Beltagy et al. (2019) initially assessed the importance
of a domain-specific WordPiece vocabulary for pre-training a BERT-based model on scientific
corpus. To prove it, they trained two versions of their model: one with a domain-specific vocab-
ulary created from a scientific text corpus, and another one with the general-domain vocabulary
released with BERT. They eventually found that the optimal hyperparameters of both versions
often coincided. They therefore concluded that, while an in-domain vocabulary might possibly
be helpful, the benefits of their domain-specific model mostly came from the scientific corpus
pre-training. Moreover, as Lee et al. (2020) pointed out to justify their choice of using the
general-domain BERT vocabulary for pre-training their BioBERT model, doing so allows to re-
use the already largely pre-trained BERT checkpoint. In contrast, new vocabulary necessarily
means pre-training from scratch, as the token embedding weight matrix (see Section 3.2.2) then
refers to different tokens. Therefore, using a custom vocabulary makes it impossible to bene-
fit from the transfer learning properties of a pre-trained BERT checkpoint. For these reasons,
NetBERT was pre-trained using the general-domain WordPiece vocabulary released with BERT.

Cased vs. Uncased Vocabulary

With BioBERT, Lee et al. (2020) found out that using a cased vocabulary resulted in slightly
better performance on downstream tasks compared to a lower-cased vocabulary. Taking their
results into consideration, NetBERT uses the cased version of the general-domain WordPiece
vocabulary released with BERT.

35

4.3.2 Setup

Implementation

NetBERT was implemented using HuggingFace’s Transformers library (Wolf et al., 2019). This
library features carefully crafted implementations as well as high-performance pre-trained weights
of state-of-the-art NLP models (e.g., BERT, GPT-2, RoBERTa, XLM, XLNet, CTRL, etc) for
two main deep learning frameworks: PyTorch and TensorFlow. It also supports all the necessary
tools to analyze, evaluate and use these models in downstream tasks.

Hyperparameters Optimization

The hyperparameters primarily followed those from the original BERT implementation. More
specifically, the model was optimized with Adam (Kingma and Ba, 2014) using the following
parameters: β1 = 0.9, β2 = 0.999, ε =1e-8 and L2 weight decay of 0.01. The learning rate was
warmed up over the first 10,000 steps to a peak value of 5e-5, and then linearly decayed.12 It
trained with a dropout of 0.1 on all layers and attention weights, and a GELU activation function
(Hendrycks and Gimpel, 2016). The mini-batch size was set to B = 112 sequences of maximum
length T = 512 tokens.

Hardware and Schedule

The model pre-training was performed on one machine with 8 × 32GB NVIDIA Tesla V100
GPUs. Using the hyperparameters described previously, each training step took about 1.18
seconds. The model trained continuously for 20 epochs (i.e., 1.9M training steps) which took a
total of 29 days.

4.3.3 Results

The MLM training loss of NetBERT is shown in Figure 4.3. One can notice that the loss was
constantly decreasing during pre-training, and this trend seemed to continue even in the last
iterations. Arguably, pre-training the model longer would probably have led to a loss that would
have continued to decrease. For comparison, BERT was pre-trained for 40 epochs (i.e., on twice
as many epochs as NetBERT). However, the time available didn’t allow for a longer pre-training.
Moreover, this training was sufficient to motivate improvements over the base model, as discussed
in the rest of this thesis.

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

200k 400k 600k 800k 1M 1.2M 1.4M 1.6M 1.8M 2M 2.2

M
LM

 lo
ss

Training step

Figure 4.3: Masked language modeling (MLM) training loss of NetBERT. In the figure, 200k
iterations equals 3 days of continuous training on 8 × 32GB NVIDIA Tesla V100 GPUs.

12Although the original learning rate used for pre-training BERT was 1e-4, Devlin et al. (2018) recommended
to use a smaller one (e.g., 2e-5) when performing additional pre-training steps from an existing BERT checkpoint.

36

Once pre-trained, NetBERT was evaluated and compared to BERT. The standard evaluation
metric for language models (LM) – i.e., models that predict the next word of a sequence given the
previous words from that sequence – is perplexity. Formally, the perplexity (ppl) of a language
model on a corpus W (composed of T words from vocabulary V) corresponds to the inverse
probability of the corpus normalized by the number of words in the corpus,

ppl(W) = pLM

(
x(1)x(2) . . . x(T)

)− 1
T

=

T∏
t=1

pLM

(
x(t+1)|x(t) . . . x(1)

)− 1
T
,

(4.1)

where the equality is obtained using the chain rule. Furthermore, we can show that the perplexity
of a model on corpus W is equal to the exponential of the LM loss,

ppl(W) = exp (LLM (θ)) . (4.2)

As a reminder, the LM loss function on step t is the cross-entropy between predicted probability
distribution ŷ(t) and the true next word distribution y(t), which is simply a one-hot vector for
token x(t+1). Hence, we get

L
(t)
LM (θ) = CE(y(t), ŷ(t))

= −
∑
w∈V

y(t)
w log ŷ(t)

w

= − log ŷ(t)
xt+1

.

(4.3)

The overall loss is then the average of the latter expression over the entire corpus,

LLM (θ) =
1

T

T∑
t=1

L
(t)
LM (θ)

=
1

T

T∑
t=1

− log ŷ(t)
xt+1

.

(4.4)

Finally, the expression of the perplexity in Equation (4.1) can be rewritten as

ppl(W) =
T∏
t=1

(
ŷ(t)
xt+1

)− 1
T

= exp

(
log

(
T∏
t=1

(
ŷ(t)
xt+1

)− 1
T

))

= exp

(
1

T

T∑
t=1

− log ŷ(t)
xt+1

)
= exp (LLM (θ)) .

(4.5)

Similarly, the perplexity of a masked language model (MLM) – i.e., a model that predicts a
percentage of input tokens which were randomly masked – over a masked corpus M (where k
tokens were randomly masked at positions mh, h = 1, ..., k) is defined as the exponential of the
MLM loss (see Section 3.3.1),

ppl(M) = exp (LMLM (θ))

= exp

(
1

k

k∑
h=1

− log ŷ(h)
xmh

)
.

(4.6)

37

In order to perform a first comparison between BERT and NetBERT, perplexity scores were
computed for both models on the train, validation and test sets. Results are shown in Table 4.4.
It appears that NetBERT largely outperforms BERT on the task of masked language modeling
when evaluated on domain-specific (i.e., computer networking) text corpus.

NetBERT
Data set BERT 3 epochs 12 epochs 20 epochs
Train 34.618 1.423 1.298 1.253
Validation 34.674 1.420 1.302 1.258
Test 34.456 1.416 1.302 1.259

Table 4.4: Perplexity scores of NetBERT and BERT on train/validation/test sets. Bold indicates
the best results.

38

Chapter 5

Experiments

Pre-trained language models return contextual word representations. As part of this thesis, we
want to study if the representations of our novel model (NetBERT) pre-trained on domain-specific
corpora better capture both syntactic and semantic meanings of that domain, compared to those
of a general-domain model (BERT). There exist various evaluation methods for testing the quality
of word embedding models (Bakarov, 2018). However, all these methods basically fall into two
main categories: extrinsic and intrinsic evaluations. On one hand, extrinsic evaluators use word
embeddings as the features vectors for downstream NLP tasks. In that case, performance is
being measured on a dataset for the given NLP task and is often perceived as a measure of
word embedding quality. In practice, researchers assume that word embeddings showing a good
result on one task will show a good result on others (i.e., the results of word embeddings on
different tasks correlate). On the other hand, intrinsic evaluators are experiments in which word
embeddings are compared to human judgments on words relations. These evaluators allow to
measure the ability of an embedding model to capture meaningful semantic properties within
their representations.

This chapter presents several extrinsic and intrinsic evaluations in order to compare BERT
to NetBERT on domain-specific language tasks. In Section 5.1, both models are fine-tuned
on the task of domain-specific text classification and then deeply compared on their respective
performance. Then, Section 5.2 focuses on domain-specific information retrieval, where both
models are evaluated in their ability to retrieve text chunks corresponding to a given query.
Next, Section 5.3 describes a word similarity evaluation to identify the capacity of both models to
capture the different meanings of a same domain-related word. Finally, Section 5.4 details a word
analogy evaluation that investigates the ability of both models to capture relevant relationships
between networking concepts.

5.1 Text Classification

This task aims at comparing the quality of both BERT and NetBERT embeddings by fine-tuning
both models on a domain-specific sentence classification task. Intuitively, if one model is able
to predict the class of a sentence better than the other, it means that the word representations
that have been learned by the former model capture a more accurate meaning of that sentence
than those learned by the other model.

In the following, Section 5.1.1 describes the dataset used to conduct this experiment. Then,
Section 5.1.2 explains the approach used for fine-tuning both models on the task of domain-
specific sentence classification. Next, Section 5.1.3 discusses and compare the overall performance
of both models. Furthermore, Section 5.1.4 conducts an extensive analysis on the performance
of both models, and investigates the potential improvements of NetBERT over BERT. Finally,
Section 5.1.5 concludes this experiment by discussing the key elements to be drawn from it.

39

5.1.1 Dataset

The dataset used in this experiment was collected by the Cisco One Search team in San Jose,
California. They gathered a set of actual search queries from Cisco employees, and labeled them
with the type of document in which the information being sought was found. In total, the
dataset contains about 48,000 queries labeled with seven different document types, described in
Table 5.1.

To put it into context, the Cisco One Search team is currently working on the improvement of
the Cisco search engine. Recently, they experimented with integrating BERT into their system as
a “query→ document type” classifier, allowing to retrieve a first good set of document candidates
that best match a given query. The results were very encouraging. Hence, we decided to learn
a similar classifier with NetBERT and compare the performance of both models.

Document type Description
Configuration These documents characterize the information that defines the performance,

functional and physical attributes of a product.
Install & Upgrade Guides These documents explain pre-installation, installation, post-installation and

upgrading procedures of a product or service.
Data Sheets These documents summarize the performance and other characteristics of an

item or product, and is usually used for commercial or technical communication.
Release Notes These documents detail the corrections, changes or enhancements made to the

service or product the company provides.
End User Guides These documents are designed to assist end users to use the product or service.
Maintain & Operate These documents describe all measures required to ensure and maintain the

functional capability of a system or product.
Command References These documents provide pertinent details for consultation about a subject.

Table 5.1: Description of the different document types in the query classification task.

Figure 5.1 shows the number of queries per document type. Here, we hypothesize that classes
Maintain & Operate and Command References do not have enough samples to effectively train a
classifier on them. Hence, only the top five classes in terms of number of queries are considered
in this experiment (i.e., Configuration, Install & Upgrade Guides, Data Sheets, Release Notes and
End User Guides). Also, one can notice that the classes are highly imbalanced, which will be
taken into account when evaluating performance (by considering adequate classification metrics).

Configuration

Insta
ll &

 Upgrade Guides

Data Sheets

Release Notes

End User G
uides

Maintain & Operate

Command References

Document Type

0

5000

10000

15000

20000

25000

30000

Nu
m

be
r o

f q
ue

rie
s

30153

7097
5139

3792
1893

382 60

Figure 5.1: Number of samples in each class of the query classification dataset.

40

Finally, the resulting dataset was randomly split into train (80%), validation (10%) and test
(10%) sets. The distribution among classes of each set is given in Table 5.2.

Train Val Test
#Configuration 24,121 3,010 3,022
#Install & Upgrade Guides 5,655 705 737
#Data Sheets 4,124 502 513
#Release Notes 3,036 411 345
#End User Guides 1,522 180 191

Table 5.2: Samples distribution among classes in the train, validation and test sets.

5.1.2 Fine-tuning

Fine-tuning a BERT-based model is pretty straightforward and relatively inexpensive compared
to the pre-training step. Basically, one simply needs to plug in the task-specific inputs and
outputs into a pre-trained BERT model, and fine-tune all the parameters end-to-end for a few
epochs. For the given task of sentence classification, the inputs stay unchanged. At the out-
put, the [CLS] representation is fed into an output layer for classification, which is a simple
feed-forward neural network followed by a softmax operation. The final output represents the
predicted probability distribution of the document types, as illustrated in Figure 5.2.

NetBERT

[CLS] how to add static route
1 2 3 4 5 6 512

1

…

Classifier
(FFN + Softmax)

…2 3 4 5 6 512

2%

6%

88%

1%
3%

Installation & Upgrade Guides

Data Sheets

Configuration

Release Notes

End User Guides

Figure 5.2: Illustration of fine-tuning NetBERT on text classification.

For fine-tuning, most model hyperparameters are the same as in pre-training, with the excep-
tion of the batch size, learning rate, and number of training epochs. The optimal hyperparameter
values are task-specific. However, Devlin et al. (2018) found the following range of possible values
to work well across most tasks: batch size = {16, 32}, learning rate = {5e-5, 3e-5, 2e-5} (Adam),
number of epochs = {2, 3, 4}. In order to find the optimal hyperparameters for our task, an
exhaustive search over these parameters (the number of epochs was extended to 6) was run for
both BERT and NetBERT, and the models that perform best on the validation set were chosen.

The following metrics were considered for evaluation: precision, recall and F1-score. These
metrics (whose computations are reminded in Appendix B.1.1) are commonly used for binary

41

classification problems. In order to compute a global score for each of these metrics in our
multi-class classification task, two approaches were implemented: macro-averaging and weighted-
averaging. Macro-averaging is simply an arithmetic mean of the per-class metrics,

xM =
1

N

N∑
i=1

xi, (5.1)

where N is the number of classes in the classification problem. With that approach, each class
is given an equal weight. In contrast, weighted-averaging takes class imbalance into account by
weighting the different metrics xi of each class by the number of samples wi from that class,

xW =

∑N
i=1wixi∑N
i=1wi

. (5.2)

The results of the search for optimal hyperparameters are given in Appendix B.1.2. When
looking at macro-average scores, the best models were obtained by fine-tuning for 6 epochs with
a batch size of 32 and a learning rate of 5e-5. Considering weighted-average scores, fine-tuning
for 6 epochs with a batch size of 16 and a learning rate of 3e-5 led to the best models. Globally,
both configurations achieved very similar performance. Eventually, it was decided to consider the
optimal parameters regarding weighted-averaging, in order to take class imbalance into account.

