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Abstract

Microgrids are electrical power systems made of consumption, generation, and
storage devices. Their emergence raises some questions concerning the generation
of reliable energy forecasts. Indeed, each microgrid has its characteristics, it can
integrate different energy resources and be subjected to different loads. Moreover,
the production of these energy resources and the load can be subjected to many
variations over time (due to the weather, the inherent characteristics of the resource,
socio-economic factors). Therefore, the automatic generation of energy forecasts is a
challenging task. This thesis develops a methodology for selecting the hyperparameters
and features of existing forecasting models and for using those optimized models for
autonomously generating forecasts.

To this end, several forecasting models were optimized. These models were
statistical time series models such as the naive forecaster or the exponential smoothing
technique and some artificial intelligence-based models such as the linear regression,
the gradient boosting, or the multilayer perceptron. Since the performances of
different models can vary over time, the usage of a multi-model forecasting system is
then analyzed. Multi-model forecasting enables to periodically calibrate the weights
assigned to the different models and thus improves the final forecast. The multi-model
methods tested are based on the linear combination of the different models. Firstly,
some simple multi-models producing the mean or the median of the forecasts. Then,
some methods based on inverse MSE weighting and linear regression weighting have
been tested.

The individual models that produced the best results are the gradient boosting
regression and the multilayer perceptron. The multi-model forecasting method that
led to the best results is the multi-model selecting the median of the forecasts. It is
also the method with the lowest costs in terms of computational time.
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Introduction

Context

In the sector of energy, efficient use of the resources relies on a good knowledge of
the demand and of the supply. Forecasts of the production and of the consumption
of electricity can be used to make decisions in terms of operational planning. At the
scale of a microgrid, the ability to forecast future energy consumption and production
for operating the system in an efficient way is also a challenge.

Microgrids are localized groups of interconnected loads and energy resources
that normally operate connected to and synchronous with the traditional centralized
grid, but can disconnect and operate autonomously[11]. Typically, solar energy can
be one of the resources that operate within a microgrid. It is an intermittent and
unstable production that can depend on many factors such as the solar irradiation,
the shading, or the orientation of the panels. The load consumption can also be
affected by various factors such as the weather, human behaviors, or economic factors.

Thanks to the development of smart meters, it is possible to store the historical
values of energy production and load consumption of a microgrid. This historical
information can be used jointly to weather forecasts to produce forecasts of consumption
and production. In this work, such tools will be used to measure the load consumption
of a microgrid and the production of electricity through photovoltaic panels.

Traditional forecasting techniques are based on time series or regression analysis.
Time-series models widely used include the exponential smoothing techniques and
the autoregressive integrated moving average (ARIMA). Other traditional forecasting
techniques include artificial intelligence-based methods such as regression trees or
neural networks. Forecasting can be done thanks to single output models that
produce one forecast per training samples, but it can also be done with multi-output
models that produce multiple forecasts (e.g. all forecasts for 24 hours ahead).

Most artificial intelligence-based methods need to be finely tuned in order to
optimize the performances of the model created. The task of automatically selecting
these hyperparameters is challenging. The selection of the input features for these
models is also an important choice that needs to be studied. Indeed, the input
features could be composed of weather information such as the temperature, the
solar irradiation, the wind speed. It could also include some seasonality variables or
even lagged observations of the quantities to forecast.
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As the distribution of the load and of the Photovoltaic production (PV) can
change, the performances of a model can degrade as time passes, which is called
model drift. Thus, periodical retraining of the models should be done to ensure that
they adapt to the new observations. The choice of the retraining frequency should
be based on a trade-off between computational cost and predictive performances.

The selection of the number of training samples is also an important parameter.
Indeed, the performances of a model trained on a too large training set can decrease
because of the change of data distribution over time. Moreover, the number of
training samples required could vary depending on the complexity of the model used,
the amount of noise in the data, and so on. Therefore, the training set size is an
important parameter that needs to be selected carefully.

Once all these parameters have been determined several strategies can be used
for generating forecasts. The first strategy consists of the selection of one model for
producing the forecasts. Typically, the forecasting models are evaluated on a dataset
and the model with the best performances is selected. A first problem related to this
solution is the fact that the distribution of the data may change over time. Thus, the
best model used may not be the best one in the future. Moreover, in some situations,
several models can have similar performances and it may not be possible to identify a
single "best" model. These drawbacks can be overcome with multi-model forecasting
which is the second strategy that can be used in this context. With this method,
the strength of several models can be combined together. Typically, multi-model
forecasts can be obtained by using a linear combination of the forecasts from the
individual models. In 1969, Granger and Bates[3] studied a model that constructs
a weighted average of the forecasts that minimized the mean square error of the
combined forecast. In more recent studies, it was shown that simple equal-weighted
combinations might in practice perform better than more sophisticated methods[5].

Overview

In this thesis, a methodology for building an automated forecasting system is
introduced. This methodology is tested thanks to the usage of existing time series of
the PV production and load consumption of a real microgrid. The construction of
this system involves several steps. Firstly, some forecasting models need to be built
and tuned and the selection of the input features for training the models needs to
be done. The models used are the seasonal naive forecaster (using the rule "today
equals tomorrow"), the exponential smoothing technique, the linear regression, the
gradient boosting method and the multilayer perceptron. After that, the amount of
data necessary for training each model is selected and the impact of the retraining
frequency on the performances of the models is analyzed. Once the models’ parameter
and hyperparameters are known, they can be used to produce a set of forecasts that
are stored in a dataset. Finally, the forecasts of the individual models are analyzed
and used to produce multi-model ensemble forecasts. Some simple combination
methods such as the mean or the median forecast are first tested. Then, adaptative
methods such as inverse MSE weighting or the weighted linear regression are used.
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Results
Input features selection For forecasting the load, the best performances were
observed when the input features were simultaneously composed of weather variables
(solar irradiation, temperature, relative humidity, wind speed, the quantity of
precipitations) and variables for capturing the seasonality (the day of the week,
the month of the year and the hour of the day). For the forecasting of the PV,
the usage of weather variables specific to the PV (solar irradiation, temperature,
and solar irradiation squared) has led to the best performances for most of the
models. The introduction of a variable for capturing the hour of the day improved
the performances for some other models.

Analysis of the training set size For forecasting the load, training the models
on 20 to 32 days of data in the past was optimal. For forecasting the PV production,
the multi-output models required shorter training periods (between 6 to 13 days of
data) while the single output models required longer training periods (between 21
and 26 days of data).

Analysis of the retraining frequency For forecasting the load, weekly retraining
of the models provides a maximum degradation of the performances1 of 5%. For
forecasting the PV production, the single output models could be retrained weekly
and the multi-output models required a higher retraining frequency (retraining every
2 or 6 days).

Before the combination of the individual models together, the models based on
gradient boosting and the multilayer perceptron are the models that provided the
best performances both for forecasting the load and the PV.

Multi-ensemble forecasting For the forecasting of the load, the multi-model
ensemble forecasting technique that produced the best performances in terms of
mean absolute error is the multi-model forecast constructed by selecting the median
of the forecasts from different models. In terms of mean squared error, the usage
of a linear regression trained on the forecasts of the individual models produced
the best performances. For forecasting the PV production, the multi-model that
provide the best performances in term of mean absolute or mean squared error was
the median. The usage of this method also provided better performances than all
individual model used alone.

Organization
Chapter 1 discusses the problem formulation from an abstract and then from a
concrete point of view. The chapter 2 describes the load and PV time series of the
system studied. The chapter 3 provides the theoretical background and the chapter
4 explains the methodology followed in this thesis in order to find a solution to the

1in term of NRMSE (Eq. 3.3)
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problem formulated. The chapter 5 summarizes the optimization of the models. In
chapter 6, a dataset is constructed with the forecasts of the different models and
the performances of the different models are analyzed. Finally, in chapter 7, the
multi-model ensemble forecasting techniques are tested and compared in several
ways.
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Chapter 1

Problem specifications

1.1 Abstract Problem
The goal of this thesis is to develop and validate an innovative methodology to
select the hyperparameters and features of existing forecasting models for forecasting
energy generation and consumption of microgrids. The input features used are based
on weather variables and observations of the load and PV time series.

Suppose xT = {x1, x2, ..., xT} is a time series of the observed load and yT =
{y1, y2, ..., yT} is a time series of the observed PV production of a microgrid. The
goal of the forecasting problem is to produce forecasts of xT+h and yT+h made at
time T for h steps ahead. Let’s consider that the available weather forecasts at time
T are given by wT+h′ = {w1, ..., wT+h′} with h′ > h. Then, the forecasting problem
can be expressed in a generic way as finding the function f and g such that:

x̂T (h) =f(xT ,wT+H′) (1.1)
ŷT (h) =g(xT ,wT+H′) (1.2)

that minimizes the loss functions L1 and L2.

L1(XT+h − x̂T (h)) (1.3)
L2(YT+h − ŷT (h)) (1.4)

where XT+h and YT+h are the real observations.

The forecast x̂N (h) can be either a deterministic value or a random variable with
an explicit density distribution.

The forecasting horizon is the number of steps ahead for which forecasts need
to be made. Depending on the forecast horizon, forecasts can be characterized as
short-term (from a few minutes up to a few days ahead), middle-term (from a few
days to a few months ahead), or even long-term (from a few months to a few years).
In this thesis, a short-term horizon of one day is selected. One day ahead forecasts
can be used for operational planning.

The forecasting resolution is the distance in time between two forecasts. In this
problem, the forecasting resolution is selected to be 15 minutes because it corresponds
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to the Belgium market period.

The forecasting frequency represents the frequency at which the forecasts are
produced. Since the forecasts are produced for one day ahead, the forecasting should
be at least done daily to produce forecasts all the time. In this work, the forecasting
was chosen to be performed once per day as it reduces the computational load.

1.2 Concrete Problem
Concretely, this thesis focuses on the development of a methodology for building an
automated forecasting system. This system is represented in figure 1.1.

Data 
collection

Training
Forecasts
Delivery

Optimization

DB

Monitoring
(calibration)

Trained
models

Periodic retraining

Continuous 

Methods

Models

Ensemble 
forecastsCombination

Continuous 

Periodic monitoring

Figure 1.1: Forecasting system

This system is based on a continuous collection of data. The observations of the
load and PV production as well as the weather information would be continuously
collected.

The first stage of this system involves the selection of forecasting methods and
their usage for producing optimized models. Firstly, for each method, the good
combination of input variables must be selected and the hyperparameters of the
forecasting models need to be optimized.

The number of training samples for training the forecasting models needs to
be determined as well. Indeed, the training set size can have an impact on the
performances of the models and it must be selected as a trade-off. If the training set
size is too small, the training is performed on a small number of samples and it may
not well generalize. By contrast, if the training set size is too large, it increases the
chance that the data-generating process has changed over the period covered by the
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window. Thus, the oldest data would no longer be representative of the system’s
current behavior. Depending on the complexity of the model used, the size of the
training set that leads to the best performance of the model can be different. An
additional question concerns the choice of a training set of fixed length (i.e. training
done with a sliding window) or a training set size of increasing length (i.e. training
done with an expanding window). In this thesis, the training set will be a sliding
window of fixed size.

As time passes, the data distributions may deviate from those of the original
training set. Thus, the performances of the models could degrade, which is called
model drift. If a model’s predictive performance has fallen due to changes in the
environment, the solution is to retrain the model on a new training set which reflects
the current reality[14]. It can be done thanks to two strategies. The first strategy
consists in periodically retraining the models. In this case, the selection of the
retraining frequency is an important parameter. If the retraining period is too short,
the model will be updated unnecessarily which will increase the costs in terms of
computation. If the retraining period is too long, the model would be suboptimal.
The second strategy is to automate the retraining of the model when a model drift
is observed. With this strategy, a threshold of divergence must be selected and will
be used to trigger model retraining. The threshold is a very sensitive parameter and
must be selected very carefully. In this thesis, the strategy used is periodic retraining
to decrease the overhead linked to the management of model drift.

Once all the parameters and hyperparameters have been determined, the individual
models can be used to automatically generate forecasts. Two main strategies can
then be used. The first strategy consists in selecting a single model for producing
the forecasts. The second strategy consists in combining the individual models to
produce forecasts. Thanks to this method, the strengths of the different models can
be exploited together. In this thesis, multi-model forecasting is used and a period
recalibration of the model is used to produce the multi-model forecasts.

Finally, several constraints must be taken into account during the construction
of the system. It should notably be able to run on a personal computer and the
targeted computational time should be reasonable.

7
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Chapter 2

Data

2.1 Introduction
This chapter introduces the load and the PV time series. It starts by a description
of the two time series and then discusses the different factors influencing the load
consumption and the PV production. The time series are studied during the period
from the 2nd of September 2019 to the 31st of December 2019 with a 15-min
resolution. The forecasting models will produce forecasts during the period from the
14th of October 2019 to the 31st of December 2019.

The system studied is a three-phase system. Initially, the measured observation
(of the load or of the PV) x̃ji on phase j at time step i is an instantaneous value
available with a resolution of 10 ms. The values xjt with a resolution of 15 mins is
obtained by averaging the measured observations [x̃N×t, x̃N×t+1, ..., x̃N×t+N−1]. The
data points with a 15 min resolution are thus obtained by doing:

xjt = 1
N

N−1∑
i=0

x̃N×t+i (2.1)

where N = 15∗60∗1000
10

[ms]
[ms] .

Once this values have been obtained, the missing data points have been replaced
by linear interpolation and negative points were set to 0.

The load (resp. PV) described below are actually the sum of the load (resp. PV)
on each phase. If xji represents the load (resp. PV) at time step i on phase j, then
the total load (resp. PV) is given by:

xt = x1
t + x2

t + x3
t

2.2 Load Consumption
Over the period from the 2nd of September 2019 to the 31st of December 2019, the
mean of the load is 778.4 W and its standard deviation is 1226 W1. It is interesting to

1The mean and standard deviations during the period from the 14th Oct. to the 31st of Dec.
are given by 971.7 W and 1412.5 W

9



note that the standard deviation is quite high compared to its mean. In figure 2.1, the
daily mean and standard deviation of the load can be seen during the whole studied
period. We can observe that the mean and standard deviation change significantly
as time passes and that they tend to increase over time. The fact that the load
increases is expected given that the studied period starts in late summer and ends
in early winter. Thus, the sunshine duration and the temperature decreases which
might lead to increases in the heating, lighting,...

From this figure, it can also be observed that there is a weekly seasonal pattern
with high mean and standard deviation of the load during the weekdays and lower
load during the weekends. In figure 2.2, box plots of the load observations by day
of the week are shown. It can again be observed that there are some variations of
consumption based on the day of the week. For example, on Wednesdays, 75% of
the data points are lower than 460 W while on Tuesdays, 75% of the datapoints
are lower than 2525W. During weekends and on Wednesdays, the load seems to be
significantly lower than the rest of the week.

Figure 2.1: Daily mean and standard deviation of the load (W)

Figure 2.2: Boxplot of the load by day of the week
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2.2.1 Analysis of the daily data
Figure 2.3 represents the daily distribution of the data under the form of box plots.
Thanks to this figure, it can be observed that the median of the observations at a
given time is always situated between 100 and 500 W independently from the time
of the day. Between 10 PM and 7 AM, the box plots are small compared to the box
plots of the rest of the day. It suggests that there are high-level chances that the
load will be in this range during this period of the day. During the rest of the day
(from 7 AM to 10 PM), the range of values that can take the load can reach huge
values up to 3300 W for the 75 percentile and 7550 W for the maximum whisker.
This uneven distribution shows that the load in the most positive quartile group can
vary considerably.

Figure 2.3: Boxplot of the daily load (W)

2.2.2 Correlation of lagged values
In figure 2.4, scatter plots represent the correlation between the load at time t on the
x-axis and the lagged loads on the y-axis. On the plot with a lag which is equal to 15
mins, the representation of a single line of best fit is complicated. It is an indication
of the fact that the correlation between an observation at time t and at time t+ 1 is
low. The figures obtained when using a lag of 15 or 30 mins are relatively similar.
When the lag size increases, the correlation between the loads starts to have an L
shape (especially for a lag of 12 hours2).

2Indeed, during the night the load is very close to 0. Thus, 12 hours later during the day, the
load can take a wide range of values.
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Lag = 15 mins Lag = 30 mins Lag = 1 hour

Lag = 12 hours Lag = 1 day Lag = 7 days

Figure 2.4: Scatter lagged plots for different lags for forecasting the load

2.3 Photovoltaic production
The mean PV production over the whole period is given by 252.7 W and its standard
deviation is given by 493 W3. In figure 2.5, the mean and standard deviation of
the daily PV production are provided. At the beginning of the studied period, the
standard deviation is important compared to the mean daily production. However, as
time moves on, the mean and especially the standard deviation of the PV production
decrease. Since the PV production depends on the solar irradiance, this is an expected
behavior as the daily solar irradiance decreases during most of the studied period4.

Figure 2.5: Daily mean and standard deviation of the PV production (W)

3The mean and standard deviations during the period from the 14th of Oct. 2019 to the 31st
of Dec. 2019 are given by 146.4 W and 293.3 W

4From the 2nd of September to the 22nd of December (winter solstice)
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2.3.1 Analysis of the daily data
In the figure 2.6, a box plot of the daily PV production is provided. From this
data, it can be observed that the PV production is zero between 9 PM and 6 AM.
The median of the PV production increases until 12:45 PM and then the median
decreases. In the middle of the day, the data distribution is more spread and the
higher observed PV production reaches 3330 W at 1:30 PM.

Figure 2.6: Boxplot of the daily PV production (W)

As can be seen in figure 2.7, the observations by day of the week are very similar
to each other. The higher 75 percentile reaches 200 W so it means that at least 75%
of the data points have values lower than 200W.

Figure 2.7: Boxplot of the PV production by day of the week

2.3.2 Scatter lagged plot
In the figure 2.8, several scatter lagged plots are used for representing the correlation
between the PV production at time t on the x-axis and the PV production at time
t+ 1 (e.g. 15 minutes later) on the y-axis. From this figure, it can be observed that
the PV production at a given time, and the PV production 15 minutes later are
two variables that are positively correlated. Indeed, as one variable increases, the
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other one increases and, conversely, when one variable decreases, the other variable
decreases as well. The same observations can be made when the lag size is 30 mins
or 1 hour but the correlation decreases slightly since the points are more spread onto
the plots. When considering the plot with a lag of 12 hours, it can be observed that
the PV production following or preceding a 0 PV production by 12 hours can take a
wide range of values. Indeed, the PV production should be 0 during the night and
12 hours it can change greatly.

Lag = 15 mins Lag = 30 mins Lag = 1 hour

Lag = 12 hours Lag = 1 day Lag = 7 days

Figure 2.8: Scatter lagged plots for different lags

2.4 Factors influencing the load consumption
In this section, the main factors influencing the load consumption are described.
These factors can be categorized as time factor, weather, economy and random
disturbances[8].

Time The electric load of a microgrid is characterized by some seasonal pattern.
It can depend on the season of the year, the day of the week or the hour of the day.

Weather The weather is also an important component that can have an impact
on the load. Depending on the heating system used and on the presence of cooling
systems, the temperature can be an important parameter. The solar irradiation
can influence load consumption due to lighting systems. Humidity can affect the
apparent temperature while it has no effect on the temperature and impact the
behavior of consumers. The precipitations can also have an effect on the load directly
and indirectly. It can have a direct effect on the behavior of individuals and have an
indirect effect due to the decrease in temperatures linked with precipitations. At
low humidity rates, the speed of wind lowers the apparent temperature and increases
the rate of evaporation of perspiration from the human body therefore it gives the
cooling effect[8]. Finally, the cloudiness can affect the temperature as well as the

14



light intensity at daytime.

Socio-economic factors Some socio-economic factors can impact load consumption.
Such factors could include, the price of the electricity, the people’s buying capabilities,
the difference in pricing of the electricity during the day and during the night, and
so on.

2.5 Factors influencing the PV production
In this section, the main factors influencing the PV production are described. These
factors can be classified as environmental factors, PV system factors, installation
factors, cost factors, and miscellaneous factors[9].

Solar irradiation The first environmental factor that affects PV production is
solar irradiation. Indeed, the efficiency η of a PV is given by:

η = Pmax

G× A
where Pmax is the maximum power point, G is the input solar irradiance under
standard test conditions and A is the surface area of the panel.

Temperature A second factor that can affect the PV production is the temperature.
Its effects can depend on the kind of panel used.

Dust Some of the sunlight can be blocked from the PV module due to the presence
of dust which thus causes loss in the generated power since the solar irradiance is
scattered on the surface of the solar panel.

Shading. The PV production can be reduced because of shading. The losses
due to shading depend on the number of shaded cells, the type of panels used, the
connections between the panels, and several other factors such as the size of the
nearby buildings and the presence of trees or cross-shading from other panels.

Additional factors PV production can also be affected by the inherent characteristics
of the PV panels, by some installation factors (e.g. angle of inclination, and
orientation of the PV panels), or by some miscellaneous factors (e.g. degradations,
glass breakage, presence of hot spots).

2.6 Conclusion
The load time series can be subjected to wide variations and is characterized by
some seasonality patterns based on the hour of the day or the day of the week. By
contrast, the PV time series takes a lower range of values and has some seasonality
patterns based on the hour of the day. Both time series are affected by a variety of
factors including the weather. In the next chapter, the methodology used in this
thesis is summarized.
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Chapter 3

Theoretical background

3.1 Forecasting techniques

For producing forecasts from a set of historical data and explanatory variables, several
methods can be used. Traditionally, statistical time series forecasting methods such
as the exponential smoothing technique or ARIMA are used for producing forecasts.
More recently, artificial intelligence-based methods have been widely used as well.
In this thesis, both types of models are used. The statistical time series methods
used are the seasonal naive forecaster and the exponential smoothing technique. The
artificial intelligence-based methods are the linear regression, the gradient boosting,
and the multilayer perceptron. All those models are described in detail in appendix
A.

3.2 Metrics

Several criteria can be considered when choosing a forecasting method. The first
criteria that is typically considered is the forecasting accuracy.

3.2.1 Forecasting accuracy

The forecasting accuracy can be represented in different ways depending on the fact
that the forecast is given as a point forecast or a probabilistic forecast. Let’s suppose
a model produces forecasts x̂1, ..., x̂N during N time steps. If the actual observations
at those time steps are given by X1, ..., XN , then, several metrics exist to measure
the error. Different choices in the metric could lead to different parameter estimates
and could even result in a different model structure.

In this thesis, the main metrics used for point forecasts are the mean absolute
error(MAE) and the root mean squared error(RMSE). These metrics are scale-
dependent errors. Thus, the error is on the same scale as the data and they cannot
be used to make comparisons between series that involve different scales.
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MAE The mean absolute error is a measure that assumes that the loss function is
linear. It is given by the average of the absolute error:

MAE =
N∑
i=1

|Xi − x̂i|
N

(3.1)

RMSE The root mean squared error is a measure that assumes that the loss
function is quadratic. With this measure, large errors are more penalized. The
RMSE is given by:

RMSE =

√√√√ N∑
i=1

(Xi − x̂i)2

N
(3.2)

Since the distribution of the observed variables may vary over time, these metrics
have also been normalized in some experiments by dividing by the mean observation.
These normalized versions are thus given by:

NMAE = 1
X
MAE (3.3)

NRMSE = 1
X
RMSE (3.4)

with X = 1
N

N∑
i=1

Xi (3.5)

CRPS In some experiments described in the appendix, the gaussian process
regressor has been tested. Since it produces probabilistic forecasts, different metrics
must be used for measuring the accuracy. The Continuous Ranked Probability Score
(CRPS) is a scoring rule that can be used in that context. The CRPS evaluates
the area between the predictive cumulative distribution function (CDF) and that
of the observation1. It can be directly compared to the MAE criterion used for
point forecasts, since the CRPS is its generalization in a probabilistic forecasting
framework[7].

CRPS(F, y) =
∫ +∞

−∞
(F (x)− 1{y ≤ x})2 dx = EF |Y − y| −

1
2EF |Y − Y
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1It is minimal when the true distribution of events is used as predictive density.
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3.2.2 Time and complexity
The time an algorithm takes to train a model can be of great importance in the
algorithm selection process. Indeed, an algorithm with a short fitting time could
be chosen over an algorithm that has a longer fitting time but which produce more
accurate forecasts. The training time depends on the algorithm selected as well as
the number of training samples that are used to train the model.

The space complexity is also an important parameter for selecting a model as
the models are trained on architecture with limited capabilities.

3.3 Model evaluation techniques
Three main methods exist to evaluate the performances of forecasting models. The
first method is the simple splitting of the data in a training and a validation set.
The second method is based on cross-validation and the third method is the Akaike’s
Information Criterion(AIC) ( see appendix A.3). The splitting of the data in a
training and a validation set is simpler and faster to apply than the other methods
but the estimate of the error on the validation set can be biased. The cross-validation
is more complex and requires to retrain the different models several times on different
training sets which means that the time needed to perform the evaluation of the
model can be longer. However, the bias of the estimate of the error can be lower.
The AIC is useful for selecting between models in the same class2 but it is not useful
for selecting models from different classes. For these reasons, the performances are
mainly evaluated based on cross-validation in this thesis.

In figure 3.1, a typical example of cross-validation for time series is provided. In
this example, the training samples are represented in blue and the validation samples
are represented in red. The training samples are used for training the model and the
validation samples are used for evaluating the performances of the model on new
data. In figure 3.1, the training set is always prior to the validation set. Indeed, with
time series, the data used for training the model should not be posterior to the data
used for evaluation. Since it is not possible to obtain a reliable forecast based on
a small training set, the earliest observations are not considered as validation sets.
The forecast accuracy can be computed by averaging over the validation sets.

This procedure can be generalized to allow multi-step ahead errors to be used.
The validation set should ideally be at least as large as the maximum forecast
horizon required. Another variation of the cross-validation procedure developed in
figure 3.1 is a procedure in which the training is of fixed size. In this situation, the
cross-validation is a sliding window procedure.

2For example, it can be used to select an ARIMA model between candidate ARIMA models or
an ETS model between candidate ETS models.
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Figure 3.1: Time-series cross validation[10]

This procedure can be generalized to allow multi-step ahead errors to be used.

3.4 Multi-model forecasting
The usage of metrics for comparing forecasting models is a great tool for assessing
the performances of different models. However, selecting the model with the best
performances will not necessarily provide the best results. Some studies showed that
the combination of forecasts from multiple models outperforms individual models in
a wide range of forecasting problems[1][4].

Technically, the combined forecast g(f (1), f (2)) dominates individual forecasts f1
and f2 if

E[L(f (i), y)] > min
f(.)

E[L(g(f (1), f (2)), y] for i = 1, 2 (3.6)

where y is the observation, L(., .) is a loss function .