5.1.3 Results

Both BERT and NetBERT were fine-tuned a last time on the train and validation sets with the
optimal hyperparameters found previously (i.e., batch size = 16, learning rate = 3e-5, number
of epochs = 6), and evaluated on the test set (that remained unused and hidden until the final
evaluation). In addition to the precision, recall and F1 scores computed either by a weighted
or a macro average of the per-class metrics, the accuracy as well as the Matthews correlation
coefficient (MCC) were also reported. Note that MCC is generally regarded as a balanced
measure in classification problems, which can be used even if the classes are of very different
sizes. It is said to be more informative than the F1-score for such problems (Chicco and Jurman,
2020), because it takes into account the balance ratios of the four confusion matrix categories
(TP, TN, FP and FN). The detailed computation of the MCC is given in Appendix B.1.1.

In order to report some notion of variability on the computed metrics, both models were
evaluated on 100 bootstrapped samples drawn from the test set (of the same size as the latter).1

The mean values as well as the standard deviations are summarized (in percent) in Table 5.3.

Model
Average Metrics BERT NetBERT

MCC (SD) 88.3 (0.6) 89.6 (0.6)
Accuracy (SD) 93.4 (0.3) 94.1 (0.3)

Weighted Precision (SD) 93.4 (0.3) 94.2 (0.3)
Recall (SD) 93.4 (0.3) 94.1 (0.3)
F1 (SD) 93.4 (0.3) 94.1 (0.3)

Macro Precision (SD) 91.7 (0.5) 92.1 (0.5)
Recall (SD) 90.2 (0.7) 91.6 (0.6)
F1 (SD) 90.9 (0.5) 91.8 (0.5)

Table 5.3: Comparison between BERT and NetBERT results (in percent) on the test set. Values
are the mean results of 100 bootstrapped samples drawn from the test set; standard deviations
(SD) are in parentheses. The best scores appear in bold.

1Bootstrapping is a resampling method that uses random sampling with replacement (Efron, 1992).

42

Clearly, NetBERT outperforms BERT for this task of domain-specific sentence classification.
However, the improvement in performance is not that significant (+1.3% in MCC and +0.9%
in macro-average F1). At first glance, it seems that although not having been pre-trained on
computer networking corpora, BERT still does a very good job at classifying these domain-
specific queries. In practice, this small improvement might not justify on its own the additional
expensive pre-training of NetBERT.

5.1.4 Further Analysis

Previous results showed that NetBERT outperforms BERT when considering several classifica-
tion metrics, each averaged over all classes. In this section, the predictions of both models are
thoroughly analyzed by looking at each class individually. Three questions in particular are
investigated:

1. How does NetBERT improve/decline over BERT in its classification ability when looking
at classes individually?

2. Does NetBERT perform at least as well as BERT? In other words, does NetBERT classify
correctly the queries that were properly classified by BERT?

3. How does NetBERT improve the predictions of BERT? In other words, in which proportion
does NetBERT correctly classify the queries that were misclassified by BERT?

Question 1: How does NetBERT improve/decline over BERT in its classification
ability when looking at classes individually?

The main idea of this investigation is to study if NetBERT performs better than BERT on some
classes than others and if so, to try to figure out the reasons. A preliminary analysis of the
confusion matrices of both models on the test set, presented in Figure 5.3, reveals that the per-
class accuracy is relatively high regardless of the model, ranging between 88% and 92% (except
for the Configuration class for which models reach an accuracy around 96%). This means that,
for both models, no class seems to be specifically more difficult to predict than another.

Ins
tal

l &
 Upg

rad
e G

uid
es

Con
fig

ura
tio

n

Data
 Sh

ee
ts

Rele
ase

 Note
s

En
d U

ser
 Guid

es

Predicted labels

Install & Upgrade Guides

Configuration

Data Sheets

Release Notes

End User Guides

Tr
ue

 la
be

ls

0.88 0.083 0.027 0.011 0.0014

0.02 0.96 0.011 0.0046 0.0017

0.041 0.068 0.88 0.0078 0.0019

0.017 0.049 0.02 0.91 0.0029

0.047 0.058 0.01 0.01 0.87

0.2

0.4

0.6

0.8

(a) BERT confusion matrix.

Ins
tal

l &
 Upg

rad
e G

uid
es

Con
fig

ura
tio

n

Data
 Sh

ee
ts

Rele
ase

 Note
s

En
d U

ser
 Guid

es

Predicted labels

Install & Upgrade Guides

Configuration

Data Sheets

Release Notes

End User Guides

Tr
ue

 la
be

ls

0.89 0.06 0.034 0.011 0.0027

0.019 0.97 0.0099 0.0046 0.00066

0.057 0.039 0.9 0.0058 0

0.023 0.058 0.0058 0.9 0.012

0.016 0.042 0.01 0.016 0.92

0.0

0.2

0.4

0.6

0.8

(b) NetBERT confusion matrix.

Figure 5.3: Normalized confusion matrices of BERT and NetBERT on the test set.

A closer look at the matrices allows to observe that NetBERT improves the per-class accu-
racy by a relatively constant percentage (between +0.2% and +1.8%) for three classes (namely,
Install & Upgrade Guides, Configuration and Data Sheets), while the End User Guides class is
significantly improved by 4.2%. On the other hand, it turns out that BERT achieves a higher
accuracy than NetBERT on the Release Notes class. This is shown more clearly in Figure 5.4.

43

Install & Upgrade Guides Configuration Data Sheets Release Notes End User Guides Overall

Document type

0

20

40

60

80

100
Ac

cu
ra

cy
+1.5%

+0.2%

+1.8% -0.9% +4.2%
+0.7%

BERT
NetBERT

Figure 5.4: Per-class accuracy (in percent) of BERT and NetBERT on the test set.

In order to get an insight of why NetBERT classifies the queries from the End User Guides
class much better than BERT, some of these queries were sampled and analyzed. In particular,
Table 5.4 shows a sample of queries that had been properly classified by NetBERT but misclassi-
fied by BERT. At first glance, one can notice that these queries are strongly related to computer
networking with a very specific vocabulary, which might possibly explain the better performance
of NetBERT on these given queries. However, it is important to note that a lot of domain-specific
terms also appear in the queries of other classes. Hence, no well-defined pattern was found (by
us and a few computer networking experts) in those queries to explain why NetBERT performs
much better on this particular class rather than on the others.

Sample of End User Guides queries
- Collect NAM Data On Cisco Prime Infrastructure 2.0
- IPv4 Switching: Provider Edge Router over MPLS
- Cisco Hosted Unified Communications Services: Managing Legacy PBX Support
- dnac sensor https test
- Cisco Modeling Labs: Export the Configuration to SVG Files
- UCCX supervisor multiple team
- getting started guide extended enterprise

Table 5.4: Sample of test set queries from the End User Guides class, misclassified by BERT
but correctly classified by NetBERT.

A similar investigation was made concerning the queries from the Release Notes class, for
which BERT does a better classification job than NetBERT. Table 5.4 shows a sample of Release
Notes queries that were misclassified by NetBERT, but correctly classified by BERT. The only
noticeable difference with the sample of End User Guides queries seems to be the presence of well-
formed questions about a specific product. However, similar questions also appear for queries of
other classes and, here again, no specific pattern about the form or vocabulary of these queries
was found to justify the decline in accuracy of NetBERT compared to BERT. A more detailed
analysis carried out by networking experts is needed to try to determine such patterns.

44

Sample of Release Notes queries
- What is the License model for the Catalyst 9300 Series Switches ?
- Can i know Cat 9500 ?
- nexus 7010 show tech
- How do I troubleshoot the Catalyst 9500 ?
- Bios software nexus 5000
- nexus 7000 fabric power-dn

Table 5.5: Sample of test set queries from the Release Notes class, correctly classified by BERT
but misclassified by NetBERT.

Another way to understand why one or the other model performs better on some classes than
on others is to visualize the [CLS] token representation of each query in a lower dimensional space.
As a reminder, this representation is used as unique input to the output layer for classification.
Hence, by reducing the dimension of such vectors and further visualize them in 2D or 3D can
allow the identification of some clusters within the cloud of data points, which should ideally
represent the different classes. If two or more classes came to overlap, this could potentially
explain why the classifiers have difficulties to properly predict these specific classes.

Dimensionality reduction was performed using t-Stochastic Neighbor Embedding (t-SNE;
Maaten and Hinton, 2008), which is a probabilistic method that does non-linear dimensionality
reduction, and is widely used to visualize high-dimensional data. In short, the t-SNE algorithm
comprises two main stages. First, t-SNE constructs a probability distribution over pairs of high-
dimensional objects in such a way that similar objects (according to the Euclidean distance) are
assigned a higher probability while dissimilar points are assigned a very low probability. Second,
t-SNE defines a similar probability distribution over the points in the low-dimensional map in
such a way that it minimizes the Kullback–Leibler (KL) divergence between the two distribu-
tions. In practice, t-SNE uses quite computationally heavy methods and therefore has certain
limitations. For example, if the number of features is very high, Maaten and Hinton recommend
to use another dimensionality reduction method such as Principal Component Analysis (PCA;
Pearson, 1901) to reduce the number of dimensions to a reasonable amount (e.g., 50) before
applying t-SNE. As BERT and NetBERT vectors are represented in R768, this recommendation
was taken into account. Hence, the [CLS] token representations of the test set queries from both
fine-tuned models were reduced to 50-dimensional vectors with PCA. Then, these vectors were
themselves reduced to 2 and 3 dimensions with t-SNE. The resulst are shown in Figure 5.5.

In general, it appears that the representations of both fine-tuned models lead to well-defined
clusters representing each of the classes. A deeper look at Figure 5.5b reveals a clear overlap
between the [CLS] token representations of the Release Notes and Configuration classes. In con-
trast, the representations of the Release Notes queries appear as a uniform cluster with BERT.
This might possibly explain why BERT achieves better classification performance for that par-
ticular class. Also, it can be noticed that the representations of classes Install & Upgrade Guides
and Data Sheets appear as more separate clusters when computed with NetBERT than with
BERT, which might explain the + ∼ 1.5% accuracy improvement of NetBERT on these classes.
Concerning the End User Guides class, for which NetBERT greatly improves the accuracy by
+4.2%, no apparent explanation seems to be visible on these graphs. Indeed, the representations
of these queries appear as a distinctive cluster for both fine-tuned models.

45

20 10 0 10
tsne1

15

10

5

0

5

10

15

ts
ne

2

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

tsne1

20
10

0
10

tsn
e2

15
10

5
0

5
10

15

ts
ne

3

20
15
10
5
0
5
10

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

(a) 2D projection of the [CLS] token embed-
dings from fine-tuned BERT.

20 10 0 10 20
tsne1

20

15

10

5

0

5

10

15

ts
ne

2

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

tsne1

20
10

0
10

20
tsn

e2

20
15

10
5

0
5

10
15

ts
ne

3

20

10

0

10

20

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

(b) 2D projection of the [CLS] token embed-
dings from fine-tuned NetBERT.

20 10 0 10
tsne1

15

10

5

0

5

10

15

ts
ne

2

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

tsne1

20
10

0
10

tsn
e2

15
10

5
0

5
10

15

ts
ne

3

20
15
10
5
0
5
10

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

(c) 3D projection of the [CLS] token embed-
dings from fine-tuned BERT.

20 10 0 10 20
tsne1

20

15

10

5

0

5

10

15

ts
ne

2

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

tsne1

20
10

0
10

20
tsn

e2

20
15

10
5

0
5

10
15

ts
ne

3

20

10

0

10

20

Install & Upgrade Guides
Configuration
End User Guides
Release Notes
Data Sheets

(d) 3D projection of the [CLS] token embed-
dings from fine-tuned NetBERT.

Figure 5.5: Visualisation of the [CLS] token representations of all test set queries embedded with
both BERT and NetBERT, and reduced to a lower dimensional space (2D and 3D) with t-SNE.

Lastly, we compared the wrong predictions of BERT with those of NetBERT. More precisely,
the comparison was on the types of query that were the most misclassified by both models.
Figure 5.6 shows the distribution among classes of BERT and NetBERT wrong predictions on
all test set queries. It appears that, in general, the query types that both models have the
most difficulties to classify are the same and in relatively similar proportions. The only notable
difference is that BERT misclassifies nearly as much the End User Guides queries as the Release
Notes ones (7.6% and 9.8% of BERT’s wrong predictions, respectively) while NetBERT does
a much better job at classifying End User Guides queries compared to the Release Notes ones
(5.6% against 11.9% of NetBERT’s wrong predictions, respectively).

Configuration

Insta
ll &

 Upgrade Guides

Data Sheets

Release Notes

End User G
uides

Number of queries

0

20

40

60

80

100

Do
cu

m
en

t T
yp

e

111

90

61

31

24

BERT wrong predictions

35.0%

28.4%

19.2%

9.8%
7.6%

Configuration
Install & Upgrade Guides
Data Sheets
Release Notes
End User Guides

(a) BERT wrong predictions.
Configuration

Insta
ll &

 Upgrade Guides

Data Sheets

Release Notes

End User G
uides

Number of queries

0

20

40

60

80

100

Do
cu

m
en

t T
yp

e

104

79

52

34

16

NetBERT wrong predictions

36.5%

27.7%

18.2%

11.9%
5.6%

Configuration
Install & Upgrade Guides
Data Sheets
Release Notes
End User Guides

(b) NetBERT wrong predictions.

Figure 5.6: Comparison between BERT and NetBERT proportions of misclassified test set queries
according to the type of document.

46

Question 2: Does NetBERT perform at least as well as BERT?

The second question of interest aims at studying if NetBERT manages to correctly classify the
queries that were properly classified by BERT. To this end, all the queries from the test set that
BERT correctly classified were gathered and fed into NetBERT for prediction. The results are
shown in percent in Table 5.6. Additionally, the corresponding confusion matrix is shown in
Figure 5.7.