Let’s consider the combination scheme for point forecasts. The objective is to find
the optimal combination of forecasts that minimizes an error loss. Mathematically,
if f (1)

i , ..., f
(N)
i are the forecasts from N individual models for time step i and if yi

is the real observation at time step i, then the optimal combination is given by the
function g:

g(f (1)
i , ..., f

(N)
i ) (3.7)

that minimizes
E[L(g(f (1)

i , ...f
(N)
i ), yt)] (3.8)

This function g can be reduced to a simple linear combination of the individual
forecast. In this case, the combined forecast for time step i is given by:

gi = w0 +
N∑
j=1

w
(j)
i f

(j)
i (3.9)

where w(j)
i are the combination weights.
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Simple combination In some simple implementations, the forecasts combination
can be done without observing the data underlying the forecasts. A first example of
this methodology is average forecasting in which the multi-model forecast is given as
the average of the individual forecasts. The combination weights are then given by:

w0 = 0 w(j) = 1
n
j ∈ [1, N ] (3.10)

Another simple method involves the usage of the median of the forecasts. Let’s
suppose the forecasts of the N models for time step i are ordered such that f (1)

i ≤
f

(2)
i ≤ ... ≤ f

(N−1)
i ≤ f

(N)
i , then, the median forecast is given by:

gmediani = f
(bN+1

2 c)
i + f

(dN+1
2 e)

i

2 (3.11)

Similarly, the truncated mean can be used. If f (1)
i , ..., f

(N)
i is an ordered list, then

the truncated mean can be obtained by trimming the top and the bottom λ%.

gtrunci = 1
N(1− 2λ)

d(1−λ)Ne∑
j=bλN+1c

f
(j)
i (3.12)

Estimated weight combination In other methods, the data underlying the
forecasts are used to compute the combination weights. Firstly, the inverse MSE
weighting is a method in which the weight relative to a model is inversely proportional
to its MSE computed on a past window of time. Mathematically, the weight w(j)

T+1
computed at time step T for time step T + 1 for model j is given by:

ŵ
(j)
T+1 = 1

MSE
(j)
T,w

× 1∑N
j=1 1/MSE

(j)
T,w

(3.13)

MSE
(j)
T,w =

∑w
i=1(f (j)

i − yi)2

w
(3.14)

The multimodel superensemble technique was introduced in 1999 by Krishnamurti
et al.[2]. This method is based on the minimization of a mean squared error which
can be denoted by G. If gLRi represents the superensemble forecast at time i and yi
represents the observed values at time i, G is thus given by:

G =
T∑

t=T−w
(gSEt − yt)2 (3.15)

where w represents the size of the training period and T represents the time of the
last values from the training period.
If the number of model is given by N and the model forecasts are denoted by
(f (1)
i , ..., f

(N)
i ) at time i, then the superensemble forecasts is given by

gSEi = ȳ +
N∑
j=1

wj(f (j)
i − f̄ (j)) (3.16)

where ȳ is the mean of the observations and f̄ (j) is the forecast mean for a model j
for a given training period.
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Chapter 4

Methodology

4.1 Introduction

This chapter introduces the methodology followed to analyze an automated forecasting
system for forecasting PV production or load consumption. The approach followed
three main stages.

The first stage involves the collection of the data, the preparation of the data
and the construction of the default models to be studied.

The second stage concerns the optimization of the models. Firstly, the input
features that provide the best performances are selected for each model. Then, the
hyperparameters of the models are tuned. The impact of the training set size is
analyzed and the best training set size is selected for each model. Finally, a study of
the retraining frequency is done for each model.

The last stage concerns the creation of a dataset of forecasts for a given period and
the study of multi-model forecasting techniques that are periodically recalibrated.

4.2 Data collection

In this section, the collection of the observations of load consumption and PV
production as well as the collection of the weather data is discussed.

Load and PV time series The load and PV data are obtained through requests
to the feed API[12] provided by Emoncms.org[13]. Even if the values are available at
a frequency of 10ms, the load and time series are collected to produce data points
every 15 mins. These data points are not instantaneous values but rather the mean
of the values over the period starting at the time provided. As mentioned in chapter
2, if x̃ji represents the instantaneous load or PV at time step i on phase j, the data
points with a 15 min resolution are obtained through:

xjt = 1
N

N−1∑
i=0

x̃N×t+i (4.1)
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The data is available from August 2019 up to 2020. An important part of the values
during the first month is missing. As a consequence, this data was not taken into
account for the study.

Weather data The weather data that were collected are the temperature at 2
meters from the ground, the solar irradiation on the ground, the wind speed at 2
meters from the ground, the relative humidity at 2 meters from the ground and the
precipitation (caused by rain or snow). These values were available during the year
2019. This weather information are factors that can influence both the load and PV
consumption as mentioned in chapter 2.

4.3 Data preparation
The data preparation follows three main steps: the data preprocessing step, the
feature engineering step, and finally the feature scaling and selection step.

Data preparation

Data 
collection

Feature
engineering

DB
Data 

Retrieval

Data 
Pre-processing

Feature 
scaling and
 selection

Figure 4.1: Data collection and preparation

4.3.1 Data preprocessing
This step focuses on the cleaning of the data. Firstly, the missing values in the
load and PV time series have been replaced with linear interpolation. Secondly, the
negative values have been replaced with 0. Finally, the total load and PV values
have been produced by summing their values on the three phases. If xji represents
the load (resp. PV) at time step i on phase j, then the total load (resp. PV) is given
by:

xt = x1
t + x2

t + x3
t

4.3.2 Feature engineering
The feature engineering is an important step as it enables to construct the inputs
that can be used to produce forecasts. This step involves the creation of lagged

24



features as well as the creation of dummy variables for capturing seasonality. It is
only necessary for artificial intelligence-based methods.

Lag features The generation of lag features consists of using the observation at
given times, as input features for the prediction of the values at a future time. It
can be viewed as a sliding window process. For instance, if the observations during
6 time steps are given by the values of the table 4.1, then the lag features with a
window size of 3 are the one from the table 4.2. As can be seen, the usage of a
window of size N implies that the N first raw of data needs to be discarded as there
are some missing values.

t value
0 a
1 b
2 c
3 d
4 f
5 g

Table 4.1: Initial table

t t− 3 t− 2 t− 1
1 NaN NaN NaN
2 NaN NaN a
3 NaN b c
4 b c d
5 c d f

Table 4.2: Table with lagged features

In the experiments, the window was of 1 hour so at time t, the inputs features
are based on observations at time t− 15 mins, t− 30 mins, t− 45 mins and t− 60
mins. Since the experiment was done by producing forecast for one day ahead, these
features induced a bias and were thus used mainly for reference.

Dummy variables for seasonality The different seasonality patterns can be
captured by the usage of dummy variables. Variables were created for representing
the day of the week, the month of the year, and the hour of the day. In the case of
the creation of dummy variables for forecasting the PV production, the only dummy
variable used is the hour of the day. These dummy variables were constructed either
by using variables that take integer values or binary values.

In the first case, the seasonality information is viewed as integer values: the week
of the day is an integer value in [0, 6], the month of the year is an integer value
in [1, 12] and the hour of the day is an integer in the range [0, 23]. An example is
provided in table 4.3.

Month Day of week Time of day
9 3 6

Table 4.3: Representation of Thursday 12 September 2010 at 6:15 AM

Given that the variables can be seen as categorical variables, a binary encoding of
the variables is possible. When using variables that take binary values, the creation of
7 binary variables is necessary for capturing the day of the week, 12 binary variables
are necessary for representing the month of the year and 12 binary variables have
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been used to represent the time of the day (the variables representing : 0-2 AM, 2-4
AM,...,10-12 PM). An example is provided in table 4.4.

Month of the year Day of the week Time of the day
J ... S ... D Mon ... Thu ... Sun 0-2 ... 6-8 .. 22-24
0 ... 1 ... 0 0 ... 1 ... 0 0 ... 1 ... 0

Table 4.4: Representation of Thursday 12 September 2010 at 6:15 AM using binary
values

This second way of producing dummy variables was only tested with the neural
network architecture. Indeed, it induces a larger number of inputs for representing the
same amount of information. It could thus lead techniques such as linear regression
to overfit the data.

4.3.3 Feature scaling
Feature scaling has been used with artificial intelligence-based models. The scaling
has been made thanks to the min-max normalization and standard scaling.
Formally, the min-max normalization X′ of a feature vector X is given by:

X′ = X−min(X)
max(X)−min(X) (4.2)

Similarly, standard scaling enables to create a feature X′ from X by computing:

X′ = X− µ
σ

(4.3)

where µ and σ are the mean and standard deviation of X.

The min-max normalization has been applied with the linear regression and the
gradient boosting. The multilayer perceptron was tested with min-max and standard
scaling for its inputs and its outputs and the scaling method that led to the best
performances was selected.

4.3.4 Feature selection
With statistical time series approaches, the only features needed are the historical
time series. When using artificial intelligence-based methods, the weather information,
the lagged values, and the dummy variables for seasonality can also be used. The
feature selection is a very important step in data preparation. Section 4.5.1 describes
the procedure used for selecting the input features. In this section, the different
combinations of input features that have been used in the experiments are highlighted.

Weather variables

The first input features used are the set of every weather variables. The information
taken into account is thus the solar irradiation on the ground (swd), the temperature
at 2 meters of the ground (tt2m), the relative humidity at 2 meters of the ground
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(rh2m), the wind speed at 2 meters of the ground (ws2m), the precipitation of snow
or rain (prec). These inputs were tested for both the forecasting of load consumption
and PV production.

Weather variables
swd tt2m rh2m ws2m prec

Weather and lagged observations

Then, the weather variables were tested in combination with the lags of the observed
variables. If the time is T , the observations taken into account are the observations
at time T − 60 mins (oT−4), T − 45 mins (oT−3), T − 30 mins (oT−2) and T − 15 mins
(oT−1). These inputs were tested for both the forecasting of the load consumption
and of the PV production.

Weather variables Lagged observations
swd tt2m rh2m ws2m prec oT−4 oT−3 oT−2 oT−1

Weather variables and dummy variables for seasonality

Another variation of the input features used is obtained by the combination of
the weather information with the dummy variables for capturing seasonality. The
seasonality variables taken into account for the forecasting of the load was the day
of the week, the month of the year and the hour of the day.

Weather variables Seasonality variables
swd tt2m rh2m ws2m prec Month of the year Day of the week Hour of the day

In the case of the prediction of the PV production, only one dummy variable was
used to capture the hour of the day (as can be seen in the table below).

Weather variables Seasonality variables
swd tt2m rh2m ws2m prec Hour of the day

Subset of weather variables specific to PV

As the PV production depends mainly on the solar irradiation and on the temperature,
a subset of the weather variables can be used for forecasting.

Weather variables
swd tt2m swd2

In the case of the multilayer perceptron, the seasonality variables were tested by
representing them with binary or integer values.
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Subset of weather variables specific to PV with seasonality variables

The subset of the weather variables was also used as input in combination with the
seasonality variable.

Weather variables Seasonality variable
swd tt2m swd2 Hour of the day

4.4 Forecasting model construction
This section describes the forecasting models used and the methodology used for
training those models. The first method tested was the naive forecaster. It was used
as a baseline for comparison of the different models. The exponential smoothing
technique from the family of statistical approaches was studied.

Then, artificial intelligence-based methods were explored. The linear regression,
the gradient boosting regressor, and the multilayer perceptron were selected to
produce point forecasts. The Gaussian process regression was selected for generating
probabilistic forecasts but was not used in the multi-model forecasting system.

Single output mode All the artificial intelligence-based models have been tested
in a single output mode in which the input features are used for predicting a single
dependent variable (i.e. the load/PV at a given time). If the training samples are
given during T 1 time steps and if it is the input feature vector and ot is the load or
PV, then the training examples are given by:

{(i0, o0), ..., (i96, o96), ..., (iT−96, oT−96), ..., (iT , oT )}

Multi-output mode The models were also tested in a multi-output mode in
which the input features from one entire day were concatenated to form a single
entry and which was used to forecast the load or PV production for this day (i.e. for
forecasting 96 load or PV values). In this case, the training samples are thus given
by:

{([i0, ..., i96], [ot, ..., ot+96]), ..., ([iT−96, ..., iT ], [oT−96, ..., oT ])}

Now, let’s describe the model used with more details.

Naive forecaster The naive forecaster model is a seasonal naive model (see eq.
A.2) in which the seasonal period is equal to 1 day (so 96 data points). The model
is retrained once per day and it uses a training size of 1 day of data.

Exponential Smoothing Technique The exponential smoothing model was
constructed thanks to the ExponentialSmoothing from statsmodels. This model
is dependent on several parameters (the trend, the damping of the trend, the
seasonality, and the length of the seasonality period).

1T is a multiple of 96 (so it represents an integer number of days)

28



Linear regression The linear regression model was created thanks to the
LinearRegression from sklearn[6].

Gradient boosting regression The gradient boosting regression model was
created thanks to the GradientBoostingRegressor model from scikit-learn. Its
default values were a maximal depth of trees of 5, a minimum number of samples
per split and per leaf of 5, 100 estimators, and a learning rate of 0.1. Then, all these
parameters have been optimized.

The gradient boosting was tested by doing single output and multi-output
which has been done by using a pipeline using the MultioutputRegressor from
scikit-learn.

MultiLayer Perceptron The model was built thanks to Keras. The model was
simply composed of one hidden layer with a number of neurons which was twice the
number of input features. The default activation function of this layer was the ReLu.
This layer was followed by a dropout layer with a default value of 0.4. Finally, the
model was composed of a Dense layer with a default ReLu activation function. The
optimization was done thanks to the Adam algorithm using a default learning rate
of 0.005. The loss function of the model was the mean squared error.
A single output model was created with one neuron in the output layer and a
multi-output model was created with 96 neurons in the output layer.

h
1

h
2

h
M

o
1

o
2

o
N

i
1

i
2

i
X

Input layer    Hidden layer Dropout layer Output layer

Scaled input 1

Scaled input 2

Scaled input 3

Scaled output 1

Scaled output 2

Scaled output 3

activation function
 Σ

h
 

activation function
 Σ

o
 

Figure 4.2: Neural network architecture

Gaussian Process Regression The model was created thanks to the
GaussianProcessRegressor from scikit-learn. The default kernel used was the
RBF kernel.
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4.5 Optimization
The optimization of the individual models follows the steps represented in figure 4.3.

Selection of the 
input features

Optimization
 of the 

hyperparameters

Optimization
 of the 

Training set size

Optimization
 of the Retraining 

frequency
Method

Figure 4.3: Optimization details

4.5.1 Input features selection
This optimization step concerns the selection of input features for each forecasting
model. The input features tested are described in 4.3.4.

The performances of the forecasting models trained with different combinations of
input features were evaluated thanks to a sliding window cross-validation procedure
as can be seen in figure 4.4. The model is trained on a training set composed of 35
days of data and is evaluated on a validation set composed of 14 days of data. The
training and validations sets are then slid by 14 days and the procedure is repeated.
The training and evaluation steps are thus done five times until reaching the end of
the studied period. The forecasting model producing point forecasts were evaluated
based on their mean MAE, RMSE, and mean training time. The forecasting model
producing probabilistic forecasts was evaluated based on its CRPS and mean training
time.
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Figure 4.4: Sliding window usage for performance evaluation
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Thanks to these metrics, the best input features are selected for each model.
These input features are then fixed and are used for all the following experiments.
The result are summarized in chapter 5 and are detailed in detail in appendix B.

4.5.2 Hyperparameter Optimization
Most forecasting methods are affected by a set of hyperparameters. Their selection
can have an impact on the performances of the forecasting models generated. As
a matter of fact, an important step in building the models implies hyperparameter
optimization. The sliding window cross-validation strategy developed in section 4.5.1
was also used for assessing the performances of the models. The analysis of the
results is summarized in chapter 5 and discussed in depth in appendix C. Once the
models have been optimized, the hyperparameters were not modified for the rest of
the experiments.

The models which were optimized are the exponential smoothing technique (EST),
the gradient boosting regression(GBR), the multilayer perceptron(MLP), and the
gaussian process regression (GPR).

EST The hyperparameters optimized are the seasonality and the trend patterns
(which can be either absent, multiplicative or additive) and the fact that the trend is
damped or not and the length of the seasonality.

GBR The model was optimized by tuning the maximal depth of trees, the number
of estimators, the minimum number of samples per split and per leaf, and the learning
rate.

MLP With the multilayer perceptron, the first parameter which was tuned is the
choice of the scaling on the inputs and on the outputs (Min-max normalization or
standard scaling). Then, the following components are tuned: (i) the number of
neurons in the hidden layer, (ii) the variation of the learning rate and the number
of epochs, (iii) the dropout rate, (iv) the batch size, (v) the number of layers and
finally (vi) the activation functions.

GPR The Gaussian process regressor is tested with various kernels.

4.5.3 Training set size analysis
The learning set size can have an impact on the performances of a model. In the
case of a naive forecaster, the learning set size is fixed to one day. However, for other
methods, it can be tricky. A problematic concerns the analysis of the impact of the
learning set size for each possible method.

In order to do this analysis, several training periods of various sizes can be used
to train a given model as shown in figure 4.5. This model will be used to predict a
validation period that follows the training period. Thus, the performances can be
evaluated as a function of the training set size.
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1 week TS

6 weeks TS

4 weeks TS

2 weeks VS

...

...

Figure 4.5: Methodology to study the impact of the training period

In order to decrease the possible bias on the performance measured on the
validation set, this procedure can be reproduced several times by the mean of a
sliding window as shown in figure 4.6.
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Figure 4.6: Methodology to study of the impact of the training period thanks to a
sliding window method

The experiments have been done by varying the training set size from 1 day to 42
days of data. The metrics used for evaluating the performances of the point forecasts
were the MAE and the RMSE. The results are summarized in chapter 5 and are
fully described in appendix D.
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4.5.4 Analysis of the retraining frequency
The frequency at which the models are trained is also of great importance. Indeed,
the distribution of the data can vary over time and the performance of the models
may thus degrade as time passes. To select a suitable retraining period for each
forecasting model, an analysis of the retraining frequency is done.

The retraining frequency can be selected based on the performance of a forecasting
model trained on different training set for a given validation set as shown on the
picture 4.7.
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Figure 4.7: Retraining frequency analysis methodology

The validation set used was composed of 7 consecutive days randomly selected
on the available dataset. To reduce the bias induced by the choice of the validation
set, this procedure is repeated several times to forecast different randomly selected
validation periods.

The metric used to evaluate the performances of the models on the validation set
is the NRMSE. This metric was chosen because the different forecast periods can
be different in terms of load. Thus the usage of the RMSE would lead to unwanted
variations depending on the forecast period.

The retraining period is chosen as the longest period smaller or equal to one week
such that the performances decrease at most by 5 %. Mathematically, with x being
the vector of NRMSE, containing elements xi where i represents the number of days
between the training and the forecasting, it can be written as:

s = arg max
xi<x0×1.05

x (4.4)

In this way, a compromise between the computational load and the performances is
done. The results are presented in detail in appendix E.

A pseudo-code of the methodology used to study the retraining frequency of the
different models is provided (Algorithm 1).
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Algorithm 1 Retraining analysis algorithm
1: procedure RetrainingFrequencyAnalysis(f , M , N)
2: // f is the forecasting model
3: // M is the maximum number of days separating the TS from the VS
4: // N is the number of times the procedure is repeated
5: scores ← array filled with 0 of dimensions [M,N ]
6: Pt ← the best training period for model f
7: for i = 0 to M do
8: t← random day in (2019/10/14, 2019/12/24)
9: (iV,oV)← generate_inputs(t, t+ 7)

10: for j = 0 to N do
11: (iT,oT)← generate_inputs(t− j − Pt, t− j)
12: f ← train_model(iT,oT)
13: y← f(iV)
14: scores(i, j)← NRMSE(oV,y)
15: µ(i)←

∑N

j=0 scores(i,j)
N

16: σ(i)←
√∑N

j=0 scores(i,j)−µ(i)
N

17: end procedure

4.6 Dataset Construction

To be able to construct and use the monitoring system, a dataset of forecasts obtained
with different models has been built.

Forecasts are created in the period from the 14th of October 2019 to the 31st of
December 2019. The knowledge of the optimal training set size and of the optimal
retraining frequency enables to produce forecasts for the entire period as detailed in
algorithm 2.

Algorithm 2 Dataset construction
1: Let mi be a forecasting model
2: Pt ← the best training period for model mi

3: Pr ← the best retraining period for model mi

4: Let y be an array used to contain the forecasts
5: t← 2019/10/14
6: while t < 2020/1/1 do
7: (i,o)← generate_inputs_training(t− Pt, t)
8: mi ← train_model(i,o)
9: while t < t+ Pr do

10: i← generate_inputs_forecasting(t, t+ 1)
11: y[t:t+1] ← mi(i)
12: t← t+ 1

34



4.7 Analysis of a monitoring system

Once the dataset of forecasts has been created, the final step consisting in the creation
of multi-model for managing the production of forecasts has been studied. In this
last step, several multi-models ensemble forecasting techniques are tested.

Firstly, simple methods that require no training of the models are used. These
methods are the model averaging, the multi-model that uses a truncated mean, and
the multi-model that produces the median of the forecasts. Then, models that need
to be trained for producing forecasts have been used. The first model tested is
the model that simply selects the "best" model. The multi-model reevaluates the
performances of the different models each day and the one that produced the best
forecasts during a given period in the past.

Mathematically, if f (1)
i , ..., f

(N)
i are the forecasts from N individual models for

time step i and if yi is the observation at time step i, the model will update its
weights at time T by doing:

ŵ
(j)
T+1 =

 1 if RMSE
(j)
T,w > RMSE

(i)
T,w ∀i 6= j

0 otherwise
(4.5)

or:

ŵ
(j)
T+1 =

 1 if MAE
(j)
T,w > MAE

(i)
T,w ∀i 6= j

0 otherwise
(4.6)

with

RMSE
(j)
T,w =

√√√√√ T∑
i=T−w

(f (j)
i − yi)2

w
(4.7)

MAE
(j)
T,w =

T∑
i=T−w

|f (j)
i − yi|
w

(4.8)

The window size w indicates the number of days that are taken into account for
computing the performance metric.

The second multi-model tested is the multi-model based on inverse MSE weighting.
The equation 3.14 describes the update of its weights. Such as the previous model,
the model based on inverse MSE weighting needs to evaluate the performances of
the individual models on a past window of time. Thus, the impact of the size of the
window is a parameter which needs to be studied.

After the inverse MSE weighting, the multi-model that does linear regression
weighting has been used. With this strategy, the multi-model is updated daily by
applying linear regression on the past forecasts of the individual models. Mathematically,
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the multi-model performs:

gLRi =w0 +
N∑
j=1

w
(j)
i f

(j)
i (4.9)

L(gLRi , yi) =
T∑

i=T−W
(gLRi − yi)2 (4.10)

where Fi is the multi-model forecast at time step i and L(Fi, yi) is the loss function
to minimize.

Once these classical models have been tested, some tests were done by taking
into account extra information. In practice, it is common that some forecasting
models work well during some periods and much less during other periods. Thus,
the first multi-model tested is a model that takes into account the weekly seasonality
of the load. When combining weights for forecasting a given day of the week
(e.g. Monday), the combination weights are determined by using the individual
forecasts from the same day of preceding weeks (preceding Mondays). This training
method was tested with the multi-model that select models with best performances,
with the inverse MSE weighting multi-model and with the linear regression weighting.

After that, the last method studied is a linear regression weighting that uses
additional explanatory variables. For forecasting the load, the explanatory variables
used are the hour of the day and the day of the week. For forecasting the PV, the
explanatory variable used is the hour of the day. Mathematically, this methodology
is given by:

gLR2
i =

N∑
j=1

w
(j)
i f

(j)
i +

M∑
j=1

w
(N+j)
i ηji (4.11)

L(gLR2
i , yi) =

T∑
i=T−W

(gLR2
i − yi)2 (4.12)

where Fi is the multi-model forecast at time step i, L(Fi, yi) is the loss function to
minimize, and η1

i , ...η
M
i are the values of the explanatory variables at time step i.

As mentioned before, these multi-models are updated every day and their
performances are compared in terms of MAE and RMSE. Additionally to the usage of
the MAE and of the RMSE, a specific normalization was also used in this experiment
for evaluating the PV production. It is obtained by dividing the error metrics by the
maximum observation of the PV production:

MAE

maxXi

(4.13)

RMSE

maxXi

(4.14)

To view the impact of the retraining frequency of the multi-models, tests were also
performed by performing weekly updates of the multi-models rather than daily
updates. In this situation, the combination weights of the different models are thus
determined once per week. The multi-models have finally been compared based on
their training time and on the time necessary for combining the different forecasts.
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Chapter 5

Optimization

In this chapter, the results obtained by optimizing the parameters as explained in
section 4.5 are summarized. Firstly, the input features of the forecasting models are
optimized, then the hyperparameters of the forecasting models are optimized. The
training set size is optimized and finally, the retraining period is selected.

5.1 Input features selection
The first optimization step concerns the selection of the input features to be used
for training the artificial intelligence-based models. The different combinations of
input features tested are described in section 4.3.4. The artificial intelligence-based
models analyzed are the multiple linear regression(MLR), the gradient boosting
regression(GBR), and the multilayer perceptron(MLP). These methods have been
tested in a single output mode or a multi-output mode as described in section 4.4.
In appendix B, the performances of the models trained with different combinations
of input features are detailed.

Load forecasting Let’s consider the impact of the selection of the input features
for the forecasting of the load. For the single output MLP, the best performances
were observed when the input features where composed of all the weather variables
and the seasonality variables expressed as binary values. For all the other models1,
the best performances were obtained by using as input features the weather variables
and the seasonality variables expressed as integer values. A summary of the best
input features for all the models and their respective performances are summarized
in table B.17. At this point, the best performances are obtained with the single
output GBR and the worst performances are obtained with the multi-output MLR.

PV forecasting Now, let’s consider the impact of the selection of the input features
for the forecasting of PV production. With the MLR2, the input features based on
the weather variables relative to the PV (i.e. solar irradiation, temperature, and
solar irradiation squared) provide the best performances. About the single output
GBR, the usage of the combination of weather variables relative to the PV with
the seasonality variable (i.e. the hour of the day) provides the best performances.

1i.e. single and multi-output MLR and GBR and multi-output MLP
2i.e. the single output MLR and the multi-output MLR
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With the multi-output GBR, the simple usage of the weather variables specific to
the PV provides the best performances. Finally, with the single output MLP, the
best performances are reached when all the weather variables are used with the
seasonality variable as input. For the multi-output model, the best performances are
observed with the weather variables specific to the PV and the seasonality variables
expressed as binary values. The performances of the models used with their best
input features are summarized in table B.19.

5.2 Hyperparameter optimization
In this section, the forecasting models depending on several hyperparameters have
been optimized. These models are the exponential smoothing technique, the gradient
boosting regression, and the multilayer perceptron. The description of their default
parameters is given in section 4.4 and the description of the hyperparameters being
optimized is provided in section 4.5.2. The performances of the different models
can be compared to the naive forecaster. When evaluating the naive forecaster on
the validation sets for the forecasting of the load, the MAE is equal to 776 W and
the RMSE is equal to 1458 W. For the forecasting of the PV production, the naive
forecaster has a MAE of 104 W and a RMSE of 238 W.

EST For the forecasting of the load, the EST with no trend, a multiplicative
seasonality, and a seasonal period of 7 days provides the best performances. With
this configuration, the performances are better than the one of the naive forecaster.
For the forecasting of the PV production, the exponential smoothing technique is
not appropriate because of the intermittence of the PV production.

GBR The hyperparameters providing the best performances for the different
models are summarized in table F.1. For the forecasting of the load, the single
output GBR provides very good performances with a MAE of 591 W and a RMSE of
1064W. The performances of the multi-output GBR are also significantly better than
the performances of the naive forecaster with a MAE of 628 W and a RMSE of 1122 W.

For the forecasting of the PV, the RMSE of the single output model and of the
multi-output model are significantly lower than the RMSE of the naive forecaster.
Regarding the MAE, the performances of the single output model are similar to
the one of the naive forecaster but the performances of the multi-output model are
relatively better.

MLP The hyperparameters that provide the best performances for the multilayer
perceptron are given in the table F.2 in appendix. In the case of the single output
models, the selection of the scaler for the inputs and outputs was an important
parameter3 The second parameter that had the largest impact on the performances

3The single output model for forecasting the load provided better performances with a min-max
scaling of the inputs and a standard scaling of the outputs. With this scalers, the MAE was equal
to 712 W and the RMSE was equal to 1128 W. By contrast, with standard scalers for the inputs
and the outputs, the MAE is equal to 1196 W and the RMSE is equal to 1172 W. With the single
output models for forecasting the PV production, the observations are similar.

38



is the activation function used. In the end, after optimization of all the parameters,
the models for forecasting the load had good performances. For the forecasting of the
PV, the single output model has performances similar to the multi-output GBR but
the multi-output model still provides worst performances than the naive forecaster.