Weighted-average Macro-average
MCC A P R F1 P R F1
96.7 98.2 98.2 98.2 98.2 97.5 97.5 97.5

Table 5.6: Results of NetBERT on the test set queries that BERT correctly classified. Evaluation
metrics are macro-average and weighted-average Precision (P), Recall (R) and F1-score (F1), as
well as Matthews coefficient correlation (MCC) and overall Accuracy (A), all expressed in percent.

One can notice that NetBERT performs extremely well on the queries that BERT correctly
classified, but not perfectly. Intuitively, it means that although NetBERT is better overall than
BERT on this task of domain-specific query classification, BERT is still able to sometimes capture
a better representation of some queries than NetBERT. This is especially true for the Release
Notes queries for example, as mentioned previously. Indeed, we see that 4% of the Release Notes
queries that were correctly classified by BERT are misclassified by NetBERT.

Ins
tal

l &
 Upg

rad
e G

uid
es

Con
fig

ura
tio

n

Data
 Sh

ee
ts

Rele
ase

 Note
s

En
d U

ser
 Guid

es

Predicted labels

Install & Upgrade Guides

Configuration

Data Sheets

Release Notes

End User Guides

Tr
ue

 la
be

ls

0.97 0.017 0.0077 0.0046 0

0.0055 0.99 0.0041 0.0017 0

0.02 0.0066 0.97 0.0022 0

0.016 0.016 0.0032 0.96 0.0032

0 0.018 0 0 0.98

0.0

0.2

0.4

0.6

0.8

Figure 5.7: Normalized confusion matrix of NetBERT predictions on the test set queries that
BERT classified correctly.

A closer inspection of the queries that NetBERT misclassified reveals that most of the time,
NetBERT is wrong by predicting either the Configuration class or the Install & Upgrade Guides
class, as shown in Figure 5.8. It turns out that these classes also represent the largest classes
from the dataset, as presented in Figure 5.2. Hence, it may be that for queries where NetBERT
is not able to predict the corresponding classes with certainty, it learned to simply predict one
of the classes that appear the most in the dataset.

47

69.2%

23.1%

7.7%

(a) Predicted classes for misclassfied
'DataSheets' queries

57.9%26.3%

15.8%

(b) Predicted classes for misclassfied
'Install&UpgradeGuides' queries

100.0%

(c) Predicted classes for misclassfied
'EndUserGuides' queries

48.5%

36.4%

15.2%

(d) Predicted classes for misclassfied
'Configuration' queries

41.7%

41.7%

8.3%
8.3%

(e) Predicted classes for misclassfied
'ReleaseNotes' queries

41.2%

23.7%

16.2%

15.0%3.8%

Configuration
Install & Upgrade Guides
Data Sheets
Release Notes
End User Guides

Figure 5.8: NetBERT predicted classes on the test set queries that BERT correctly classified but
NetBERT misclassified.

Question 3: How does NetBERT improve the predictions of BERT?

The third and last question of interest aims at analyzing the improvements of NetBERT on
the queries that BERT misclassified. For this purpose, all the queries from the test set that
BERT misclassified were gathered and fed into NetBERT for prediction. The results are shown
in percent in Table 5.7.

Weighted-average Macro-average
MCC A P R F1 P R F1
12.6 35.3 35.9 35.3 35.5 39.1 36.1 37.3

Table 5.7: Results of NetBERT on the test set queries that BERT misclassified. Evaluation
metrics are macro-average and weighted-average Precision (P), Recall (R) and F1-score (F1),
as well as Matthews coefficient correlation (MCC) and overall Accuracy (A), all expressed in
percent.

Additionally, the resulting confusion matrix is shown in Figure 5.9. There are several points
to note here. First, the diagonal of the matrix reveals that NetBERT managed to correctly
classify about 30% to 35% of the queries for most classes, which is pretty mediocre, but at least
a little better than random (i.e., 20% in a 5-class classification problem). It can be noticed that
the predictions on the End User Guides class achieved a much higher accuracy though (of about
46%), which confirms what has been concluded previously about NetBERT’s ability to better
predict this type of queries.

Another interesting observation concerns the upper-left corner of the confusion matrix, high-
lighting the predictions of both Install & Upgrade Guides and Configuration queries. One can
see that NetBERT predicts almost as much the one as the other class for these two types of
queries. But more than that, it is generally mistaken by predicting the Configuration class more
for Install & Upgrade Guides queries and vice-versa. A similar behaviour can be observed for the
Data Sheets queries, whose predictions are almost similarly spread into the Install & Upgrade
Guides, Configuration and Data Sheets classes. This is illustrated more clearly in Figure 5.10.

Lastly, it can be seen that nearly half of the Release Notes queries are misclassified as Con-
figuration queries, whereas only about one third of those queries are correctly classified. This
highlights the fact that NetBERT does not perform better than BERT for classifying this par-
ticular type of query, as observed previously.

48

Ins
tal

l &
 Upg

rad
e G

uid
es

Con
fig

ura
tio

n

Data
 Sh

ee
ts

Rele
ase

 Note
s

En
d U

ser
 Guid

es

Predicted labels

Install & Upgrade Guides

Configuration

Data Sheets

Release Notes

End User Guides

Tr
ue

 la
be

ls

0.33 0.37 0.22 0.056 0.022

0.38 0.36 0.16 0.081 0.018

0.33 0.28 0.36 0.033 0

0.097 0.48 0.032 0.29 0.097

0.12 0.21 0.083 0.12 0.46

0.0

0.1

0.2

0.3

0.4

Figure 5.9: Normalized confusion matrix of NetBERT predictions on the test set queries that
BERT misclassified.

36.7%

33.3%

22.2%

5.6%2.2%

(a) Predicted classes for
'Install&UpgradeGuides' queries

37.8%

36.0%

16.2%
8.1%1.8%

(b) Predicted classes for
'Configuration' queries

36.1%

32.8%

27.9%

3.3%

(c) Predicted classes for
'DataSheets' queries

45.8%

20.8%

12.5%

12.5%
8.3%

(d) Predicted classes for
'EndUserGuides' queries

48.4%

29.0%

9.7%
9.7%3.2%

(e) Predicted classes for
'ReleaseNotes' queries

35.0%

28.4%

19.2%

9.8%
7.6%

Configuration
Install & Upgrade Guides
Data Sheets
Release Notes
End User Guides

Figure 5.10: Distribution among the classes predicted by NetBERT for the test set queries that
BERT misclassified.

5.1.5 Conclusions

In this experiment, the performance of both BERT and NetBERT models were compared on the
task of domain-specific text classification. To this end, the models were fine-tuned on a dataset of
about 48,000 real search queries from Cisco employees labeled by the type of document in which
the information being sought was found. Eventually, it was shown that NetBERT outperforms
BERT for this task with an improvement of +1.3% MCC (Matthews correlation coefficient) and
+0.9% (macro-average) F1.

A deeper investigation showed that NetBERT improves BERT predictions in a relatively
similar way for most classes (between +0.2% and +1.8% improvement in per-class accuracy).
Nevertheless, one of the classes saw a significant improvement of +4.6% in accuracy with Net-

49

BERT, while another one saw a decline of -0.9% compared to BERT’s predictions. Further
studies were made in order to understand why NetBERT performs better on the former type
of queries and not as well on the latter one. Samples of queries related to these classes were
analyzed on their form, syntax and vocabulary, but no obvious conclusions could be drawn from
this analysis. However, by reducing the dimension of [CLS] token representations (used for clas-
sification) and plotting the lower dimensional vectors in 2D/3D allowed to get an intuition of
these improvements and declines. Indeed, classes that saw an improvement with NetBERT are
also represented by very distinctive clusters in the lower dimensional space, while some of these
clusters are overlapping with BERT representations. Similarly, the class which saw a decline
with NetBERT appears as a more uniform cluster with BERT than it does with NetBERT.

Then, a study was conducted to investigate if NetBERT managed to correctly classify the
queries that had been properly classified by BERT. It was shown that NetBERT performed
extremely well on these queries too, but not perfectly (96.7% and 97.5% in MCC and macro-
averaged F1-score, respectively). Intuitively, it means that although NetBERT performs better
overall than BERT at classifying domain-specific queries, the latter is still able to sometimes
capture a better representation of some queries than NetBERT.

Finally, a last study was made to investigate how NetBERT improves the predictions of the
queries misclassified by BERT. The results showed that NetBERT manages to correctly classify
slightly more than one third of these queries, which is pretty mediocre but a little better than
random. However, a deeper look at the per-class performance revealed that the model still
misclassifies most classes overall.

In conclusion, this experiment showed that NetBERT outperforms BERT on the task of
domain-specific text classification. However, the improvements are far from being significant.
Actually, it turns out that although not having been pre-trained on computer networking corpora,
BERT still does a very good job at classifying domain-specific queries. It is important to note
that this conclusion is drawn from a single dataset experiment. Several similar experiments
performed on other datasets would ideally be required to draw any general conclusion.

5.2 Information Retrieval

This experiment aims at comparing the quality of both BERT and NetBERT embeddings on the
task of domain-specific information retrieval, using a simple similarity-based search approach (no
further fine-tuning). Intuitively, if one model is able to retrieve better answers than the other
given in-domain queries, it means that the word representations of that model better capture
the meaning of both the queries and the candidate answers than those of the other model.

In the following, Section 5.2.1 first describes the dataset used in this experiment. Then,
Section 5.2.2 explains the approach used for performing similarity-based information retrieval
and attributing a score to answers. Next, Section 5.2.3 discusses and compares the performance
of both models on the task. Furthermore, Section 5.2.4 conducts a brief analysis about some
notable differences in the ability of both models to retrieve information. Finally, Section 5.2.5
ends this experiment by drawing a conclusion from the observed results.

5.2.1 Dataset

The dataset used in this experiment contains a set of domain-specific text chunks (one or mul-
tiple sentences) and questions collected from the Cisco CCNA Routing and Switching book.2

This book is designed to provide a complete study system for the Cisco ICND1 100-105 exam,
which tests a candidate’s knowledge and skills related to network fundamentals, LAN switching
technologies, routing technologies, infrastructure services, and infrastructure maintenance. It is

2https://www.ciscopress.com/store/ccna-routing-and-switching-200-125-official-cert-guide-
9781587205811

50

https://www.ciscopress.com/store/ccna-routing-and-switching-200-125-official-cert-guide-9781587205811
https://www.ciscopress.com/store/ccna-routing-and-switching-200-125-official-cert-guide-9781587205811

structured in 37 chapters for a total of nearly 890 pages (appendices excluded). The real value of
this book for our purpose comes from the “Do I Know This Already?” quizzes, which appear at
the beginning of each chapter. These quizzes contain between 4 to 10 multiple-choices questions
intended to test the level of knowledge of the reader before he/she starts the chapter. Hence, all
the questions were extracted together with their ground truth answer(s) – given at the bottom
of the quiz pages – to form a dataset of about 200 in-domain questions-answers. These questions
were further labeled by the type of questions they represent (namely, Knowledge or Scenario)
and the type of their answers (Unique or Multiple). Table 5.8 gives a few examples of such
questions with their corresponding type.

Question Question type
Where does the Ethernet FCS field reside in? Knowledge

Which OSI layer defines the standards for cabling and connectors? Knowledge

What does the acronym VLSM stand for? Knowledge

Fred has just added DSL service at his home, with a separate DSL modem and Scenario
consumer-grade router with four Ethernet ports. Fred wants to use the same old
phone he was using before the installation of DSL. What happens to the phone
cabling and phone used with his new DSL installation?
Imagine a switch with three configured VLANs. How many IP subnets are required, Scenario
assuming that all hosts in all VLANs want to use TCP/IP?

Table 5.8: Examples of questions from the “Do I Know This Already?” quizzes in the Cisco
CCNA Routing and Switching book. These questions were labeled either by the Knowledge type
when the answers are pure knowledge (no reflection involved) or by the Scenario type when the
answers involve a reflection on domain knowledge.

In this experiment, we focused on the Knowledge questions, which are used as queries in
this domain-specific information retrieval task. Indeed, most of the Scenario questions are not
suitable for the task of information retrieval, as answers to this type of questions rarely appear as
they are in the book as they require thinking in addition of knowing. Both BERT and NetBERT
are designed to capture meaning, but are in no way capable of performing any kind of reflection.
Therefore, it was deemed wise to leave these questions aside. Figure 5.11 shows the distribution
of the collected questions by question and answer types.

Knowledge Scenario
Question type

0

10

20

30

40

50

60

70

Co
un

t

25

39

65
70Answer type

Multiple
Unique

54.8%
45.2%

Question type
Scenario
Knowledge

(a) Number of questions per question and an-
swer types.

Knowledge Scenario
Question type

0

10

20

30

40

50

60

70

Co
un

t

25

39

65
70Answer type

Multiple
Unique

90
(45.2%)

109
(54.8%)

Question type
Knowledge
Scenario

(b) Percentage of questions per question type.

Figure 5.11: Statistics about the questions from the Cisco CCNA Routing and Switching book.
Only the Knowledge questions are used in this experiment.

After creating the queries dataset, the Cisco CCNA book was entirely scraped, cleaned and
split into text chunks of maximum length T = 512 tokens, which is the maximum number

51

of tokens that both BERT and NetBERT can process as inputs. Obviously, all the multiple-
choices questions and their answers were removed beforehand. It resulted in about 1,020 text
chunks representing the corpus in which the similarity-based information retrieval is performed.
Additional statistics about that corpus is shown in Table 5.9.

Number of Number of Number of Number of
book pages sentences words text chunks

890 13.5K 308.5K 1.02K

Table 5.9: Statistics about the Cisco CCNA text corpus used for information retrieval.

5.2.2 Search Score

The main idea of the experiment is to perform a similarity-based search on each of the queries
using on one hand BERT embeddings and on the other hand NetBERT embeddings, and then
compute a score that reflects the quality of the search results in order to compare the performance
of both models.

To that end, the text chunks gathered from the Cisco CCNA book are first encoded with
both BERT and NetBERT. As a reminder, these models take a text chunk as input, and output
a vector representation xi ∈ Rd for each token i of the input chunk (where d = 768 is the output
representation dimension of the models). In order to get a representation of the full chunk, the
most common technique is to average the last layer token representations, resulting in a vector
x ∈ Rd such that

x =
1

T

T∑
i=1

xi, (5.3)

where T is the number of tokens in the input chunk. Similarly, all the queries are encoded with
both models as d-dimensional vectors q ∈ Rd, as the average of the token representations of the
query,

q =
1

T

T∑
i=1

qi. (5.4)

Therefore, it results in a set of chunk representations XBERT = {x1, ...,xN} and query rep-
resentations QBERT = {q1, ..., qm} embedded with BERT, as well as similar sets XNetBERT =
{x′1, ...,x′N} and QNetBERT = {q′1, ..., q′m} embedded with NetBERT (where N is the total num-
ber of text chunks in the corpus and m the number of collected queries).

Given these sets, the top-k most similar chunks from XBERT (respectively XNetBERT) to
each query in QBERT (respectively QNetBERT) can easily be retrieved by using a pre-selected
distance function. This function is used to compute a distance between a query embedding and
all chunk embeddings such that only the top-k chunks with the lowest distance are retrieved.
More precisely, a query embedding q ∈ QBERT (respectively q′ ∈ QNetBERT) is first compared
to all the chunk embeddings xj ∈ XBERT (respectively x′j ∈ XNetBERT) for j = 1, ..., N with
respect to a given distance function f : Rd ×Rd → R+. Eventually, only the k-closest vectors to
the query vector are returned, i.e., the sets

SBERT = k-argminjf(q,xj)

SNetBERT = k-argminjf(q
′,x′j).

(5.5)

The distance function f is typically the Euclidean (L2) distance. Alternatively, a similarity
function s : Rd × Rd → R can also be used instead of a distance function, in which case the
k-argmaxj is then computed to get the k-closest vectors. Commonly used similarity functions
are the dot-product similarity and the cosine similarity.

52

The last step consists in evaluating the quality of the search results from both models. To
do so, a retrieval score is computed for each top-k result corresponding to a given query. In this
experiment, the retrieval score r(Ci, A) ∈ [0, 1] of a result chunk Ci is defined as the percentage
of words/tokens from the ground truth answer A of the given query that appear in that result
chunk. For example, the ground truth answer (as collected in one quiz of the Cisco CCNA book)
to the question “Where does the Ethernet FCS field reside in? ” is “It resides in the Ethernet
trailer.”. Hence, a result chunk containing the words {resides, Ethernet, trailer} will have a score
of 100% (stop words3 and punctuation are removed), while one having only two of these words
will have a score of 66.7%, and so on. For multi-answer questions, the score of a result chunk is
given by the highest score among all computed ones related to each answer. Eventually, the final
search score for a query q ∈ QBERT (respectively q′ ∈ QNetBERT) is then the maximum score
among the computed top-k retrieval scores:

scoreBERT(q) = maxir(Ci, A), i ∈ SBERT

scoreNetBERT(q
′) = maxi′r(Ci′ , A), i′ ∈ SNetBERT.

(5.6)

Figure 5.12 summarizes the scoring approach of the information retrieval experiment.

. . . … . . .[]. . . … . . .[]. . . … . . .[]

. . . … . . .[]

. . . … . . .[]

Query
embedding

Chunk
embeddings

"#

"$1
"$2
"$3
"$$

r1

Get	top-k text	chunks	w.r.t.	
distance (f) or	similarity	(s)

function:
S = k-argminj f(%&,)̅j)

or S = k-argmaxj s(%&,)̅j)
C1
C2

Ck

Compute	score	for	each	
top-k chunk	w.r.t.	ground	

truth	answer:	
r(Ci		,	A)

A

Ground truth
answer to query

Top-k most similar
chunks to query

r2

rk

Scores of top-k
result chunks

Compute	final	score	
as	the	max	score:

maxi		r(Ci		,	A)
score("#)

Final score

Figure 5.12: Illustration of the scoring approach in the information retrieval experiment.

5.2.3 Results

Following the scoring procedure described previously, each query is given a search score according
to the top-k result chunks retrieved from the similarity search based either on BERT embeddings
(query q ∈ QBERT compared against all text chunks xj ∈ XBERT for j = 1, ..., N), or on
NetBERT embeddings (query q′ ∈ QNetBERT compared against all text chunks x′j ∈ XNetBERT).

In this experiment, we arbitrarily chose k = 5 such that for each query, only the top-5 most
similar chunks are considered in the computation of its final search score. Also, we investigated
the three different distance/similarity functions discussed in the previous section to retrieve the
k-closest vectors to the query vector (i.e., the Euclidean distance, the dot-product similarity and
the cosine similarity). Table 5.10 shows the mean and median search scores (in percent) of BERT
and NetBERT according to these functions.

It can be noticed that NetBERT largely outperforms BERT on this task of domain-specific
information retrieval, with an average improvement between +10.6% and +12.3% depending on
the distance/similarity measure used to compare the embeddings. Also, it seems that the choice
of one or another distance/similarity function for comparing the embeddings has very little effect

3In computing, “stop words” are words which are filtered out before or after processing of natural language data
(Rajaraman and Ullman, 2011), and usually refer to the most common words in a language (e.g., the, is, at, which).
Here, we used the stop words list from the nltk library (https://www.nltk.org/book/ch02.html#code-unusual).

53

https://www.nltk.org/book/ch02.html#code-unusual

on the final search scores, except perhaps for the dot-product similarity which leads to a lower
median score for both BERT and NetBERT. Given these very small differences, we arbitrarily
chose to consider the Euclidean (L2) distance function for the rest of this experiment.

BERT scores NetBERT scores
Dist./sim. function Mean Median Mean Median
Euclidean 59.4 66.7 70.5 86.6
Dot-product 58.3 61.3 70.6 83.3
Cosine 59.8 66.7 70.4 86.6

Table 5.10: Mean and median search scores (in percent) of BERT and NetBERT according to
several distance/similarity functions used to retrieve the k-closest vectors to the query vector.
The best results appear in bold.

Additionally, Figure 5.13 shows the histograms of the search score for both models when the
Euclidean (L2) distance is used to compare the vectors. Interestingly, it can be seen that the
number of queries that get a very low score (i.e., a score ∈ [0, 10]) is almost similar for both
models (17 for BERT against 15 for NetBERT). However, the number of queries that get a very
high score (i.e., a score ∈ [90, 100]) is much bigger for NetBERT (41 against 30 for BERT). Also,
one can notice that the standard deviation is pretty much the same for the two models, and quite
large in general. Therefore, a future investigation should be made with appropriate statistical
testing to confirm with certainty that NetBERT performs indeed better than BERT on this task.

0 10 20 30 40 50 60 70 80 90 100
Search score

0

10

20

30

40

50

Co
un

t

Mean=59.4 (SD=38.2)
Median=66.7

(a) BERT search scores.

0 10 20 30 40 50 60 70 80 90 100
Search score

0

10

20

30

40

50

Co
un

t

Mean=70.5 (SD=37.1)
Median=86.6

(b) NetBERT search scores.

Figure 5.13: Histograms of the search scores for BERT and NetBERT when the Euclidean (L2)
distance is used to compare the embeddings.

54

One should not forget that, in theory, a high score for a given query only means that most of
the words from the corresponding ground truth answer appear in one of the top-k result chunks.
It is then possible that these words coincidentally appear in the result chunks without completely
or even partially answering the given question. Ideally, an expert in the field should rate each of
the result chunks to a given question on a discrete scale according to whether or not that chunk
answers the question. This would undoubtedly lead to a more accurate score, but in the same
time would require to analyze k ×m result chunks (m being the total number of queries and k
the number of top results retrieved for each query), which is quite time expensive (e.g., there
would be 450 chunks to analyze in this experiment). Instead, the scoring approach described
in Section 5.2.2 allows to automate this rating, and turns out to be a pretty good approximate
of the information retrieval ability in practice. Indeed, it has been noticed by analyzing some
particular question-result pairs that in most cases, a high or perfect search score involves that
one of the result chunks contains the right answer to the corresponding question. Some examples
are shown in Table 5.11 for information retrieval using NetBERT embeddings.

Question-Result pairs Ground truth answers
Q: Which protocols are examples of TCP/IP transport layer protocols? UDP;TCP
R: "The key difference between TCP and UDP is that TCP provides a wide

variety of services to applications, whereas UDP does not. [...]"
Q: Which Ethernet standards defines Gigabit Ethernet over UTP cabling? 1000BASE-T
R: "[...] For instance, the IEEE standardized Gigabit Ethernet support using

inexpensive UTP cabling in standard 802.3ab. However, more often, engineers
refer to that same standard as 1000BASE-T or simply Gigabit Ethernet. [...]"

Q: In the cabling for a leased line, what typically connects to a fourwire line CSU;DSU
provided by a telco?

R: "[...] The four-wire cable from the telco plugs in to the CSU/DSU, typically
using an RJ-48 connector [...]"

Q: Which Internet access technologies, used to connect a site to an ISP, DSL; Cable Internet
offers asymmetric speeds?

R: "[...] DSL uses the analog phone lines that are already installed in homes,
while cable Internet uses the cable TV (CATV) cable."

Q: Which routing protocols support VLSM? RIPv2;EIGRP;OSPF
R: "[...] That second wave includes RIP Version 2 (RIPv2), OSPF Version 2

(OSPFv2) and Enhanced Interior Gateway Routing Protocol (EIGRP) [...]"
Q: Which commands list the MAC address table entries for MAC addresses show mac address-table

configured by port security?
R: "[...] show mac address-table count Mac Entries for Vlan 1 [...]"
Q: What command enables you to show the UDI of your Cisco router? show license udi
R: "[...] show license udi Displays the UDI of the router. [...]"

Table 5.11: Examples of question-result pairs retrieved with a similarity search based on Net-
BERT embeddings. The results (R) shown in the table are all top-k results retrieved with
NetBERT embeddings using the L2 distance.

5.2.4 Further Analysis

In order to thoroughly analyze the differences between BERT and NetBERT embeddings applied
to the task of domain-specific information retrieval, we investigated which result chunk among
the top-k ones specifically led to the highest search score most of the time. The results are
illustrated in Figure 5.14.

When performing the similarity-based search with NetBERT embeddings, it appears that
it is mostly the first result chunk (i.e., the one that has the lowest L2 distance between its
embedding and the query vector out of the top-k result chunks) that leads to the highest search

55

score. This is not the case when the search is performed with BERT embeddings. Indeed, the
highest search score is then mostly achieved by both the first and second result chunks in equal
proportion. Moreover, it can be noticed that with NetBERT, the percentage of the i-th result
chunks (among the top-k ones) leading to the highest search score decreases as index i increases.
In other words, the highest search score is mostly achieved with the first result (for 48% of the
queries), then with the second one (for 22.7% of the queries), and so on. On the contrary, these
percentages are much more evenly distributed across the different i-th result chunks when the
search is performed with BERT (28.8%, 28.8% and 20.5% of the queries for the first, second and
third result, respectively).

Hi
gh

es
t s

ea
rc

h
sc

or
e

28.8%

28.8%

20.5%

21.9%

result 1
result 2
result 3
results > 3

1 2 3 4 5
First best result

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

L2
 d

ist
an

ce
 w

ith
 2

nd
 b

es
t r

es
ul

t

0.71

0.39
0.62

0.43

0.75

(a) BERT results.

Hi
gh

es
t s

ea
rc

h
sc

or
e

48.0%

22.7%

17.3%

12.0%

result 1
result 2
result 3
results > 3

1 2 3 4 5
First best result

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

L2
 d

ist
an

ce
 w

ith
 2

nd
 b

es
t r

es
ul

t

0.83

0.23 0.32 0.34

0.62

(b) NetBERT results.

Figure 5.14: Distribution among the top-k result chunks leading to the highest search score.

In order to understand why the first result chunk retrieved with NetBERT embeddings leads
more often to the highest search score among the top-k ones than the one retrieved with BERT
embeddings, we computed the Euclidean (L2) distances between the embeddings of the two result
chunks that have the highest search scores for each query. Intuitively, the larger this distance, the
more we can consider that the first best result chunk better corresponds to the given query than
the second one, and deserves its place at the top of the results list. Inversely, a small L2 distance
between the embeddings of these chunks implies that the two results are roughly equivalent and
that their order of appearance comes down to very little. The results are shown in Figure 5.15.

The main observation to be taken from these graphs is that with NetBERT, the median L2
distance between the embeddings of the best and second best result chunks is the largest when
the best result chunk is the first result (i = 1 out of the top-k results). In contrast, it can be seen
that with BERT, the median L2 distances are much closer to each other whatever the index i of
the best result, and the highest median L2 distance is not even achieved when the best result is
the first one, but well the fifth one (i = 5 out of the top-k results).

In brief, it was shown that the order of appearance of NetBERT results is more accurately
related to the search score than it is with BERT results. In particular, the first result retrieved
with NetBERT embeddings often achieves the highest search score among the top-k ones. More-
over, the L2 distance between the NetBERT embeddings of the first and second best results
according to the search score is often larger when the best result is the first result (i = 1 out of
the top-k results), which intuitively justifies its place at the top of the results list.

56

Hi
gh

es
t s

ea
rc

h
sc

or
e

28.8%

28.8%

20.5%

21.9%

result 1
result 2
result 3
results > 3

1 2 3 4 5
First best result

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

L2
 d

ist
an

ce
 w

ith
 2

nd
 b

es
t r

es
ul

t

0.71

0.39
0.62

0.43

0.75

(a) BERT results.

Hi
gh

es
t s

ea
rc

h
sc

or
e

48.0%

22.7%

17.3%

12.0%

result 1
result 2
result 3
results > 3

1 2 3 4 5
First best result

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

L2
 d

ist
an

ce
 w

ith
 2

nd
 b

es
t r

es
ul

t

0.83

0.23 0.32 0.34

0.62

(b) NetBERT results.

Figure 5.15: Euclidean (L2) distances between the embeddings of the two best result chunks
according to the search score.

5.2.5 Conclusions

In this experiment, the quality of both BERT and NetBERT embeddings were evaluated on a
task of domain-specific information retrieval based on a simple similarity search. To this end,
a set of 90 questions related to computer networking were extracted from the Cisco CCNA
certification book. The purpose of the experiment was to evaluate the ability of both models to
retrieve the correct answer to a given question within the book.