5.3 Training set size analysis
Once the hyperparameters of the models have been determined, the size of the
training set size on which the models need to be trained has been analyzed. In the
previous experiments, the training set size was set by default to 35 days of data.
In this experiment, training set sizes composed of 1 day of data to 42 days of data
have been tested. The full analysis of the training set size for the different models is
provided in the appendix D.

Load forecasting For the forecasting of the load, the training set sizes that
provided the best performances for all models are sets composed of 20 to 32 days
of data. For all of the models, training set sizes composed of less than one week of
data provided power performances. However, with too large training set sizes, the
performances were decreasing.

PV forecasting For the forecasting of the PV production, the optimization of
the training set size has a greater impact on the performances. In general, the best
training set sizes for the multi-output models were made of 6 to 13 days of data.
With single output modes, the training set sizes that provided the best performances
are composed of 21 to 26 days of data. For the multi-output MLR, the single output
GBR, and the multi-output MLP, the modification of the training set size provided
significant improvements in the performances.

5.4 Analysis of the retraining frequency
The final step in the optimization process is the selection of the retraining frequency.
The full analysis of the retraining frequency is detailed in chapter E. The maximum
retraining period was selected to be done weekly.

Load forecasting For most of the models, weekly retraining was sufficient to
provide a maximum degradation of the performances4 of 5%. The exceptions are
the EST which needs to be trained daily and the multi-out GBR which needs to be
trained every 6 days.

PV forecasting Regarding the forecasting of the PV production, there are some
variations in the retraining period based on the fact that the model is a multi-output
model or not. With single output models, weekly retraining is also sufficient to have
a maximum degradation of the NRMSE of 5%. Concerning the multi-output models,
the MLR and the GBR need to be retrained every 2 days and the GBR need to be
retrained every 6 days.

4in term of NRMSE (Eq. 3.3)
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Chapter 6

Dataset of forecasts

6.1 Introduction

To be able to construct and use the monitoring system, a dataset of forecasts obtained
with different models has been built. This dataset has been constructed by using
the learned optimal training period and retraining period to produce forecasts in a
window of time from the 14 October 2019 to the 31 December 2019. More formally,
the dataset is created by following the methodology described in the algorithm 2.
The forecasts of the load and of the PV are respectively analyzed in the sections 6.2
and 6.3.

6.2 Analysis of the forecasts of the load

The table 6.1 presents the MAE and RMSE obtained by the different models for all the
study period. The models based on GBR and MLP provides the best performances.
Specifically, the single output GBR outperforms all other models in terms of MAE
and RMSE. Globally, the model that provides the best performances on the whole
dataset is the single output GBR. It can be observed that in terms of MAE and
RMSE, the GBR using a single output provides better performances on the global
dataset. The multi-output MLR is the only model that provides worst performances
than the naive forecaster.

Model Output
mode

MAE
(W)

RMSE
(W)

Naive forecaster / 819 1534
EST / 733 1364

MLR single 801 1271
multi 907 1619

GBR single 613 1073
multi 671 1172

MLP single 644 1139
multi 690 1191

Table 6.1: Performances of different models for the forecasting of the load ordered
by RMSE
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In the picture 6.1, a display of the forecasts of the different models for a random
week in the study period is provided.

Figure 6.1: Forecasts of the load by different models for the week of the 2nd of
December 2019

6.2.1 Daily performances
In figure 6.2, the daily RMSE of the forecasts are shown for all the study period.
Except on some particular days, the magnitude of the error of the different models
tends to be similar. Indeed, some days the mean RMSE is high for all models (e.g.
RMSE between 2000 and 3000W), and some other days the mean RMSE is low for
all models (e.g. RMSE between 0 and 1000W).

Figure 6.2: Daily RMSE of the different models during the study period

The percentage of days during which a particular model outperforms all the other
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models is displayed in the table 6.2. This percentage is computed based on the MAE
and based on the RMSE. The single output MLP produces a better daily MAE than
the other models 20% of the days from the studied period. In terms of RMSE, it is
the single output GBR that had the best performances 28% of the days.

Model Output
mode MAE % RMSE %

Naive forecaster / 16 5
EST / 22 18

MLR single 5 8
multi 3 4

GBR single 14 28
multi 10 10

MLP single 20 15
multi 10 12

Table 6.2: Percentage of the days during the study period during which one model
outperforms in the sense of the daily MAE or daily RMSE

6.2.2 Performances by day of the week

In figure 6.3, the mean RMSEs of the models by day of the week are shown. Each
plot represents the performances of the models for a given day of the week. Each
bar corresponds to the performances of a different model. The performances are
represented thanks to the mean RMSE and the standard deviation of the RMSE.

As can be seen, the performances of the different models depend greatly on
the day of the week. During some days of the week, all the models have similar
performances and during other days of the week, some models outperform the other
models. For example, on Mondays, the models with the best performances are the
multi-output MLP (bar on the right), while on weekend days, the model that provides
the best forecasts is the GBR (4th bar).

Monday Tuesday
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Wednesday Thursday

Friday Saturday

Sunday

Figure 6.3: mean RMSE per day of the week for different models

6.2.3 Performances per time of the day
In the figure 6.4, the mean error by time of the day is displayed. As can be seen,
there are variations of the performances of the models depending on the time of the
day. For example, the MLR (green curve) is the model with the biggest RMSE in the
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interval from 10 PM to 5 AM. However, during the rest of the day, its performances
are in the average.

Figure 6.4: Mean RMSE at each time interval of a day

6.3 Analysis of the forecasts of the PV

In table 6.3, the performances of the models on the whole studied period are shown.
The two first metrics are the MAE and RMSE described before. The two last metrics
are normalized versions of the MAE and RMSE where the divisor is chosen to be
the maximal production of the PV observed on the period studied (being 2152 W).
In terms of RMSE, the best model is the single output MLP. In terms of MAE, the best
performances are obtained with the multi-output GBR which slightly outperforms
the single output MLP. The single output GBR provides good performances as well.

Model Output
Mode

MAE
(W)

RMSE
(W)

MAE
max P
(%)

RMSE
max P
(%)

Naive forecaster / 98 228 4.5 10.6

MLR single 95 179 4.4 8.3
multi 108 272 5.0 12.7

GBR single 76 164 3.5 7.6
multi 72 171 3.4 7.9

MLP single 75 162 3.5 7.5
multi 83 181 3.8 8.4

Table 6.3: Performances of different models for the forecasting of the PV production
ordered by RMSE

In the figure 6.1, the forecasts of the models are presented for three consecutive
days from the dataset.
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Figure 6.5: Forecasts of the PV production by different models for 3 days in November
2019

6.3.1 Daily performances
In figure 6.6, the daily RMSEs of the forecasts are computed for the studied period.
As can be seen in brown, the performances of the multi-output MLR are relatively
low compared to the other models during some particular days of the studied period.
The naive forecaster (blue curve) seems to have a higher RMSE than other models
most of the time.

Figure 6.6: Daily RMSE of the different models during the study period

In the table 6.2, the percentage of the days a particular model had the best
performances compared to all the other models is shown. The models that provided
a lower MAE 27.85% of the day is the multi output GBR. In terms of RMSE, the
model that produced the lower daily RMSE most of the time is the single output
GBR.
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Model Output
Mode MAE (%) RMSE (%)

Naive forecaster / 13.9 6.3

MLR single 8.9 17.7
multi 3.8 2.5

GBR single 13.9 21.5
multi 27.9 19.0

MLP single 13.9 16.5
multi 17.7 16.5

Table 6.4: Percentage of the days during the study period during which one model
outperforms in the sense of the daily MAE or daily RMSE

6.3.2 Performance by time of the day
In figure 6.7, the mean performances of the models per time of the day are shown. As
was observed with the forecasting of the load, the MLR provided worse performances
than the other models during the night (7 PM to 8 AM). During the period from
9 AM to 3 PM, the worst model in mean is the multi-output MLR and the second
worst model is the naive forecaster.

Figure 6.7: Mean RMSE at each time interval of a day

6.4 Conclusion
In this chapter, the dataset used for simulating forecasts has been created and
analyzed. In the next chapter, a study of the strategy employed to combine this
forecast in multi-model forecasts is done.
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Chapter 7

Monitoring system analysis

7.1 Introduction
In this chapter, several multi-model ensemble forecasting techniques were analyzed.
These multi-model forecasts were tested on the dataset of forecasts created in the
previous chapter.

In section 3.4, the background under multi-model forecasting is developed and in
section 4.7, the methodology under these experiments is detailed.

In the section 7.2 , different forms of linear combinations using a set of combination
weights w1, ...., wN are tested.

Fi = wo
n∑
j=1

w
(j)
i f

(j)
i (7.1)

Firstly, some simple combinations scheme based on fixed combination weights are
tested. These methods are the average forecasting method, the truncated mean
method, and the median method. Then some methods that use time-varying weights
are analyzed.

7.2 Analysis of the multi-models

7.2.1 Model averaging
In this experiment, the model averaging technique has been used. The tests were
done by averaging all the models together and also by combining with equal weights
the three models with the best performances in terms of RMSE. For the forecasting
of the load and of the PV, the three models with the best performances are the
single output GBR and MLP and the multi-output MLP.

Load forecasting For the forecasting of the load, the averaging of all individual
models together results in a MAE of 647W and a RMSE of 1102 W. In terms of
RMSE, the average model thus ranks just after the single output GBR. In terms
of MAE, the average model follows the single output GBR and the single output
MLP. When combining the forecasts of the three best performing models, the MAE
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is 614 W and the RMSE is 647 W. These values are slightly higher than the MAE
and RMSE obtained with the forecasts from the single output GBR.

PV forecasting For the forecasting of the load, the averaging of all the models
together provides a MAE of 72 W and a RMSE of 154 W. This is an improvement
on all the individual models used alone as the best model was the single output MLP
which had a MAE of 75 w and a RMSE of 162 W. When combining only the three
best models, the MAE reaches 70 and the RMSE keeps the value of 154W.

7.2.2 Truncated mean
In this experiment, the truncated mean1 was used on the forecasts from the individual
models. The percentage of points to discard on both ends of the mean was tested
with different values in the range[0,0.48] with steps of 0.02. In the appendix, the
figure G.1 and G.2 show the impact of the selection of the cut off on the performances
of the multi-model.

Load forecasting From figure G.1, it can be observed that the increase of the cut
off decreases the MAE (from 646 W to 607 W) while increasing the RMSE (from
1102 W to 1117 W). It thus shows that the usage of the mean decreases the RMSE
while the usage of the median decreases the MAE.

PV forecasting From figure G.2, it can be observed that the increase of the cut
off improves both the MAE and the RMSE. The MAE reaches 66W and the RMSE
reaches 151.5 W with λ ∈ [0.3, 0.42]. Then, they increase very slightly. In the case
of the forecasting of the PV, the usage of the median provides better performances
over the usage of the mean.

7.2.3 Median forecast
Load forecasting Let’s consider the usage of the median for the forecasting of
the load. As mentioned in the previous section, the usage of the median provides a
MAE of 607W and a RMSE of 1117W. In terms of MAE, the median provides better
performances than all individual models used alone. In terms of RMSE, the median
forecast underperforms the single output GBR but outperforms all other individual
models.

PV forecasting Considering the forecasts of the PV, the resulting MAE is 66 W
(3%) and the resulting RMSE is 152 W (7%). The usage of the median thus provides
better results in terms of MAE and RMSES than all individual models alone and it
also provides better performances than the average model.

7.2.4 Best model selection
In this experiment, the performances of the individual models are evaluated on a
past window of time and the model with the best performances is selected to produce

1see Eq. 3.12
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forecasts. The combination weights are updated in this way at the end of each day
for the next day. Two main parameters have to be taken into account. The first
parameter is the metric with which to evaluate the performances of a model and the
second parameter is the window of time in the past on which the performances are
evaluated. As an example, with a window of time of one day and a performance
metric to optimize which is the RMSE, the multi-model evaluates the RMSE of the
individual forecasts on the previous day and uses the model with the lowest RMSE
to produce forecasts for the next day. The impact of these two parameters will thus
be analyzed in the next sections and the models selected with this strategy will be
observed as well.

Load forecasting

Performance metric Let’s consider the impact of the performance metric used
for forecasting the load. First, the situation in which all the available past forecasts
are used to evaluate the performances of the different models can be analyzed. The
results obtained with this technique are shown in table 7.1. As can be seen, when
the performance metric to optimize is the RMSE, the multi-model forecasts have
performances very close to the single output GBR model. When the performance
metric to optimize is the MAE, the multi-model forecasts have worst performances
but it is still better than most forecasts created by individual models.

Metric minimized MAE (W) RMSE (W)
RMSE 617 1076
MAE 623 1109

Table 7.1: Performances by minimizing the RMSE/MAE with a window size that
covers all the preceding observations

Window of time In figure 7.1, the performances of the multi-model forecasts are
shown as a function of the size of the window of time on which the performance
metric was computed at each update of the model. The performance metric used
for optimization in this case is the RMSE. The usage of small windows of time for
computing the performances of the different models leads to lower performances.
Above windows of 14 days, the performances of the multi-model don’t change any
more. Indeed, when performances are evaluated on a small window, the variations
of the performances of the individual models can be more important. When the
window passes above a given threshold, the model that gives the best performances
in the long term will always be selected.
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Figure 7.1: Performances of the multi-model forecast by selecting each day the model
that had the lowest RMSE on a past time window

In figure 7.2, the performance metric used for optimization is the MAE. In this
case, the increase of the window size leads to an improvement of the performances
until the window size is composed of 14 days of data. With a window size of 14
days, the MAE is of 611 W and the RMSE is of 1083W, the multi-model has thus
similar performances than the single output GBR which is the best individual model.
Above this value, the performances start to decrease until reaching a plateau when
the window is composed of thirty days.