The results showed that NetBERT is better at retrieving in-domain text chunks containing
the right answers to the queries (average search score of 70.5% compared to 59.4% with BERT).
In addition, it turns out that the order of appearance of the result chunks is more accurate with
NetBERT than with BERT (e.g., the highest search score was achieved with the first result for
48% of the queries with NetBERT compared to only 28.8% with BERT).

In conclusion, it is clear that NetBERT captures a better representation of both domain-
specific queries and text chunks so that the search results retrieved with a simple similarity-based
operation are not only more accurate than those from BERT, but also appear in a more adequate
order than with BERT.

5.3 Word Similarity

This experiment aims at comparing the quality of both BERT and NetBERT embeddings on the
task of domain-specific word similarity. In the following, Section 5.3.1 first describes the task of
word semantic similarity as an intrinsic evaluation method for word embedding models. Then,
Section 5.3.2 discusses and compares the results of both BERT and NetBERT on the task for a
few examples. Finally, Section 5.3.3 concludes the experiment by drawing a conclusion from the
observed results.

5.3.1 Task Description

The goal of a word similarity evaluator is to measure how well the notion of human perceived
similarity is captured in the vector-space word representations. Intuitively, word vectors that
can capture word similarity might be expected to perform well on tasks that require a notion
of explicit semantic similarity between words like paraphrasing or entailment. One of the most
popular measures of semantic similarity in NLP is the cosine similarity, defined by

cos (wx,wy) =
wx ·wy

‖wx‖ ‖wy‖
, (5.7)

57

where wx,wy ∈ Rd are two d-dimensional word vectors and ‖wi‖ (i ∈ {x, y}) indicate the l2
norm of the word vectors. The resulting similarity denotes the cosine of the angle between
the two vectors and therefore takes values in the interval [−1, 1]. The main advantages of this
similarity measure is its low complexity, its robustness to scaling (thanks to the normalization
operation) and its judgement on orientation rather than magnitude (unlike the L2 distance for
example) which proved to be effective for comparing word embeddings computed with language
models (Mikolov et al., 2013c; Zhang et al., 2019b).

5.3.2 Evaluations

In the case of contextual word embeddings (such as those output by BERT and NetBERT), each
word from a given sentence is given a representation that depends on the context of that sentence.
Hence, by considering a few sentences in which a same word is used with different meanings (so-
called “homonymous” word) and by computing the cosine similarity between the embeddings
of the different homonyms, we can analyze how well these embeddings capture semantic sim-
ilarities. Since our focus is on computer networking, we considered three homonymous words
each representing a popular concept in the field: a bridge, a switch and a port. Their different
meanings are given in Table 5.12.

Word Word class Domain Definitions
bridge noun General Structure that is built over a river, road, or railway to allow

people and vehicles to cross from one side to the other.
Networking Computer networking device that creates a single aggregate

network from multiple communication networks.
switch noun General Sudden or complete change.

Networking Device in a computer network that connects other devices together.
port noun General Area of water and the land surrounding it where ships can

take on and off goods and passengers.
Networking Communication endpoint in a computer network.

Table 5.12: Definitions of the words bridge, switch and port according to their general and
networking meanings.

For each word, we arbitrarily chose three sentences in which the word is used with its general
meaning, and three other sentences with its computer networking meaning.4 These sentences are
then fed into both BERT and NetBERT such that only the output representations of the word
of interest (i.e., bridge, switch or port) are kept. Finally, the cosine similarity is computed for all
combinations of embedding pairs output by each model. The results are shown in Figure 5.16,
Figure 5.17 and Figure 5.18 for the words bridge, switch and port, respectively.

First of all, one can notice that the cosine values between all embeddings are quite high in
general. However, this seems to be usual with BERT-based embeddings.5 Hence, Xiao (2018)
suggested to focus on the rank instead of the absolute cosine values. More precisely, he rec-
ommended that, given three words a, b, c and their corresponding d-dimensional word vectors
a, b, c ∈ Rd, one should not conclude from cos(a, b) > th (e.g., th = 0.9) that a and b are
similar, but instead should compare cos(a, b) and cos(a, c) and conclude that a is more similar
to b than c if cos(a, b) > cos(a, c). That is why the cosine values were deliberately masked in
the three figures.

In each example, the three first sentences use the word of interest with its general meaning,
while the three last ones use it with its computer networking meaning. It appears that the cosine

4The general-context sentences were sampled from https://sentence.yourdictionary.com/, while the
networking-context ones were sampled from the related Wikipedia page.

5https://github.com/hanxiao/bert-as-service#q-the-cosine-similarity-of-two-sentence-vectors-
is-unreasonably-high-eg-always--08-whats-wrong

58

https://sentence.yourdictionary.com/
https://github.com/hanxiao/bert-as-service#q-the-cosine-similarity-of-two-sentence-vectors-is-unreasonably-high-eg-always--08-whats-wrong
https://github.com/hanxiao/bert-as-service#q-the-cosine-similarity-of-two-sentence-vectors-is-unreasonably-high-eg-always--08-whats-wrong

similarities between the embeddings of each of the words of interest are higher when the word is
used with a similar meaning, and this with both BERT and NetBERT embeddings. Intuitively,
it means that both BERT and NetBERT seem to capture the differences in meaning of each of
the words in their representations.

By taking a closer look at each example individually, it can be noticed that NetBERT seems to
better identify the similarity between the word bridge used in its networking context. Similarly,
it appears that NetBERT better captures the similarity between the word switch but this time
used in its general context (specifically for the third sentence of the example). However, it can
be seen that BERT differentiates the meanings of the word port more clearly than NetBERT.
These differences are very subtle though.

1 2 3 4 5 6

(a) BERT results.

1

2

3

4

5

6
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1 2 3 4 5 6

(b) NetBERT results.

1

2

3

4

5

6
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Sentences
1 We drove over the bridge for twenty minutes.
2 The other day we crossed the bridge by bike.
3 I don't have time to walk across the bridge.
4 The root bridge forward frames to the root network.
5 A bridge reads a frame's destination address and decides to either forward or filter.
6 A multiport bridge must decide where to forward traffic.

Figure 5.16: Visualisation of the cosine similarities between the embeddings of the word “bridge”
used with its general and networking meanings.

1 2 3 4 5 6

(a) BERT results.

1

2

3

4

5

6

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6

(b) NetBERT results.

1

2

3

4

5

6

0.80

0.85

0.90

0.95

1.00

Sentences
1 When did the writer make the switch from fiction to non-fiction?
2 The athlete made the switch from morning to lunchtime workouts.
3 She told us that the switch to this new accounting software was a game changer.
4 Each networked device connected to a switch can be identified by its network address.
5 In general, a switch is used as the network connection point for hosts at the edge of a network.
6 A switch manages the flow of data across a network by transmitting received network packets.

Figure 5.17: Visualisation of the cosine similarities between the embeddings of the word “switch”
used with its general and networking meanings.

59

1 2 3 4 5 6

(a) BERT results.

1

2

3

4

5

6

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6

(b) NetBERT results.

1

2

3

4

5

6

0.80

0.85

0.90

0.95

1.00

Sentences
1 We went down to the port to buy fresh salmon from the fishing boats.
2 The fishing boats were gathered in the port to wait out the storm.
3 We took the ferry to a pretty little port on the island.
4 A network port is identified for each protocol and address combination by a 16-bit unsigned number.
5 A secure port and a static MAC address configuration for an interface are mutually exclusive.
6 Packets received from a tunnel port are forwarded based only on Layer 2 information.

Figure 5.18: Visualisation of the cosine similarities between the embeddings of the word “port”
used with its general and networking meanings.

5.3.3 Conclusions

In conclusion, this word similarity evaluation between BERT and NetBERT embeddings reveals
that both models manage to capture differences in meaning in their representations. From the
few examples presented in this experiment, it appears that NetBERT performs similarly to (or
slightly improves over) BERT in its ability to identify similarities between homonymous words
with a computer networking meaning when used in that context. However, the differences are
very subtle and more evidence would be needed to draw a general conclusion.

5.4 Word Analogy

This experiment aims at comparing the quality of both BERT and NetBERT embeddings on the
task of domain-specific word analogy. In the following, Section 5.4.1 first describes the task of
word analogy as an intrinsic word embeddings evaluation method. Then, Section 5.4.2 discusses
and compares the results of both BERT and NetBERT on the task for a few examples. Finally,
Section 5.4.3 ends the experiment by summarizing the conclusions that can be drawn from it.

5.4.1 Task Description

Word analogy is the second most popular way (after word similarity) to determine if the word
embeddings from a given language model capture some syntactic or semantic relationships be-
tween the words. Given two pairs of words (a, a′) and (b, b′), the analogy relationship between
these two is usually expressed as

a : a′ :: b : b′, (5.8)

and it reads « a is to a′ as b is to b′ ». In practice, an analogy measure m ∈ R can be computed
for such a relationship so that

m = s(xb′ ,xa′ − xa + xb), (5.9)

where the xi ∈ Rd (i ∈ {a, a′, b, b′}) represent the d-dimensional word representations and
s : Rd×Rd → R is a similarity function (typically the cosine similarity). Hence, a high similarity
means that the vector pairs share a similar direction.

60

Alternatively, such relationships can be visualised by plotting the vector offsets between the
dimensionally-reduced word embeddings of the different pairs of words. The most commonly
used strategy for word embeddings dimensionality reduction is t-Stochastic Neighbor Embed-
ding (t-SNE; Maaten and Hinton, 2008), as used and discussed in Section 5.1.4. However, this
method does not lend itself well to the analysis of word analogies. Indeed, t-SNE is usually
used to provide a high-level overview of the embedding space through non-linear dimensionality
reduction. Although such a space can reveal some interesting separations between word groups
(e.g., countries, nouns, verbs, etc.), they inherently distort the linear (i.e., semantic) relationships
most interesting to our study. Consequently, to preserve such relationships, linear projections
are preferred. The most common approach is then to use Principal Component Analysis (PCA;
Pearson, 1901) restricted to carefully chosen subsets of words.

5.4.2 Evaluations

Unlike Word2Vec, BERT and NetBERT embeddings rely heavily on contextual information, as
both models were specifically pre-trained such that context is used to build the word represen-
tations. That is why in this experiment, the words are not embedded as they are, without any
context, but are instead put into short sentences that use them in their appropriate contexts.
These sentences are then passed as inputs to both BERT and NetBERT, and only the word rep-
resentations of the four words of interest (i.e., the words from the given analogy) are gathered,
dimensionally-reduced with PCA and plotted in two dimensions.

Arguably, the most famous example of word analogies in the NLP community is the «man :
woman :: king : queen» analogy from Mikolov et al. (2013c), who showed that the vector
offsets between the dimensionally-reduced Word2vec representations of the pairs (man, woman)
and (king, queen) were equivalent in the reduced dimensional space, highlighting the expected
male/female relationship. Here, we began by replicating this example with BERT and NetBERT
embeddings. The aim was firstly to check if BERT learned to capture semantic relationships in
a similar way as Word2vec, and secondly to analyze if such general-domain relationships were
also captured (i.e., not lost) with NetBERT embeddings. The results are shown in Figure 5.19.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

30

pc
a-

2

man

woman

king

queen

(a) BERT embeddings.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

30

pc
a-

2

man

woman

king

queen

(b) NetBERT embeddings.

Contexts
- A man is an adult male person.
- A woman is an adult female person.
- A king is a male sovereign or monarch.
- A queen is a female sovereign or monarch.

Figure 5.19: Comparison of vector offsets between the dimensionally-reduced BERT and Net-
BERT embeddings for two word pairs illustrating the gender relationship.

At first glance, both BERT and NetBERT embeddings seem to capture the gender relation-
ship between the pairs of words, as the vector offsets are almost perfectly parallel. It does seem,
however, that the relationship is somewhat more accurately defined with BERT as the vector
offsets are much closer in length than those from NetBERT.

61

Now, we would like to investigate if NetBERT is able to capture some relationships between
computer networking concepts. Finding human perceived analogies is a difficult and very subjec-
tive task though, even more for a technical field such as computer networking. Therefore, several
networking experts were asked to enumerate a few analogies between computer networking con-
cepts to conduct this experiment. As for the «man : woman :: king : queen» example, each
word was placed in its appropriate computer networking context for embedding. Figure 5.20,
Figure 5.21 and Figure 5.22 illustrate the vector offsets between the dimensionally-reduced BERT
and NetBERT embeddings of several pairs of words representing the protocol type, address type
and layer type relationships, respectively.

In general, it seems that NetBERT capture the relationships between the different networking
concepts better than BERT. Indeed, unlike BERT, the vectors offsets between the dimensionally-
reduced NetBERT embeddings are almost equivalent for each example, highlighting the expected
relationships.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

pc
a-

2

STP

switch

BGP

router

(a) BERT embeddings.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

pc
a-

2

STP
switch

BGP

router

(b) NetBERT embeddings.

Contexts
- STP is a network protocol designed to prevent loops in a computer network.
- A switch is a networking hardware that connects devices on a computer network.
- BGP is a routing protocol designed to exchange information between computer networks.
- A router is a networking hardware that connects multiple computer networks.

Figure 5.20: Comparison of vector offsets between the dimensionally-reduced BERT and Net-
BERT embeddings for two word pairs illustrating the protocol type relationship.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

30

pc
a-

2

MAC

switch

IP

router

(a) BERT embeddings.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

30

pc
a-

2

MAC
switch

IP router

(b) NetBERT embeddings.

Contexts
- A MAC address is used as a physical identifier of a device in a computer network.
- A switch is a networking hardware that connects devices on a computer network.
- An IP address is used to identify the connection of a unique device within a computer network.
- A router is a networking hardware that connects multiple computer networks.

Figure 5.21: Comparison of vector offsets between the dimensionally-reduced BERT and Net-
BERT embeddings for two word pairs illustrating the address type relationship.

62

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

30
pc

a-
2

TCP

transport

IP

network

(a) BERT embeddings.

30 20 10 0 10 20 30
pca-1

20

10

0

10

20

30

pc
a-

2

TCPtransport

IPnetwork

(b) NetBERT embeddings.

Contexts
- TCP is one of the main protocols of the Internet protocol suite used in the transport layer.
- The transport layer is the layer from the OSI model that provides host-to-host communication services for applications.
- IP is the principal communications protocol of the Internet protocol suite used in the network layer.
- The network layer is the layer from the OSI model that is responsible for packet forwarding.

Figure 5.22: Comparison of vector offsets between the dimensionally-reduced BERT and Net-
BERT embeddings for two word pairs illustrating the layer type relationship.

5.4.3 Conclusions

In brief, this small investigation tends to show the ability of NetBERT to capture semantic
relationships between networking concepts, unlike BERT. However, it is important to note that
this experiment used a very small sample size (out of the vast lexicon of english words) and one
should not overgeneralize with such limited evidence. Therefore, further experimentation on the
subject is needed to draw any general conclusion.

63

Chapter 6

NetBERT Search Engine

This chapter covers a practical application for NetBERT, motivated by the Cisco search problem
discussed in Section 1.1. Specifically, it describes how NetBERT can be used to implement a
simple similarity-based search engine on computer networking text corpora. First, Section 6.1
details the implementation of the search engine. Then, Section 6.2 reviews two networking
text corpora on which the search engine retrieves information. Finally, Section 6.3 discusses the
limitations of the current approach and some possible modifications to improve the system speed,
its memory usage and the quality of its search results.

6.1 Implementation

In our search engine, NetBERT is used to build vector representations of pieces of text (also
called “chunks”). Then, these representations are used to perform a nearest neighbor search to
a given query. The implementation of our system is divided into two main steps, as shown in
Figure 6.1: the index creation and the real-time search.

Text documents

Split text into chunks
(max 512 tokens)

Text chunks

Embed with
NetBERT

Text embeddingsIndex

. . . … . . .[]Create index . . . … . . .[]. . . … . . .[]

. . . … . . .[]

(1) Index creation
Embed with NetBERT . . . … . . .[]

Query Query embedding

Index in RAM

Similarity search

Retrieve chunks

Indices of k most
similar vectors

k most similar
chunks

(2) Real-time search

Figure 6.1: Illustration of the process of using NetBERT embeddings to build a similarity-based
search engine.

6.1.1 Index Creation

Given a corpus of documents in which we intend to search for information, the first step consists
in creating an index that will store a set of vectors representing text chunks from that corpus.

Initially, each document from the search corpus is split into groups of consecutive sentences
(chunks) of a maximum length. This length is defined as the maximum number of input tokens
that NetBERT is able to process, which is T = 512 tokens.

64

Then, the text chunks are fed into NetBERT. As a reminder, NetBERT outputs a vector
representation xi ∈ Rd for each token i of an input sequence (where d = 768 is the output
representation dimension of the model). In order to get a representation of the full sequence,
the two most common embedding approaches are either to average the last layer token represen-
tations, or to use the [CLS] token embedding. It was recently shown (Reimers and Gurevych,
2019; Wang and Kuo, 2020) that the averaging approach captures a more inherent structure of
the sentence while the [CLS] token representation is more suitable for downstream classification
tasks. Following these conclusions, the chunk representations were computed by averaging the
output token representations of NetBERT, resulting in a vector x ∈ Rd such that

x =
1

T

T∑
i=1

xi. (6.1)

Finally, the set of chunk embeddings is used to create an index data structure. Here, we rely on
the Facebook AI Similarity Search (Faiss) library (Johnson et al., 2019) to implement the index.
Faiss is a library developed by Facebook AI Research for efficient similarity search and clustering
of dense vectors. It is built on a few basic algorithms such as k-means clustering (Lloyd, 1982),
Principal Component Analysis (Pearson, 1901) and Product Quantization encoding/decoding
(Jegou et al., 2010), with very efficient implementations written in C++ and complete wrappers
for Python. In addition, the library offers an optional GPU implementation for these algorithms,
providing what is likely the fastest exact and approximate (compressed-domain) nearest neighbor
search implementation for high-dimensional vectors. Given the large computational resources at
our disposal (i.e., 8× 32GB NVIDIA Tesla V100 GPUs), we decided to create an index for exact
k-nearest neighbor search, i.e., brute-force kNN without compression of the original vectors.
Therefore, the flat index is simply a matrix M ∈ RN×d, where N is the number of chunks
extracted from the corpus and d = 768 the output representation dimension of NetBERT.

6.1.2 Real-time Search

Once the index is created and loaded in memory, it is possible to search in real-time given a
query and a pre-selected distance function. This function is used to compute a distance between
the query and all chunk embeddings from the index.

Basically, the query is first embedded with NetBERT as a d-dimensional vector q ∈ Rd, being
the average of the token representations from that query,

q =
1

T

T∑
i=1

qi. (6.2)

Then, all the indexed vectors xj are compared to the query embedding q with respect to the
chosen distance function f : Rd × Rd → R+. Eventually, the indices of the k closest vectors to
the query representation are returned, i.e., the set

S = k-argminjf(q,xj), j = 1, ..., N. (6.3)

Note that the distance function f is typically the Euclidean (L2) distance. Alternatively, a
similarity function s : Rd × Rd → R can also be used, in which case the k nearest neighbors to
the query q are searched so that

S = k-argmaxjs(q,xj), j = 1, ..., N. (6.4)

Commonly used similarity functions are the dot-product similarity and the cosine similarity.
Finally, a quick look at these indices in the saved text chunks database allows to retrieve

the pieces of text corresponding to these k closest vectors, as shown on the right hand-side of
Figure 6.1.

65

6.2 Applications

The similarity-based search engine described previously was implemented as an interactive Jupyter
notebook, as shown in Figure 6.2. An index was created for two different networking corpora,
namely the Cisco corpus and the RFC corpus.

Type your queryQuery: 5 SearchTop-k:

InitIndexType: GPUs: 8

^^

Euclidean

Loading Faiss index in 8 GPUs with Euclidean distance function…
Done.

Figure 6.2: The NetBERT search engine implemented as an interactive Jupyter notebook.

6.2.1 Cisco Corpus

The first index was created in order to search from the complete Cisco text corpus on which
NetBERT was pre-trained (see Section 4.2). As a reminder, this corpus contains about 170M
sentences retrieved from nearly 440K different web pages from cisco.com. After splitting this
corpus into text chunks of maximum length T = 512 tokens, it resulted in an index of 25.7GB
storing the representations of about 9M text chunks. A summary of these statistics is given in
Table 6.1. At run-time, it takes about 0.05s to encode the query and 0.03s to perform the kNN
search with Faiss on a single 32GB NVIDIA Tesla V100 GPU, resulting in a total search time
of less than 0.1s.

6.2.2 RFC Corpus

The second index was created in order to retrieve information from Request for Comments
(RFC) documents.1 In information and communications technology, a RFC is a type of doc-
ument authored by engineers and computer scientists in the form of a memorandum describ-
ing methods, behaviors, research, or innovations applicable to the working of the Internet and
Internet-connected systems. Such documents may come from many bodies including from the
Internet Engineering Task Force (IETF), the Internet Research Task Force (IRTF), the Inter-
net Architecture Board (IAB), or from independent authors. Many RFCs are informational or
experimental in nature and are submitted either for peer review or to convey new concepts.
Occasionally, the IETF adopts some of the proposals published as RFCs as Internet Standards.

This type of documents lend themselves very well to our application as their vocabulary is
mainly related to the field of computer networking. In addition, these documents are very easy
to extract as they are all available online in .txt format. Hence, a total of 8,570 RFC documents
were collected and split into about 1.3M text chunks. These chunks were then embedded with
NetBERT to eventually create a Faiss index with a size of 3.7GB, as shown in Table 6.1. At
run-time, it only takes about 0.01s to perform the similarity search with Faiss on a single 32GB
NVIDIA Tesla V100 GPU.

1https://tools.ietf.org/rfc/index

66

https://tools.ietf.org/rfc/index

Number of Number of Size of
Corpus documents text chunks Faiss index
cisco.com 442K 9M 25.7GB
RFCs 8.6K 1.3M 3.7GB

Table 6.1: Statistics about the text corpora used with the NetBERT search engine.

6.3 Limitations and Possible Improvements

Although sometimes returning fairly query-related results, this simple search engine is currently
far from being perfect. One of the main drawbacks of the current system is that it is highly
sensitive to the syntactic form of the query. For example, when the query appears as a well-
phrased question, the results will most likely be similar questions about the same or a related
topic. Upon reflection, this problem is probably related to the way sentences are represented.
For the moment, the representation of a sentence (or a chunk) is simply the average of the token
representations output by NetBERT for that sentence. More effective ways of computing such
vectors are discussed in the following. In addition, we discuss some methods to improve the
speed and memory usage of the current search engine system.

6.3.1 Sentence Representation

Sentence embedding is an important research topic in NLP. While BERT achieves state-of-the-
art performance in quite a few NLP tasks using contextual word representations, generating high
quality sentence representations from BERT-based word models is an open problem. Lately, there
has been some research addressing this particular issue. For example, Reimers and Gurevych
(2019) studied the performances of commonly used sentence representations methods such as Uni-
versal Sentence Encoder (Cer et al., 2018), InferSent (Conneau et al., 2017) and average GloVe
(Pennington et al., 2014) embeddings, and compared them with average BERT embeddings and
BERT’s [CLS] token representation on various semantic textual similarity (STS) tasks. Even-
tually, they showed that the direct use of BERT outputs for sentence representation generates
rather poor performance. Averaging BERT outputs led to better results than using the [CLS] to-
ken representation, but both methods were actually worse than a static word embedding scheme
such as averaging GloVe embeddings on the tested tasks. To overcome this issue, they introduced
Sentence-BERT (SBERT), a modification of the pre-trained BERT network that uses siamese
and triplet networks (Schroff et al., 2015) to update the weights with a fine-tuning operation
such that the produced sentence embeddings are semantically meaningful. They showed that
their approach substantially improves the performance on STS, outperforming both InferSent
and Universal Sentence Encoder.

Recently, Wang and Kuo (2020) confirmed the conclusions drawn by Reimers and Gurevych.
They hypothesize that the poor performance of BERT outputs directly used for sentence repre-
sentation could be attributed to the fact that the model is not trained using a similar objective
function, in the sense that masked language model (MLM) and next sentence prediction (NSP)
objectives are not suitable for a linear integration of representations. Therefore, they proposed a
new sentence embedding method by dissecting BERT-based word models through geometric anal-
ysis of the space spanned by the word representation. Their novel method, called SBERT-WK,
doesn’t require further fine-tuning and outperforms SBERT on a range of supervised downstream
tasks.

In conclusion, such novel methods could further be used in our search engine system to
improve the quality of the sentence/chunk embeddings.

67

6.3.2 Speed and Memory

The current search engine system uses brute-force search on the original chunk embeddings. If
speed or memory were to become a problem in the future, two options can be considered either
separately or implemented together.

First, the Faiss library allows to use a compressed representation of the original vectors
based on product quantizers (Jegou et al., 2010), which can save a lot of memory. This generally
comes at the cost of a less precise search but these methods can scale to billions of vectors in main
memory on a single server. Basically, indexes based on such compression methods just encode
the vectors into codes of a fixed size c and store them in a compressed matrixM ′ ∈ RN×c, where
N is the number of chunks extracted from the corpus. At search time, all the indexed vectors
are either decoded sequentially and compared to the query vectors, or directly compared to the
query in the compressed domain, which is faster.

To speed up the search, it is also possible to use an index that segments the original dataset
of chunk embeddings into pieces, what Faiss’ authors call Voronoi cells (Voronoi, 1908), such
that each d-dimensional embedding falls in one of these cells. This type of index requires a
training stage in order to create the clusters (typically using the k-means algorithm). Once
created, each cluster is then represented by its centroid vector. At search time, the query vector
is first compared to the set of centroids to determine in which cluster it falls in. Then, only the
chunk embeddings contained in that cluster and a few neighboring ones are compared against
the query vector for final results.

68

Chapter 7

Conclusions

To the best of our knowledge, this thesis corresponds to the first attempt in pre-training a large
Transformer-based language representation model on computer networking text corpora. All the
information that has been presented in this work aimed to investigate if our novel model, called
NetBERT, could improve performance on computer networking mining tasks over a similar model
pre-trained exclusively on general-domain text, namely BERT (Devlin et al., 2018). Based on
several quantitative and qualitative studies, it can be concluded that our novel model, resulting
from an extensive pre-training of about a month on 8 × 32GB NVIDIA Tesla V100 GPUs, indeed
outperforms the general-domain model when evaluated on domain-specific language tasks. The
results indicate that an additional pre-training on computer networking text helps the model to
understand more accurately domain-related sentences and conceptual relationships.

To arrive at this conclusion, the performance of both BERT and NetBERT was extrinsi-
cally and intrinsically evaluated on various language tasks in Chapter 5. The results showed
that NetBERT outperforms BERT on the task of domain-specific text classification, with an
improvement of +0.9% F1 and +1.3% MCC (Matthews correlation coefficient). However, the
experiment also proved that, although not having been pre-trained on computer networking text,
BERT still does a very good job at classifying domain-specific sentences. Then, both models
were evaluated and compared on the task of in-domain information retrieval. This time, Net-
BERT showed significant improvements over BERT regarding a custom search score (+12.3%
improvement). Further analysis also proved that the order of appearance of the retrieval results
was more accurate with NetBERT than it was with BERT. Furthermore, an evaluation on word
similarity between a few homonymous words representing a popular networking concept tended
to show that NetBERT performs slightly better than (or similarly to) BERT in its ability to
capture the semantic meaning of some networking words. Lastly, a word analogy evaluation
between some computer networking concepts reveals that NetBERT is able to capture semantic
relationships between these concepts, unlike BERT. Overall, these results give a clear answer
to the main research question of this thesis, which was: “Does a large language representation
model pre-trained on domain-specific text improve performance over the same model pre-trained
on general-domain corpora, when evaluated on domain-specific text mining tasks? ”.