Figure 7.2: Performances of the multi-model forecast by selecting each day the model
that had the lowest MAE on a past time window

Models selected Finally, it is interesting to observe the models selected at each
iteration by the multi-model. When the window size is of 30 days and the performance
metric is the RMSE, the models selected at each iteration are the following:

EST→ m.o. MLP→ EST→ EST→ s.o. MLP→ s.o. MLP→ s.o. GBR→ ...→ s.o. GBR

with "s.o." representing a single output model and "m.o." representing a multi-output
model.
In the beginning, the model selected varies from day to day. After one week, the
model selected is the single output GBR (7th model in the example) and this model
is selected at each following iteration.
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PV forecasting
Performance metric Now, let’s consider the impact of the choice of the performance
metric for the forecasting of the PV. First, the performances of the individual models
can be assessed on an expanding window that uses all the available past data. In
table 7.2, the performances of this model optimized based on the MAE and based on
the RMSE are shown. As can be seen, the multi-models built don’t outperform the
performances obtained with forecasts made by the individual models. It provides
performances in the average compared to the individual models.

Metric
optimized

MAE
(W)

RMSE
(W)

MAE
max P
(%)

RMSE
max P
(%)

RMSE 80 171 3.7 7.9
MAE 77 179 3.6 8.3

Table 7.2: Performances by minimizing the RMSE/MAE with a window size that
covers all the preceding observations

Window of time The usage of smaller windows can improve the performances
but the MAE never drop down 67 W and the RMSE never drops down below 167 W.
The tables summarizing the performances of the models with different window sizes
and the related figures are shown in section G.3.

Models selected With a window size of 30 days and optimization of the RMSE,
the individual model selected at each iteration vary from day to day during all the
studied period. The multi-model never selects forecasts from the naive forecaster,
the single and multi-output MLR, and the multi-output MLP. The forecasts from
the GBR and MLP are mainly selected2 and the forecasts from the multi-output
GBR are also used some days3. The models selected are thus the 3 models with the
best performances on the whole dataset.

7.2.5 Inverse MSE weighting
The inverse MSE weighting involves the computation of the MSE of the individual
models on a past window of time and its usage for creating combination weights
inversely proportional to the MSE. Mathematically, it is given by the equation 3.14
in section 3.4. With this strategy, the only parameter is the window of time that is
used for computing the MSE. Let’s consider its impact on the forecasting of the load
and then on the forecasting of the PV.

Load forecasting Figure 7.3 presents the performances of the multi-model with
window sizes from 1 day to 30 days. As can be seen in the figure, the performances
are optimized when the multi-model uses a window size of 7 days. In this case, the
MAE is of 636 W and the RMSE is of 1087W. The model has poorer performances
than the single output GBR but better performances than all the other models.

2The single output GBR is selected 43% of the days and the single output MLP is selected 53%
of the days.

3The multi-output GBR is selected 4% of the time
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With smaller or longer windows, the performances of the multi-models are poorer
but the variations are not large (less than 10 W for both metrics).

Figure 7.3: Performances of the multi-model with different windows of time for the
computation of the MSE

PV forecasting Let’s consider the usage of inverse MSE weighting for forecasting
the PV. Once again, the multi-model is tested with windows from 1 to 30 days. As
can be seen in figure 7.4, when the MSE is computed on a window of time larger than
1 day, the MAE is approximately equal to 71 W and the RMSE is approximately
equal to 152W. Thus, when the MSE is computed on a window of time above 1 day,
the performances of the multi-model in terms of MAE and RMSE are better than
the performances of the forecasts of all individual models.

Figure 7.4: Performances of the multi-model with different windows of time for the
computation of the MSE

7.2.6 Weighted linear regression

With this strategy, the combination weights are obtained by minimizing the residual
sum of squares between the observed load or PV and the multi-model forecast. The
parameters that can affect the performances are the size of the window on which the
multi-model is trained and the usage of a constant in the combination of the models.
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Load forecasting In table 7.3, the performances of the model with a window that
uses all the past data are shown. The multi-model outperforms all individual models
in terms of RMSE but in terms of MAE it has performances similar to the single
output MLP. In figure 7.5, the performances of the multi-models are shown as a
function of the size of the window that is used for training the model. As can be
seen, the error decreases until reaching a minimum when the window is composed of
10 days. After that, the error fluctuates slightly.

Parameters MAE
(W)

RMSE
(W)

w0 not fixed 667 1053
w0 = 0 652 1049

Table 7.3: Performances of the weighted linear regression for the forecasting of the
load

Figure 7.5: Performances of the multi-model with a window size that covers all the
preceding observations

PV forecasting In table 7.4, the performances of the model with a window that
uses all the past data are shown. In terms of RMSE, the multi-model will thus
outperform all individual models. In terms of MAE, the performances of the multi-
model are very good as well since the model that has the lower MAE is of 72 W
and is obtained with the multi-output GBR. In figure 7.6, the performances of the
multi-models are shown as functions of the size of the window that is used for training
the model. As can be seen, the MAE and the RMSE decrease when the window size
increases until the size of the window is of 18 days. Then, the MAE and the RMSE
slightly increase.

Parameters MAE
(W)

RMSE
(W)

MAE
max P
(%)

RMSE
max P
(%)

w0 not fixed 75 157 3.47 7.29
w0 = 0 73 159 3.40 7.37

Table 7.4: Performances by minimizing the RMSE/MAE with a window size that
covers all the preceding observations

55



Figure 7.6: Performances of the multi-model with a window size that covers all the
preceding observations

7.2.7 Model combination with training based on the day of
the week

As has been seen in the previous chapter, the performances of the individual models
for forecasting the load may vary depending on the day of the week. In this
experiment, the combination weights for a given day are obtained by training the
multi-model only on the forecasts made the same day from the previous weeks. The
multi-models tested with this method are the multi-model that selects the best model,
the multi-model using inverse MSE weighting, and the weighted linear regression.
The results are provided in table 7.5.

The multi-models that selects the model with minimum RMSE or MAE for
producing forecasts provided better performances in terms of MAE and worst
performances in terms of RMSE compared to a model in which the training is
done on all the past data. In terms of MAE, it even outperformed all individual
models. The multi-model that uses inverse MSE weighting improved its MAE (625W
compared to 641W when trained on all data) and its RMSE ( 1088W compared
to 1094W when trained on all data). Finally, the multi-models based on linear
regression led to degradation in terms of RMSE.

Weighting MAE (W) RMSE (W)
Min RMSE selection 607 1097
Min MAE selection 620 1144
Inverse MSE weighting 625 1088
weighted linear regression 677 1117
weighted linear regression with w0 = 0 648 1089

Table 7.5: Performances of models taking only into account the data from this day
of the week
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7.2.8 Weighted linear regression with additional explanatory
variables

In this section, a weighted linear regression is used for updating the weights with
some additional explanatory variables. For forecasting the load, the explanatory
variables used are the hour of the day and the day of the week. For forecasting the
PV, the explanatory variable used is the hour of the day.

Load forecasting In table 7.6, the results for the forecasting of the load with
different seasonality variables are shown. Compared to the simple linear regression,
the introduction of the day of the week alone or combined with the hour of the day
improved slightly both the MAE and the RMSE.

Additional inputs MAE (W) RMSE (W)
hour, day of the week 650 1046
hour 657 1052
day of the week 652 1046

Table 7.6: Performance of linear regression with w0 = 0 for forecasting the load

PV forecasting The introduction of the hour of the day in the inputs does not lead
to a significant change in the performances compared to a simple linear regression.

Additional inputs MAE (W) RMSE (W)
hour 74 157

Table 7.7: Performance of linear regression with w0 = 0 for forecasting the PV

7.3 Impact of the frequency of calibration
To decrease the computational cost, the multi-models that require periodic updates
can be trained weekly rather than daily. This strategy has been adopted and the
performances of this models are shown in the table 7.8 and 7.9.

Load forecasting As can be seen in table 7.8, the multi-model that selects the
model that produced the lower MAE on a past window of time has better performances
when it is updated weekly rather than daily. With the other methods, the choice of
updating weekly the models increase the MAE and/or the RMSE. This increase is
at most of 15 W for the RMSE and of 10 W for the MAE.

Multi-model weighting Weekly update Daily update
MAE (W) RMSE (W) MAE (W) RMSE (W)

Min RMSE selection 630 1105 620 1090
Min MAE selection 614 1089 618 1097

Inverse MSE weighting 636 1089 636 1087
LR weighting 677 1063 667 1052

Table 7.8: Performances of different model summarized
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PV forecasting In this case, the highest increase of MAE is of 4W, and the highest
increase of RMSE if of 5W. Therefore, since the variations in the performances are
slights, it would be more interesting to update the multi-models weekly to reduce
the computational cost.

Multi-model weighting Weekly update Daily update
MAE (W) RMSE (W) MAE (W) RMSE (W)

Min RMSE selection 81 168 80 171
Min MAE selection 81 184 77 179

Inverse MSE weighting 71 152 71 152
LR weighting 75 158 75 157

Table 7.9: Performances of different model summarized

7.4 Computational cost
In the table 7.10, the training time and the forecasting time of the multi-models are
shown. These times are computed by averaging the training time and the time of
construction of the forecasts over the period from the 14th of October to the 31st of
December when the multi-models are updated daily. The multi-models that require
training all used the same window of time of 30 days.

The average model, truncated mean model, and median model had a 0 training
time as they require no training. The multi-model using inverse MSE weighting leads
to the highest training time. The time required to construct the forecasts for the
next day was minimal for the multi-model based on the median and on the truncated
mean. The multi-model based on linear regression leads to a slightly larger time
compared to all of the other models.

Combination
method Parameters Training time

(ms)
Time of construction

of forecasts (ms)
Average model / 0.0 1.58
Truncated mean λ = 0.2 0.0 1.28
Median / 0.0 1.28
Min RMSE selection w = 30 7.5 1.58
Inverse MSE w = 30 5.6 1.60
LR weighting w = 30 5.1 2.14

Table 7.10: Comparison of the times of the multi-model forecasting techniques for
the forecasting of the load for multi-models which are updated daily

7.5 Comparison of the multi-models
In the tables 7.11 and 7.12, the performances obtained with the different multi-models
techniques are summarized for the forecasting of the load and of the PV production.
In both cases, the model that gave the lower MAE among all multi-models is the
model based on the selection of the median forecast.

58



Load forecasting

The model that leads to the minimal RMSE is the model in which the weights are
obtained thanks to linear regression. The usage of additional seasonality variables
even improved the performances.

Combination method MAE (W) RMSE (W)
Average model 647 1102
Median model 607 1117
Min RMSE selection 620 1090
Min MAE selection 618 1097
Inverse MSE weighting 636 1087
LR weighting with w0 = 0 652 1049
LR weighting with w0 = 0 and additional inputs 650 1046

Table 7.11: Performances of different model summarized

Pv forecasting

For the forecasting of the PV, the method that produced the lower RMSE is the
multi-model based on the median and the model based on inverse MSE weighting.
The best multi-model to use for forecasting the PV would thus be the median as it
both minimizes the MAE and the RMSE and as it does not require training.

Combination
method

MAE
(W)

RMSE
(W)

MAE
max P
(%)

RMSE
max P
(%)

Average model 72 154 3.3 7.2
Median model 67 152 3.1 7.1
Min mae selection 77 179 3.6 8.3
Min rmse selection 80 171 3.7 7.9
Inverse MSE weighting 71 152 3.3 7.1
LR weighting with w0 not fixed 75 157 3.5 7.3
LR weighting with w0 = 0 73 159 3.4 7.4

Table 7.12: Performances of different model summarized

7.6 Conclusion
In this chapter, several multi-model forecasting techniques were used. They were
compared in terms of their performances and training time.

For the forecasting of the load, the method that led to the best performances
in terms of MAE is the median forecast. However, the method that leads to the
best performances in terms of RMSE is the linear regression method. While the
median is the method that produces the fastest the forecasts, the method based on
linear regression requires training and the time of construction of the forecasts of the
forecasts is the slowest.
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The method that leads to the best performances on the PV forecasting is the
multi-model that selects the median of the individual forecast. A big advantage of
this method is also the fact that it requires no training and it is the fastest method
for producing forecasts.
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Conclusion

In this thesis, the problem of generating short-term forecasts of the energy consumption
and production of a microgrid was addressed. A set of models have been created and
optimized and these models have been used in a multi-model forecasting system.

The individual models used in this thesis range from statistical time series models
to artificial intelligence-based models. The statistical time series models used are the
seasonal naive forecaster and the exponential smoothing technique. The artificial
intelligence-based models are the linear regression, the gradient boosting regression,
the multilayer percetron, and the Gaussian regression. These models were tested
in a single output mode and a multi-output model. In a single output mode, input
samples are used to produce forecasts for one time step at a time. In a multi-output
mode, the input samples are modified and are used to produce forecasts for one day
ahead.

The first challenge faced was the selection of the best input features for training
the artificial intelligence-based models. Regarding the load forecasting, the input
features that provided the best performances were the weather information combined
with the seasonality variables for capturing the day of the week, the hour of the day,
and the month of the year. When considering the models used for forecasting the PV
production, the more relevant input features were the subset of the weather variables
specific to the PV (i.e. the solar irradiation, temperature, and solar irradiation
squared).

After this phase of discovery of the input features, a tuning of the hyperparameters
of the models has been done. Firstly, the parameters of the exponential smoothing
techniques were tuned. This model had bad performances for the forecasting of the
PV because of the intermittence of this time series. The methods based on gradient
boosting and multilayer perceptron were optimized and provided good performances.
The last models being optimized are the models based on Gaussian regression. These
models did not provide good performances and their training time was relatively
long especially for the single output models.

Then, the problem of the selection of the amount of data for training the models
was addressed. This can also be a challenging task as the distribution of the data
may vary over time. For the forecasting of the load, training the models on 20 to 32
days of data in the past was optimal. For the forecasting of the PV production, the
multi-output models required shorter training periods (between 6 to 13 days of data)
while the single output models required longer training periods (between 21 and 26
days of data).
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After that, an analysis of the retraining frequency was done. With most of
the models, weekly retraining of the model provides forecasts with at most 5% of
degradation of the NRMSE compared to daily retraining. With the multi-output
models for forecasting the PV production, the retraining should be done at a higher
frequency (every 2 to 6 days).

Once all the model parameters and hyperparameters were tuned, a dataset was
created with the simulated forecasts from the different models for the period from
the 14th of October 2019 to the 31st of December 2019. The single output gradient
boosting regression and the single output multilayer perceptron were the best models
for forecasting the load and the PV.