In addition to that main research question, we managed to provide insightful answers to the
secondary questions that have been presented at the beginning of this work in Chapter 1. First,
an answer to the question “Which language representation model should be considered for the
purpose of domain-specific text mining given limited computational resources? ” was provided in
Chapter 4. Through a discussion on existing state-of-the-art language representation models,
particularly focused on the size of these models (which is the main limitation of pre-training
Transformer-based models), we eventually concluded that the base version of BERT was the
most suitable model according to its performance/size balance. That choice was also motivated
by the recent integration of BERT in the Google Search engine as well as its increasing use for
many NLP problems such as domain-specific text mining tasks and factual knowledge bases.

69

The second question, “What are some good pre-training strategies to consider in order to
achieve the best possible model with one unique run given the huge computational time related
to the pre-training of current state-of-the-art language representation models? ”, was answered
in Chapter 4. Through an extensive review of the literature about BERT-based models, we
summarized some of the best pre-training strategies for such models regarding the use of the
next sentence prediction (NSP) objective, a custom vs. general vocabulary, a cased vs. uncased
vocabulary, a static vs. dynamic masking process, and a scratch vs. checkpoint pre-training.

Finally, the third and most important secondary research question was: “How can language
representation models be efficiently evaluated on domain-specific tasks, given little or no labelled
data? ”. Most of the time, language representation models are extrinsically evaluated on one or
several downstream NLP tasks using either a feature-based approach or a fine-tuning approach.
The performance of the model is then measured on a labelled dataset for the given NLP task, and
is usually considered as a measure of word embedding quality. In this thesis, we only had a single
labelled dataset at hand for the task of text classification. Therefore, we used the fine-tuning
approach and compared the performance of both models with relevant classification metrics, as
presented in the first experiment of Chapter 5. In order to advance further proofs of the better
performance of NetBERT over BERT, we came with a novel carefully crafted extrinsic evaluation
built on a feature-based approach for domain-specific information retrieval. Additionally, we
presented two intrinsic evaluations that aimed to evaluate the embedding quality of both models
by assessing with human judgments the semantic properties and relationships captured within
the embeddings.

Despite these contributions, there is still space for future research to complement the work
that has been presented in this thesis. Some potential interesting ideas for future directions are
presented in the next section.

7.1 Future Directions

From a research perspective, we have shown that NetBERT improves performance over BERT
when evaluated on a few language tasks related to computer networking. However, we are aware
that further evaluations are needed to bring more evidence to the conclusion that is drawn in this
thesis. Although intrinsic evaluations might reveal some interesting insights of word embeddings,
they are sometimes criticized as they mainly rely on human assessments that might sometimes
be biased by certain subjective factors. For that reason, we believe that practitioners should
particularly focus on additional extrinsic experiments for other common downstream NLP tasks.
At the time of writing, the Cisco One Search team from San Jose, California, is creating a
novel dataset in the SQuAD (Rajpurkar et al., 2016) format for computer networking question-
answering (QA), as well as a networking dataset for semantic textual similarity (STS). Future
evaluations on these two datasets would definitively allow to draw more general conclusions when
combined to the results presented in this thesis.

From a business perspective, we believe that NetBERT could be used for many useful appli-
cations at Cisco. One key example, which was discussed in Chapter 1 and initially motivated the
work done in this thesis, is its use for information retrieval in order to improve the poor search
results of the current Cisco search engine. In Chapter 6, we introduced a functional proof of
concept (POC) of a simple search engine that uses a similarity-based approach with NetBERT
embeddings for networking information retrieval. We believe that this POC can be used as a
baseline for a novel search engine either based exclusively on NetBERT embeddings, or on a
combination of traditional information retrieval methods such as TF-IDF (Jones, 1972) or BM25
(Robertson et al., 1995) to get a first set of candidate results, and NetBERT embeddings to
further re-rank these results. However, future work should definitely investigate more accurate
ways of representing sentences from the word embeddings output by NetBERT, as mentioned at
the end of Chapter 6.

70

This thesis ends with the hope of having provided the reader with insightful knowledge about
the use of a domain-specific language representation model for networking-related text mining
tasks. In addition, we hope that this work can become a starting point for further research on
the topic or potential business applications based on the NetBERT model.

71

Appendix A

Additional Details about BERT

A.1 Model Parameters

BERT-base (L=12, h=12, dmodel=768)
Layer Sublayer Weight matrices Dimensionality #Parameters

Input
Token W TE [30522× 768] 23,440,648
Position W PE [512× 768] 393,216
Segment W SE [2× 768] 1,536

Encoder #1

Self-Attention
WQ,WK ,W V [768× 64] · 3 147,456
PQ
i ,P

K
i ,P V

i ([768× 64] · 3) · 12 1,769,472
WO [768× 768] 589,824

Feed-Forward
W1, b1 [768× 3072], [3072× 1] 2,362,368
W2, b2 [3072× 768], [768× 1] 2,360,064

Residual WR [768× 1] · 2 1,536
...

Encoder #12

Self-Attention
WQ,WK ,W V [768× 64] · 3 147,456
PQ
i ,P

K
i ,P V

i ([768× 64] · 3) · 12 1,769,472
WO [768× 768] 589,824

Feed-Forward
W1, b1 [768× 3072], [3072× 1] 2,362,368
W2, b2 [3072× 768], [768× 1] 2,360,064

Residual WR [768× 1] · 2 1,536
Total number of parameters 110,604,288

Table A.1: Model parameters of BERT-base. L is the number of layers, h the number of
attention heads, and dmodel the dimensionality of the input/output in the model.

72

BERT-large (L=24, h=16, dmodel=1024)
Layer Sublayer Weight matrices Dimensionality #Parameters

Input
Token W TE [30522× 1024] 31,254,528
Position W PE [512× 1024] 524,288
Segment W SE [2× 1024] 2,048

Encoder #1

Self-Attention
WQ,WK ,W V [1024× 64] · 3 196,608
PQ
i ,P

K
i ,P V

i ([1024× 64] · 3) · 16 3,145,728
WO [1024× 1024] 1,048,576

Feed-Forward
W1, b1 [1024× 4096], [4096× 1] 4,198,400
W2, b2 [4096× 1024], [1024× 1] 4,195,328

Residual WR [1024× 1] · 2 2,048
...

Encoder #24

Self-Attention
WQ,WK ,W V [1024× 64] · 3 196,608
PQ
i ,P

K
i ,P V

i ([1024× 64] · 3) · 16 3,145,728
WO [1024× 1024] 1,048,576

Feed-Forward
W1, b1 [1024× 4096], [4096× 1] 4,198,400
W2, b2 [4096× 1024], [1024× 1] 4,195,328

Residual WR [1024× 1] · 2 2,048
Total number of parameters 338,661,376

Table A.2: Model parameters of BERT-large. L is the number of layers, h the number of
attention heads, and dmodel the dimensionality of the input/output in the model.

73

A.2 Model Architecture

Figure A.1: 3D visualisation of the BERT-base architecture.1

1https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/
blocks/bert-encoder

74

https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/bert-encoder
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/bert-encoder

A.3 BERT in Google Search

(a) Example of a search for “2019 brazil traveler to usa need a visa” . Here, the word “to” and
its relationship to the other words in the query are particularly important to understanding the meaning
of the query. It is about a Brazilian traveling to the U.S., and not the other way around. With BERT,
Search is now able to grasp this nuance, providing a much more relevant result for this query.

(b) Example of a search for “do estheticians stand a lot at work” . Previously, Google Search was
taking an approach of matching keywords, matching the term “stand-alone” in the result with the word
“stand” in the query. With BERT, Search now understands that “stand” is related to the concept of the
physical demands of a job, and displays a more appropriate response.

Figure A.2: Demonstration of BERT’s ability to understand the intent behind a search query.2

2https://www.blog.google/products/search/search-language-understanding-bert/

75

https://www.blog.google/products/search/search-language-understanding-bert/

Appendix B

Additional Resources about the
Experiments

B.1 Text Classification

B.1.1 Classification Performance Metrics

In order to define some commonly used classification metrics, let us first remind the notions of
True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) samples
in a binary classification problem:

• TP are samples that were classified positive and are really positive.

• TN are samples that were classified negative and are really negative.

• FP are samples that were classified positive but should have been classified negative.

• FN are samples that were classified negative but should have been classified positive.

Here, TP, TN, FP and FN stand for the respective number of samples in each of the classes. Let
us now define accordingly some popular binary classification metrics.

Precision The precision (P) is defined as

P =
TP

TP + FP
. (B.1)

Recall The recall (R) is defined as

R =
TP

TP + FN
. (B.2)

F1-score The F1-score (F1) is defined as the weighted average between precision and recall,

F1 = 2

(
P× R
P+ R

)
. (B.3)

In order to compute these three performance metrics in a multi-class classification, two common
choices are macro-averaging and weighted-averaging. Macro-averaging is simply an arithmetic
mean of the per-class metrics,

xM =
1

N

N∑
i=1

xi, (B.4)

76

where N is the number of classes in the classification problem. With that approach, each class
is given an equal weight. In contrast, weighted-averaging takes class imbalance into account by
weighting the different metrics xi of each class by the number of samples wi from that class,

xW =

∑N
i=1wixi∑N
i=1wi

. (B.5)

Matthews Correlation Coefficient The Matthews Correlation Coefficient (MCC) is defined
as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (B.6)

The MCC is said to be more informative than the F1-score in evaluating binary classification
problems (Chicco and Jurman, 2020), as it takes into account the balance ratios of the four
confusion matrix categories (TP, TN, FP and FN). It has also been generalized to the multi-
class case, where it is defined in terms of a confusion matrix CK×K (K being the number of
classes) such that

MCC =

∑
k

∑
l

∑
mCkkClm − CklCmk√∑

k (
∑

l Ckl)
(∑

k′|k′ 6=k

∑
l′ Ck′l′

)√∑
k (
∑

l Clk)
(∑

k′|k′ 6=k

∑
l′ Cl′k′

) . (B.7)

77

B.1.2 Optimal Hyperparameters Search

Batch Learning Number of BERT NetBERT
size rate epochs P R F1 P R F1
16 5e-5 1 88.94 88.91 88.9 89.49 88.77 88.95

2 91.31 91.14 91.2 92.27 92.1 92.15
3 92.3 92.28 92.28 93.44 93.49 93.46
4 92.63 92.72 92.63 93.55 93.53 93.53
5 93.27 93.26 93.24 94.36 94.36 94.36
6 93.54 93.55 93.52 94.29 94.3 94.29

3e-5 1 89.16 89.14 89.13 90.46 90.2 90.26
2 92.05 91.91 91.96 92.49 92.28 92.36
3 92.41 92.43 92.38 93.52 93.47 93.49
4 93.07 93.12 93.06 93.35 93.45 93.37
5 93.25 93.22 93.2 94.32 94.3 94.31
6 93.63 93.64 93.62 94.46 94.47 94.46

2e-5 1 88.69 88.5 88.57 89.73 89.93 89.79
2 91.14 90.87 90.94 92.39 92.26 92.31
3 92.19 92.14 92.14 93.09 93.09 93.09
4 92.98 92.95 92.93 93.57 93.64 93.59
5 93.1 93.07 93.09 93.78 93.76 93.76
6 93.16 93.14 93.13 94.28 94.3 94.29

32 5e-5 1 88.69 88.5 88.58 90.07 89.89 89.91
2 91.76 91.49 91.58 92.21 91.93 92.01
3 92.5 92.51 92.5 93.23 93.24 93.2
4 93.02 93.01 92.99 93.12 93.22 93.14
5 93.2 93.22 93.2 93.9 93.93 93.9
6 93.58 93.59 93.58 94.43 94.47 94.44

3e-5 1 88.9 88.85 88.85 90.57 90.58 90.55
2 91.26 90.83 90.95 92.09 91.85 91.92
3 92.24 92.14 92.15 93.13 93.16 93.1
4 92.91 92.91 92.9 93.3 93.32 93.29
5 93.42 93.41 93.38 93.77 93.78 93.76
6 93.35 93.3 93.31 94.19 94.22 94.19

2e-5 1 88.32 88.1 88.18 90.04 90.14 90.08
2 90.93 90.77 90.82 92.2 91.99 92.04
3 92.27 92.26 92.25 93.09 93.16 93.11
4 92.43 92.45 92.41 93.34 93.39 93.35
5 92.62 92.62 92.58 93.66 93.72 93.67
6 92.92 92.91 92.9 93.53 93.53 93.54

Table B.1: Results of BERT and NetBERT on the validation set of the query classification
dataset. The reported metrics are the weighted-average Precision (P), Recall (R) and F1-score
(F1), all expressed in percent. The best scores appear in bold, and the second best scores are
underlined.

78

Batch Learning Number of BERT NetBERT
size rate epochs P R F1 P R F1
16 5e-5 1 84.99 83.96 84.42 84.65 84.84 84.41

2 88.21 87.21 87.65 89.52 88.68 89.03
3 88.45 88.48 88.43 91.15 89.84 90.48
4 91.17 88.1 89.57 91.46 90.36 90.89
5 90.54 90.47 0.9047 92.24 91.81 92.01
6 91.31 90.27 90.75 91.95 91.74 91.84

3e-5 1 86.2 84.17 85.1 87.3 84.81 85.91
2 89.04 88.36 88.64 89.3 89.66 89.43
3 89.11 88.85 88.92 90.04 90.98 90.5
4 91.04 88.82 89.88 92.06 89.48 90.73
5 90.7 90.01 90.28 91.94 91.74 91.83
6 91.38 90.46 90.89 92.46 91.83 92.14

2e-5 1 84.01 83.41 83.66 86.86 83.68 85.21
2 88.12 87.04 87.43 88.84 89.37 89.07
3 88.4 89.16 88.74 90.32 90.08 90.2
4 90.74 88.96 89.77 91.99 90.08 91.01
5 90.01 90.21 90.1 91.17 90.95 91.05
6 90.38 89.76 90.03 92.14 91.65 91.89

32 5e-5 1 83.3 84.16 83.71 86.07 85.61 85.71
2 88.29 88.25 88.16 88.02 90.19 89.01
3 89.07 89.48 89.26 91.66 89.82 90.66
4 91.05 89.11 90.02 91.61 89.1 90.32
5 90.69 90.04 90.34 91.97 91.03 91.48
6 91.4 90.49 90.93 92.69 91.82 92.25

3e-5 1 84.36 83.74 83.98 86.98 85.84 86.15
2 86.54 88.49 87.36 87.45 89.63 88.46
3 88.06 89.17 88.53 90.76 90.04 90.33
4 90.22 89.29 89.75 90.64 90.21 90.39
5 90.77 90.34 90.51 90.96 91.05 90.97
6 90.7 90.33 90.48 92.09 91.39 91.71

2e-5 1 83.48 83.19 83.29 86.69 84.97 85.8
2 87.68 86.92 87.2 87.38 89.43 88.29
3 89.27 88.88 89.05 91.18 89.13 90.12
4 90.86 87.81 89.26 90.76 89.82 90.26
5 89.68 88.97 89.25 91.68 90.21 90.92
6 90.23 89.56 89.86 91.23 90.18 90.69

Table B.2: Results of BERT and NetBERT on the validation set of the query classification
dataset. The reported metrics are the macro-average Precision (P), Recall (R) and F1-score
(F1), all expressed in percent. The best scores appear in bold, and the second best scores are
underlined.

79

Appendix C

About Cisco Systems

Cisco Systems is an American multinational technology conglomerate headquartered in San Jose,
California. Just as San Francisco – for which Cisco is named – provides a gateway to the Pacific
Rim, Cisco provides the networking technology that is the gateway to computer-based communi-
cation. This Silicon Valley company is the worldwide market leader in routing, switching, unified
communications, wireless communication, and security. It develops, manufactures and sells net-
working hardware, software, telecommunications equipment and other high-technology services
which are used to create Internet solutions. Cisco has a firm belief that Internet will change the
way people work, live, play and learn, and will also allow numerous leading enterprises and their
partners to benefit from a “globally networked economy”.

Cisco was founded in December 1984 by Leonard Bosack and Sandy Lerner, two computer
scientists from Stanford University who were experimenting to connect detached networks in two
separate buildings on Stanford campus. After running network cables between the two buildings,
and connecting them with bridges and then routers, the two realized that to make the disparate
networks talk to each other and share information, a new technology that could handle the
different local area protocols was needed. Hence in 1986, Bosack and Lerner manufactured the
world’s first multi-protocol router, connecting different types of networks reliably and ushering
in a communications revolution. By 1989, with only three products and 111 employees, Cisco’s
revenues were $27 million. With the start of widespread use of the Internet in the 1990s, Cisco
earned its first patent for its method and equipment for routing communication among computer
networks. In 1997, with thirty-three patents at hand, many leading-edge products and offices
worldwide, the company introduced its first voice-over-IP and fax-over-IP products as well as
a line of cable data products. The following year, Cisco introduced its first cable modem for
small offices, homes, and telecommuting as well as the Gigabit Ethernet and Layer-3 routing in
switches.

Today, Cisco continues to concentrate on its core areas of routing and switching as well as
on advanced technologies such as IP communications, wireless LAN, home networks, network
security, storage area networking, and video systems. As networking evolves from infrastructure
to platform, Cisco again is at the center of a new way of communicating through secure conver-
gence of data, voice, video, and mobile communication. Through an extensive R&D, Cisco is
continuing to fulfill its promise to transform the way people connect, communicate, collaborate,
and grow. Since its IPO in 1990, Cisco’s revenue has grown from $69 million to $51.9 billion in
2019. The company now has nearly 76,000 employees around the world. It was ranked No.69 on
the 2019 Fortune Global 500 list, and has been named the World’s Most Admired Companies by
the Fortune Magazine for many times.

80

Bibliography

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Edward O Wilson. The meaning of human existence. WW Norton & Company, 2014.

Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A brief survey of text mining. In Ldv
Forum, volume 20, pages 19–62. Citeseer, 2005.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Ken-
ton Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper.pdf, 2018.

Elizabeth D Liddy. Natural language processing. Encyclopedia of Library and Information
Science, 2nd Ed. NY. Marcel Decker, Inc., 2001.

Claude E Shannon and Warren Weaver. The mathematical theory of information. Urbana:
University of Illinois Press, 97, 1949.

Leon E Dostert. The georgetown-ibm experiment. Machine translation of languages. John Wiley
& Sons, New York, pages 124–135, 1955.

Noam Chomsky. Syntactic structures. The Hague: Mouton, 1957.

John R Pierce, John B Carroll, Eric P Hamp, David G Hays, Charles F Hockett, Anthony G
Oettinger, and Alan Perlis. Language and machines — computers in translation and linguistics.
ALPAC report, National Academy of Sciences, National Research Council, Washington, DC,
1966.

Noam Chomsky. Aspects of the theory of syntax. Cambridge: M.I.T. Press, 1965.

Charles Fillmore. The case for case. Bach and Harms (Ed.): Universals in Linguistic Theory,
1968.

Allan M Collins, M Ross Quillian, et al. Retrieval time from semantic memory. Journal of Verbal
Learning and Verbal Behavior, 8(2):240 – 247, 1969.

William A Woods. Transition network grammars for natural language analysis. Communications
of the ACM, 13(10):591–606, 1970.

Roger C Schank. Conceptual dependency: A theory of natural language understanding. Cognitive
psychology, 3(4):552–631, 1972.

81

Joseph Weizenbaum. Eliza—a computer program for the study of natural language communica-
tion between man and machine. Communications of the ACM, 9(1):36–45, 1966.

Terry Winograd. Procedures as a representation for data in a computer program for understand-
ing natural language. Technical report, Massachusetts Institute of Technology, Cambrdige
Project, 1971.

W Woods, R Kaplan, and B Nash-Webber. The lunar sciences natural language information sys-
tem: Final report (bolt, beranek and newman, cambridge, ma). Woods discusses the LUNAR
program which answers scientist’s questions about the moon rocks, 1972.

Kenneth Mark Colby. Ten criticisms of parry. ACM SIGART Bulletin, 48:5–9, 1974.

Roger C Schank and Robert P Abelson. Scripts, plans, and knowledge. In IJCAI, volume 75,
pages 151–157, 1975.

James Richard Meehan. The metanovel: writing stories by computer. Technical report, Yale
Univ. New Haven. Conn. Dept. of Computer Science, 1976.

Wendy G Lehnert. A conceptual theory of question answering. In Proceedings of the 5th inter-
national joint conference on Artificial intelligence-Volume 1, pages 158–164, 1977.

Richard Edward Cullingford. Script application: computer understanding of newspaper stories.
Technical report, Yale Univ. New Haven. Conn. Dept. of Computer Science, 1978.

Roger C Schank and Robert Wilensky. A goal-directed production system for story understand-
ing. In Pattern-directed inference systems, pages 415–430. Elsevier, 1978.

Jaime Guillermo Carbonell. Subjective understanding: computer models of belief systems. Tech-
nical report, Yale Univ. New Haven. Conn. Dept. of Computer Science, 1979.

Eugene Charniak. Passing markers: A theory of contextual influence in language comprehension.
Cognitive science, 7(3):171–190, 1983.

Michael G Dyer. The role of affect in narratives. Cognitive Science, 7(3):211–242, 1983.

Christopher K Riesbeck and C Martin. Direct memory access parsing. Experience, memory and
reasoning, pages 209–226, 1986.

Barbara J Grosz, Douglas E Appelt, Paul A Martin, and Fernando CN Pereira. Team: an
experiment in the design of transportable natural-language interfaces. Artificial Intelligence,
32(2):173–243, 1987.

Graeme Hirst. Semantic interpretation and ambiguity. Artificial Intelligence, 34(2):131 – 177,
1987. ISSN 0004-3702.

Lalit R Bahl, Peter F Brown, Peter V de Souza, and Robert L Mercer. A tree-based statistical
language model for natural language speech recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 37(7):1001–1008, 1989.

Eric Brill, David Magerman, Mitchell Marcus, and Beatrice Santorini. Deducing linguistic struc-
ture from the statistics of large corpora. In Proceedings of the 5th Jerusalem Conference on
Information Technology, 1990.’Next Decade in Information Technology’, pages 380–389. IEEE,
1990.

Mahesh V Chitrao and Ralph Grishman. Statistical parsing of messages. In Speech and Natural
Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27, 1990,
1990.

82

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra, Frederick Jelinek,
John Lafferty, Robert L Mercer, and Paul S Roossin. A statistical approach to machine
translation. Computational linguistics, 16(2):79–85, 1991.

Hideki Tanaka. Verbal case frame acquisition from a bilingual corpus: Gradual knowledge ac-
quisition. In Proceedings of the 15th conference on Computational linguistics-Volume 2, pages
727–731. Association for Computational Linguistics, 1994.

Ilussein Allmuallim, Yasuhiro Akiba, Takefumi Yamazaki, Akio Yokoo, and Shigeo Kaneda. Two
methods for learning translation rules from examples and a semantic hierarchy. In COLING
1994 Volume 1: The 15th International Conference on Computational Linguistics, 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Eleventh annual conference of the international
speech communication association, 2010.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Michał Daniluk, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel. Frustratingly short
attention spans in neural language modeling. arXiv preprint arXiv:1702.04521, 2017.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international conference
on Machine learning, pages 160–167, 2008.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with
gradient-based learning. In Shape, contour and grouping in computer vision, pages 319–345.
Springer, 1999.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013b.

David Mimno and Laure Thompson. The strange geometry of skip-gram with negative sampling.
In Empirical Methods in Natural Language Processing, 2017.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic
structure of word senses, with applications to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018.

Maria Antoniak and David Mimno. Evaluating the stability of embedding-based word similarities.
Transactions of the Association for Computational Linguistics, 6:107–119, 2018.

Laura Wendlandt, Jonathan K Kummerfeld, and Rada Mihalcea. Factors influencing the sur-
prising instability of word embeddings. arXiv preprint arXiv:1804.09692, 2018.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

83

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for
modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075,
2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-
works. In Advances in neural information processing systems, pages 3104–3112, 2014.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Ko-
ray Kavukcuoglu. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099,
2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural infor-
mation processing systems, pages 5998–6008, 2017.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster,
Llion Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, et al. The best of both worlds:
Combining recent advances in neural machine translation. arXiv preprint arXiv:1804.09849,
2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in neural
information processing systems, pages 2692–2700, 2015.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
neural information processing systems, pages 1693–1701, 2015.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

84

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances in neural
information processing systems, pages 3079–3087, 2015.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in
neural information processing systems, pages 5754–5764, 2019.

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, 1957.

Thomas K Landauer and Susan T Dumais. A solution to plato’s problem: The latent seman-
tic analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, 104(2):211, 1997.

Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from lexical co-
occurrence. Behavior research methods, instruments, & computers, 28(2):203–208, 1996.

Douglas LT Rohde, Laura M Gonnerman, and David C Plaut. An improved method for deriving
word meaning from lexical co-occurrence. Cognitive Psychology, 7:573–605, 2004.

Rémi Lebret and Ronan Collobert. Word emdeddings through hellinger pca. arXiv preprint
arXiv:1312.5542, 2013.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:
135–146, 2017.

Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.

Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learning generic context embed-
ding with bidirectional lstm. In Proceedings of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 51–61, 2016.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pages
6294–6305, 2017.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. Ernie: Enhanced
language representation with informative entities. arXiv preprint arXiv:1905.07129, 2019a.

Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert: Modeling clinical notes and
predicting hospital readmission. arXiv preprint arXiv:1904.05342, 2019.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240, 2020.

Iz Beltagy, Arman Cohan, and Kyle Lo. Scibert: Pretrained contextualized embeddings for
scientific text. arXiv preprint arXiv:1903.10676, 2019.

85

Jay Alammar. The Illustrated Transformer. Retrieved from http://jalammar.github.io/
illustrated-transformer, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807–814, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jay Alammar. The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning).
Retrieved from http://jalammar.github.io/illustrated-bert, 2019.

Wilson L Taylor. “cloze procedure”: A new tool for measuring readability. Journalism quarterly,
30(4):415–433, 1953.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv preprint
arXiv:1901.07291, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019a.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang.
Ernie 2.0: A continual pre-training framework for language understanding. arXiv preprint
arXiv:1907.12412, 2019.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.
Ctrl: A conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858, 2019.

Aiting Liu, Ziqi Huang, Hengtong Lu, Xiaojie Wang, and Caixia Yuan. Bb-kbqa: Bert-based
knowledge base question answering. In China National Conference on Chinese Computational
Linguistics, pages 81–92. Springer, 2019b.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, YuxiangWu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze. Bert is not a knowledge base (yet): Factual
knowledge vs. name-based reasoning in unsupervised qa. arXiv preprint arXiv:1911.03681,
2019.

Matthew E Peters, Mark Neumann, IV Logan, L Robert, Roy Schwartz, Vidur Joshi, Sameer
Singh, and Noah A Smith. Knowledge enhanced contextual word representations. arXiv
preprint arXiv:1909.04164, 2019.

86

http://jalammar.github.io/illustrated-transformer
http://jalammar.github.io/illustrated-transformer
http://jalammar.github.io/illustrated-bert

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using gpu model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

C Rosset. Turing-nlg: A 17-billion-parameter language model by microsoft. Microsoft Blog, 2019.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: The impact of student initialization on knowledge distillation. arXiv preprint
arXiv:1908.08962, 2019.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64–77, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Hug-
gingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771,
2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Amir Bakarov. A survey of word embeddings evaluation methods. arXiv preprint
arXiv:1801.09536, 2018.

Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):6,
2020.

Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics,
pages 569–593. Springer, 1992.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

87

Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets: Data mining (ch01).
Min. Massive Datasets, 18:114–142, 2011.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter
of the association for computational linguistics: Human language technologies, pages 746–751,
2013c.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019b.

Han Xiao. bert-as-service. https://github.com/hanxiao/bert-as-service, 2018.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Bin Wang and C-C Jay Kuo. Sbert-wk: A sentence embedding method by dissecting bert-based
word models. arXiv preprint arXiv:2002.06652, 2020.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 2019.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28
(2):129–137, 1982.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence encoder.
arXiv preprint arXiv:1803.11175, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. arXiv
preprint arXiv:1705.02364, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815–823, 2015.

Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadra-
tiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine
und angewandte Mathematik, 134:198–287, 1908.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ ques-
tions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 1972.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford,
et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

88

https://github.com/hanxiao/bert-as-service