Finally, several multi-model forecasting techniques were explored for combining
the forecasts of the different models. Firstly, some simple methods that require no
training of the multi-models were tested. These methods are the mean forecast, the
truncated mean forecast, and the median forecast. Then, some methods that require
training of the multi-models were explored. Firstly, a multi-model that selects the
forecasts from the best model was tested, then inverse MSE weighting and methods
based on weighted linear regression were used. For the forecasting of the load, the
MAE was minimized by using the multi-model selecting the median forecast and
the RMSE was minimized by using a linear regression strategy for the weighting
of the forecasts. For the forecasting of the PV, the usage of the median leads to
the best performances. It minimizes simultaneously the MAE, the RMSE, and the
computational time linked to the usage of the method.

Since the load is a time series with big variations, the final results obtained for its
forecasting are still inaccurate. However, for the forecasting of the PV production that
is a much more predictable quantity, the models provide quite good performances.
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Appendix A

Forecasting techniques

There are two types of forecasting methods: The qualitative forecasting methods
and the quantitative forecasting methods. Quantitative forecasting can be applied
when numerical information about the past is available and when it is reasonable to
assume that some aspects of the past patterns will continue into the future. As a
consequence, this thesis will only consider quantitative methods.

Quantitative methods can be divided into point forecasting and probabilistic
forecasting. Point forecasting is based on the creation of a parametric function
g : X → Y. Probabilistic forecasting is based on the specification of a distribution
over function g.

Quantitative methods can also be classified based on the fact that the method
used is a statistical time series approach or an artificial intelligence based method.

Quantitative methods can be approached with 3 types of models: (i) explanatory
models, (ii) time-series models, (iii) mixed models.

Traditional statistical time series approaches include naïve methods (today equals
tomorrow, data of same hour last week), exponential smoothing techniques (Holt’s
linear trend method, Holt’s winters seasonal method), ARIMA models.
In this kind of methods, each time a forecast is produced, the model needs to do
rebuild based on new observations that arrived.

A.1 Statistical time series approaches

A.1.1 Simple methods

Some simple methods are classically used to produce forecasts.

Naive approach The first approach is the naive approach. If xT is an observation
at time T, the naive approach produces the forecast x̂T+h|T :

x̂T+h|T = xT (A.1)
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Naive seasonal approach If the data is highly seasonal and the seasonal period
is given by m,the seasonal naive forecast is:

x̂T+h|T = xT+h−m(k+1) (A.2)

x̂T+h|T = xT+h−m(k+1)

Drift method A variation on the naive method is to allow the forecasts to increase
or decrease over time, where the amount of change over time (called the drift) is set
to be the average change seen in the historical data.

ŷT+h|T = yT + h

T − 1

T∑
t=2

(yt − yt−1) = yT + h
(
yT − y1

T − 1

)
.

A.1.2 Decomposition models
Decomposition models are models which decomposes the time series into several
components. When assuming an additive decomposition, the forecast can be given
by:

yt = St + Tt +Rt,

where yt is the data, St is the seasonal component, Tt is the trend-cycle component,
and Rt is the remainder component, all at period t. Alternatively, a multiplicative
decomposition would be written as

yt = St × Tt ×Rt.

A.1.3 Exponential smoothing models
Depending on the component of the time series (trend and seasonal) and the way in
which these components enter the smoothing method (e.g., in an additive, damped or
multiplicative manner), different exponential smoothing techniques can be applied.

Figure A.1: Formulas for recursive calculations and point forecasts. In each case,
lt denotes the series level at time t, bt denotes the slope at time t, st denotes the
seasonal component of the series at time t, and m denotes the number of seasons in
a year; α, β, γ and φare smoothing parameters, φh = φ+ φ2 + ...+ φh and k is the
integer part of h−1

m
[10]
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Index Method
(N,N) Simple exponential smoothing
(A,N) Holt’s linear method
(Ad,N) Additive damped trend method
(A,A) Additive Holt-Winters’ method
(A,M) Multiplicative Holt-Winters’ method
(Ad,M) Holt-Winters’ damped method

Table A.1: Name associated with different exponential smoothing techniques[10]

A.1.4 ARIMA Models
Non-seasonal ARIMA models ARIMA stands for autoregressive integrated
moving average.The combination of differencing and autoregression and a moving
average model. The model can be written:

y′t = c+ φ1y
′
t−1 + · · ·+ φpy

′
t−p + θ1εt−1 + · · ·+ θqεt−q + εt, (A.3)

It is called an ARIMA(p,d,q) model where p is the order of the autoregressive part, d
is degree of first differencing involved and q is the order of the moving average part.

Seasonal ARIMA models A seasonal ARIMA model is formed by including
additional seasonal terms in the ARIMA models we have seen so far. It is written as
follows:

ARIMA (p, d, q) (P,D,Q)m

where the first part is a non seasonal part of the model and the second term is a
seasonal part of the model and m is the number of observations per year.

The seasonal part of the model consists of terms that are similar to the non-
seasonal components of the model, but involve backshifts of the seasonal period.

A.2 Artificial intelligence-based methods

A.2.1 Linear regression
A multiple linear regressor model is a model of the form:

yt = β0 + β1x1,t + β2x2,t + · · ·+ βkxk,t + varεt

where y is the variable to be forecast and x1. . . ,xk are the k predictor variables.

A.2.2 Multilayer Perceptron
A multilayer perceptron (MLP) is a class of feedforward artificial neural network
(ANN). Parameters of a MLP include its architecture (number of layers, number of
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nodes per layer), the activation function that is used, the loss function,... Hyperparameters
of MLP are the number of epochs during which the algorithm will passes through
the training dataset, the learning rate of the algorithm, the batch size,...

Figure A.2: Representation of a Multilayer Perceptron

Number of nodes in input layer. The number of nodes in the input layer is
fully determined by the number of independent input in the dataset.

Number of nodes in the output layer The number of output nodes is also
dependent on the problem. In one-step ahead forecasting, only one output node is
needed, in multi-step ahead forecasting, the number of output node should correspond
to the forecasting horizon. Alternatively, a single output node can be used and all
the future forecasts required determined in the iterative steps.

Number of hidden layers. Lippmann (1987), in his paper on neurocomputing,
stated clearly that a three-layer perceptron can form arbitrarily complex decision
regions and can separate meshed classes, which means that no more than three
network layers are needed in perceptron-like feedforward nets.

Number of neurons in hidden layer. There is no straight-forward methodology
for selecting the number of hidden neurons but there exist some rules of thumb. It is
generally selected in the range 0.5 to 3 times the number of input nodes.

Activation functions Several activation functions can be added on the output
of a layer from a neural network. This activation functions can be categorized as
linear activation functions and non linear activation functions such as the Sigmoid,
the ReLu, the tanh.

Dropout rate. In order to reduce overfitting, a dropout can be applied to the
network. At each training stage, individual nodes are either dropped out of the net
with probability 1-p or kept with probability p.

Learning rate and number of epochs. The learning rate is the step size or the
magnitude of weight updating. The number of epochs is the number of times the
whole training data is shown to the network while training.
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Batch-size. The batch size is the number of sub samples given to the network
after which parameter update happens.

A.2.3 Gradient Boosting Regressor
Gradient boosting is a machine learning technique for regression and classification
problems, which produces a prediction model in the form of an ensemble of weak
prediction models, typically decision trees.

The parameters of the Gradient boosting method include tree-specific parameters,
boosting parameters and miscellaneous parameters. Tree-specific parameters include
parameters such as the minimum number of samples per split or per leaf and the
maximum depth of a tree. Some parameters that can affect boosting are the learning
rate and number of estimators.

A.2.4 Gaussian Process Regressor
A Gaussian process is defined as a collection of random variables, any finite number
of which have a joint Gaussian distribution.

It is completely specified by its mean function m(x) and the covariance function
(kernel) k(x, x′). The choice of the kernel function is a parameter that needs to be
selected. Example of kernels are the white noise kernel, the exponential quadratic
kernel, the Matérn kernel, the periodic kernel.

A.3 AIC
Akaike’s Information Criterion is a model selection criterion and is defined as

AIC = T log
(
SSE
T

)
+ 2(k + 2)

SSE =
T∑
t=1

e2
t

where T is the number of observations used for estimation and k is the number of
predictors in the model.
For small values of T, the AIC tends to select too many predictors, and so a
bias-corrected version of the AIC has been developed,

AICc = AIC + 2(k + 2)(k + 3)
T − k − 3 .

As with the AIC, the AICc should be minimised.

The AICc is useful for selecting between models in the same class. For example,
we can use it to select an ARIMA model between candidate ARIMA models or an
ETS model between candidate ETS models. However, it cannot be used to compare
between ETS and ARIMA models because they are in different model classes, and
the likelihood is computed in different ways[10].
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Appendix B

Selection of the input features

In this chapter, a short analysis of the performances of the artificial intelligence-based
method is done based on the choice of the inputs for training the model. The input
features are detailed in section 4.5.1.

B.1 Linear Regression

B.1.1 Single output model
Load forecasting The performances of the linear regression model for the forecasting
of the load are presented in table B.1. It can be observed from table B.1 that the
usage of weather information together with dummy variables for capturing seasonality
improves the performances compared to the model using only weather information. As
a consequence, those inputs will be used to study the linear regression for forecasting
the load.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 790 1317 2
Weather variables and lagged observations 451 874 3
Weather and seasonality variables 763 1219 10

Table B.1: Performances of the MLR model for forecasting the load

PV forecasting As can be seen in table B.2, the introduction of dummy variables
does not improve the performances of the model. The best performances are obtained
with the weather information specific to the PV production. This input was thus
selected for the rest of the study.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 114 198 2
Weather variables (specific to PV) 104 192 2
Weather variables and lagged observations 51 106 3
Weather and seasonality variables 116 198 3

Table B.2: Performances of the MLR model for forecasting the PV
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B.1.2 Multi-output model
Load forecasting The usage of a multi-output MLR provides results that are
below the results obtained with a naive forecaster. The best performances are
obtained by using as input the weather information and the dummy variables.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 1153 2026 420
Weather variables and lagged observations 488 815 540
Weather and seasonality variables 1084 1821 560

Table B.3: Performances of the multi-output MLR trained on different input features
for the forecasting of the load

PV forecasting The best performances are obtained by using the weather variables
specific to the PV.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 170 405 370
Weather and seasonality variables 170 405 360
Weather variables (specific to PV) 127 268 370
Weather variables and lagged observations 138 837 450

Table B.4: Performances of the multi-output MLR trained on different inputs

B.2 Gradient Boosting

B.2.1 Single output model
Load forecasting In table B.5, the performances are shown for different inputs.
As can be seen, the introduction of the seasonality variables decreases sharply the
MAE and the RMSE.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 805 1343 584
Weather variables and lagged observations 479 933 1140
Weather and seasonality variables 643 1114 700

Table B.5: Performances of the Single output gradient boosting trained on different
inputs for forecasting the load

PV forecasting In this section, another variation of the input is introduced.
This variation is based on the usage of inputs composed of the temperature, solar
irradiation, the solar irradiation squared, and the dummy variables for the seasonality.
We can observe that this setting produced the best performances for the model.
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Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 97 203 580
Weather variables and lagged observations 46 112 840
Weather and seasonality variables 98 202 650
Weather variables (specific to PV) 90 194 390
Weather (specific to PV) and seasonality variables 89 187 390

Table B.6: Performances of the Single output gradient boosting trained on different
inputs for forecasting the PV production

B.2.2 Multi-output model
Load forecasting The inputs selected will be the weather and the dummy variables
since it provides better performances compared to the model using only weather
variables.

Input Features MAE RMSE Mean training
(W) (W) time (s)

Weather variables 719 1219 25
Weather and seasonality variables 687 1166 31
Weather and lagged variables 283 600 46

Table B.7: Performances of the multi-output gradient boosting trained on different
inputs

PV forecasting The usage of the inputs based on the weather specific to the PV
provides the best performances.

Input Features MAE RMSE Mean training
(W) (W) time (s)

Weather variables 100 214 24
Weather and seasonality variables 100 214 24
Weather and lagged variables 24 55 34
Weather (specific to PV) 90 195 12

Table B.8: Performances of the multi-output gradient boosting trained on different
inputs features

B.3 MultiLayer Perceptron
In order to train the multilayer perceptron, another variation of the inputs has been
tested. In these new inputs, the dummy variables are encoded as binary variables.

B.3.1 Single output model
Load forecasting Here, it can be observed that the model provides better performances
when the weather variables and the dummy variables encoded as binary values are
used. The training time with these inputs is also the longest.
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Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 784 1315 630
Weather and seasonality variables 784 1315 690
Weather variables and lagged observations 710 1175 710
Weather and seasonality variables (binary) 773 1268 930

Table B.9: Performance of the single MLP for the forecasting of the load with
different selection of input features

PV forecasting The model which has been selected is the model using the weather
and dummy variables expressed as binary values. However, the model that uses only
the weather information specific to the PV and the dummy variables expressed as
binary values provides similar performances.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 122 234 540
Weather variables and lagged observations 50 118 980
Weather and seasonality variables 116 201 650
Weather variables (specific to PV) 141 212 830
Weather and seasonality variables (binary) 89 189 1170
Weather (specific to PV) and seasonality variables 119 205 1300
Weather (specific to PV) and seasonality variables (binary) 92 184 1610

Table B.10: Performance of the single output MLP for the forecasting of the PV
with different selection of input features

B.3.2 Multi-output model
Load forecasting In terms of MAE, the model that provides the best performances
is the model using as input the weather and the dummy variables expressed as binary
values. In terms of RMSE, the best performances are obtained with the model using
weather and dummy variables expressed as integers. This second model has also a
smaller training time. Thus, these later inputs were selected for the rest of the study.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 673 1186 539
Weather variables and lagged observations 673 1188 1018
Weather and seasonality variables 669 1185 670
Weather and seasonality variables (binary) 665 1190 2800

Table B.11: Performance of the multioutput MLP for the forecasting of the load
with different selection of input features

PV forecasting The two choices of inputs that provide the best performances are
the weather information and dummy variables expressed as binary values and the
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weather information specific to the PV and dummy variables expressed as binary
values. In practice, the second choice was used for the rest of the study.

Input Features MAE RMSE Mean training
(W) (W) time (ms)

Weather variables 136 262 530
Weather variables and lagged observations 160 633 1030
Weather and seasonality variables 134 257 643
Weather and seasonality variables (binary) 132 254 1350
Weather (specific to PV) 134 255 830
Weather (specific to PV) and seasonality variables 134 255 1376
Weather (specific to PV) and seasonality variables (binary) 132 251 1800

Table B.12: Performance of the multioutput MLP for the forecasting of the PV with
different selection of input features

B.4 Gaussian process regressor

B.4.1 Single output model

With the single output model, the Min-Max scaler has been removed and the
normalized_y argument from the gaussian process has been set to True.

Load forecasting The default kernel used in this experiment is the Rational
Quadratic kernel. As can be seen in table B.13, the best performances are obtained
when the input features are simply composed of the weather variables.

Input Features CRPS mean training
(W) time (s)

Weather variables 830 136
Weather and seasonality variables 843 84
Weather and lagged observations 965 65

Table B.13: Performance of the multioutput GBR for the forecasting of the Load
with different selection of input features

PV forecasting The default kernel used in this experiment is the Matern kernel.
The best performances are obtained by using only the weather variables as input
features.
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Input Features CRPS mean training
(W) time (s)

Weather variables 219 62
Weather and seasonality variables 230 56
Weather variables (specific to PV) NaN 8
Weather(specific to PV) and seasonality variables 263 8
Weather and lagged observations 202 62

Table B.14: Performance of the multioutput GBR for the forecasting of the PV with
different selection of input features

B.4.2 Multi-output model

Load forecasting The best input features are the weather variables combined
with the seasonality variables.

Input Features CRPS mean training
(W) time (s)

Weather variables 749 0.18
Weather and seasonality variables 743 0.17
Weather and lagged observations 788 0.15

Table B.15: Performance of the multioutput GBR for the forecasting of the Load
with different selection of input features

PV forecasting The input features leading to the lowest CRPS are the weather
variables and the weather variables used with seasonality variables. The input
features selected for the rest of the experiments are the weather variables because it
has a smaller training time.

Input Features CRPS mean training
(W) time (s)

Weather variables 205 0.13
Weather and seasonality variables 205 0.20
Weather variables (specific to PV) 217 0.17
Weather(specific to PV) and seasonality variables 217 0.20
Weather and lagged observations 210 0.16

Table B.16: Performance of the multioutput GBR for the forecasting of the PV with
different selection of input features
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B.5 Summary of the results

Load forecasting

Model Output
mode

Input
features

MAE
(W)

RMSE
(W)

Mean training
time (ms)

MLR single WS 763 1219 10
multi WS 1084 1821 560

GBR single WS 643 1114 700
multi WS 687 1166 31000

MLP single WSb 773 1268 930
multi WS 669 1185 670

Table B.17: Performances of the method with their best input features used for the
forecasting of the load. "WS" represents the input made of weather and seasonality
variables and "WSb" represents the input made of weather and seasonality variables
expressed as binary values

In the table B.18, the performances of the gaussian process regressor using simple
or multi-output are shown. The CRPS obtained with a multi-output GPR is lower
than the one obtained with the single output model. It can also be noted that the
training time is relatively important when using the single output model.

Model output Input Features CRPS
(W)

MeanTraining
time (s)

GPR single Weather variables 830 136.0
multi Weather and seasonality variables 743 0.2

Table B.18: Performances of the Gaussian Process with their best input features
used.

PV forecasting

Model Output
mode

Input
features

MAE
(W)

RMSE
(W)

Mean training
time (ms)

MLR single PV weather 104 192 2
multi PV weather 127 268 370

GBR single PV weather and seasonality 89 187 390
multi PV weather 90 195 12.3k

MLP single Weather and hour 89 189 1.2k
multi PV weather, seasonality (binary) 132 251 1.8k

Table B.19: Performances of the method with their best input features used for the
forecasting of the PV.

In the table B.20, the performances of the gaussian process regressor are shown
for forecasting the PV production. The best performances are obtained with the
multi-output model.
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Model output Input Features CRPS
(W)

MeanTraining
time (s)

GPR single Weather variables 219 61.6
multi Weather and seasonality variables 205 0.2

Table B.20: Performances of the Gaussian Process with their best input features
used for the forecasting of the PV.

B.6 Conclusion
In this chapter, the impact of the selection of the input features has been analyzed
with different artificial intelligence-based models to forecast the load and the PV.
In the next chapter, the hyperparameters of the models will be tuned in order to
optimize their performances.
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Appendix C

Hyperparameter optimization

C.1 Naive forecaster
In order to have a reference for comparison, the naive forecaster is created and its
performances are computed on the validation period (table C.1).

Forecast MAE (W) RMSE (W)
PV 104 238
load 776 1458

Table C.1: Performances of the naive forecaster

C.2 Exponential smoothing techniques
Load forecasting The model with the lowest MAE is the model with no trend
and a multiplicative seasonality in which the seasonal periods are composed of 7
days. The model with the lower RMSE is also the model with no trend and a
multiplicative seasonality but the seasonal period is only 1 day. It can be observed
that the results of both models in terms of MAE and RMSE are better compared
to the naive forecaster. The training time is also reasonable. The results of both
models are summarized in tableC.2.

Seasonal period (days) Mean training time (s) MAE (W) RMSE (W)
7 0.52 648 1239
1 0.43 744 1214

Table C.2: Performance of the models with no trend and a multiplicative seasonality
for forecasting the load

PV forecasting Since the PV production is intermittent, the exponential smoothing
techniques with multiplicative components for the trend or seasonality cannot be
tested. By eliminating these models, the best model is the simple model with
neither trend nor seasonality which gives the performances summarized in table C.3.
However, it is the performances of the model that predicts 0 at each time step and it
is thus not relevant to use it in the remaining of the experiments. ARIMA models

79



are also inaccurate models for PV forecasting because of the same reason.

Mean training time (s) MAE (W) RMSE (W)
0.024 154 340

Table C.3: Performance of the models with no trend and a multiplicative seasonality
for forecasting the PV

C.3 Single Output Gradient Boosting Regression

C.3.1 Impact of the maximal depth

Load forecasting The MAE and the RMSE are minimal with a maximal depth
equal to 7. With this depth, the MAE equals 607 and the RMSE is 1095. When
the max depth is greater than this value, the performances tend to decrease as the
model starts to overfit the data.

Figure C.1: Performances of the GBR with different max depths for the forecasting
of the load

PV forecasting The maximal depth of trees that gives the best performances is
4, the MAE equals 88 and the RMSE equals 182. Over this value, the performances
decrease as can be seen in figure C.1.
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Figure C.2: Performances of the GBR with different max depths for the forecasting
of the PV

C.3.2 Impact of the number of estimators

Load forecasting The best performances are reached when using 19 estimators,
the MAE then equals 607 W and the RMSE equals 1095. Above 20 estimators, the
model overfits the input data, and the MAE and RMSE increase. The performances
in terms of the number of estimators can be found in figure C.3.

Figure C.3: Performances of the GBR with different number of estimators for the
forecasting of the load

PV forecasting In this case, the MAE and the RMSE are not minimized simultaneously
for the same number of estimators. The MAE is minimal when using 70 estimators
and reaches 87.6 W while the RMSE is minimal when using 20 estimators and reaches
172W. To find a compromise between the selection of these two values, the choice of
the selection of 40 estimators was done. With this value, the MAE equals 89 W and
the RMSE equals 176 W.The performances in terms of the number of estimators can
be found in the figure C.4.
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Figure C.4: Performances of the GBR with different number of estimators for the
forecasting of the PV

C.3.3 Impact of the minimum number of samples per split

Load forecasting The minimum RMSE is obtained with a minimum number of
splits of 7 and is equal to 1094W. The MAE is minimal for a minimum number of
split of 4 and is then 607W. The selected minimum number of samples per splits for
the other experiments is 5.

Figure C.5: Performances of the GBR with different minimum number of samples
per split for the forecast of the load

PV forecasting The number of samples per split does not affect the MAE and
RMSE. The default value of 5 is thus kept in the rest of the experiments.

C.3.4 Impact of the minimum number of samples per leaf

Load forecasting The MAE is minimal with a minimum number of samples per
leaf equal to 51 and it is then equal to 589W. With a minimum number of samples
per split which is equal to 52, the RMSE is minimal and is equal to 1060. Thus, in
the rest of the experiment, the minimum number of samples per leaf was chosen to
be 51.
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Figure C.6: Performances of the GBR with different minimum number of samples
per leaf for forecasting the load

PV forecasting The number of samples per leaf does not affect much the MAE
and RMSE. Like in the case of the selection of the minimum number of samples per
split, the default value of 5 is selected for the rest of the experiments.

C.3.5 Impact of the learning rate
Load forecasting In terms of MAE, the best performances are observed with a
learning rate of 10%. With this value, the MAE is equal to 591 W and the RMSE
is equal to 1064 W. In terms of RMSE, the best performances are observed with a
learning rate of 20%. With this value, the MAE is equal to 595 and the RMSE is equal
to 1058W. Above those values, the performances decrease because the magnitude of
the change in the update of the model is too large. The selected learning rate for the
rest of the experiments is the learning rate of 10%. The performances as a function
of the learning rate can be viewed in figure C.7.

Figure C.7: Performances of the GBR with max depth of 7, 19 estimators, mininum
number of samples per split of 5, min number of samples per lead of 51 and different
learning rates for the forecast of the load

PV forecasting The lowest RMSE is obtained with a learning rate of 0.05 and
reaches 172 W. With a learning rate of 0.05, the MAE equals 103 W. When using a
learning rate of 0.1, there is a best compromise between the MAE and the RMSE
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because the MAE equals 89 W and the RMSE equals 176 W. It is the selected
learning rate for the rest of the experiments. The performances as a function of the
learning rate can be viewed in figure C.8.

Figure C.8: Performances of the GBR with max depth of 4, 40 estimators, mininum
number of samples per split of 5, min number of samples per lead of 5 and different
learning rates for the forecast of the PV

C.4 Multiple Output Gradient Boosting Regression

C.4.1 Impact of the number of estimators
Load forecasting With 12 estimators, the MAE equals 640 W and the RMSE
equals 1137 W. Above this value, both the MAE and the RMSE continuously increase
as can be viewed in picture C.9 where the number of estimators are tested in [10,140]
by step of 10 estimators.

Figure C.9: Performances of the multi-output GBR with different number of
estimators for the prediction of the load

PV forecasting In picture C.10, the number of estimators are also tested in
[10,140] by step of 10 estimators. Below and above 30 estimators the performances
tend to decrease caused by underfitting or overfitting of the data. When testing the
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number of estimators in the range ]20,40[, the best number of estimators seems to
be 29 and produced a MAE equal to 88 W and a RMSE equal to 188 W.

Figure C.10: Performances of the multi output GBR with different number of
estimators for the prediction of the PV

C.4.2 Impact of the maximal depth of trees

Load and PV forecasting The maximal depth of trees does not impact significantly
the performances. We can thus select a maximal depth of 5.

C.4.3 Impact of the minimum number of samples per leaf

Load forecasting The minimum number of samples per leaf that gives the best
performances is 10 and gave a MAE of 629 W and a RMSE of 1124 W. When the
minimum number of samples per leaf passes 18, the performances reach a plateau as
the number of inputs (35 days of data) prevents the model from being able to divide
the samples into several groups composed of at least 18 samples. The performances
of the model as a function of the minimum number of samples per leaf can be seen
in picture C.11.

Figure C.11: Performances of the multi output GBR with different minimum number
of samples per leaf for the prediction of the load
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PV forecasting The minimum number of samples per leaf that gives the best
performances is 10 and gave a MAE of 83 W and a RMSE of 177 W. Like in the case
of the forecast of the load, above a value of 17, the performances reaches a plateau.

Figure C.12: Performances of the multi output GBR with different minimum number
of samples per leaf for the prediction of the PV

C.4.4 Impact of the minimum number of samples per split

Load and PV forecasting The minimum number of samples per split does not
affect significantly the performances of the model. A value superior to 35 should
not be selected because it is the number of training samples. The default value of
minimum 5 samples per split can be selected.

Figure C.13: Performances of the multi output GBR with different minimum number
of samples per split for the prediction of the load
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Figure C.14: Performances of the multi output GBR with different minimum number
of samples per split for the prediction of the PV

C.4.5 Impact of the learning rate

Load forecasting The performances of the model as a function of the learning
rate have a parabolic shape with a minimum reached when the learning rate is of
15% (see figure C.15). With this value, the MAE equals 628 W and the RMSE equals
1122 W.

Figure C.15: Performances of the multi output GBR with different learning raes for
the prediction of the load

PV forecasting A learning rate of 0.1 minimizes the MAE and the RMSE as can
be seen in figure C.16.
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Figure C.16: Performances of the multi output GBR with different learning rates for
the prediction of the PV

C.5 MLP single output

C.5.1 Variation of the normalization/scaling
Load forecasting As can be seen in C.4, the scalers that leads to the best
performances in terms of RMSE is the min-max scaler in input and the standard
scaler in output (table C.4). We can observe that the usage of standard scalers
both on the inputs and on the outputs produces very bad performances and the
usage of the min-max scaler on both the inputs and the outputs provides quite bad
performances as well.

Scaler input Scaler output MAE RMSE Mean training
(W) (W) time (ms)

StandardScaler StandardScaler 1196 1431 740
MinMaxScaler StandardScaler 712 1128 1430
StandardScaler MinMaxScaler 651 1172 1100
MinMaxScaler MinMaxScaler 767 1334 1220

Table C.4: Performances of the MLP used with different scalers for the forecasting
of the load

PV forecasting The scaler that gives the best performances for the PV forecasting
is the min-max scaler for the output and the standard scaler for the input (table
C.5). All the other combinations of scalers provide relatively bad performances.

Scaler input Scaler output MAE RMSE Mean training
(W) (W) time (ms)

StandardScaler StandardScaler 350 390 540
MinMaxScaler StandardScaler 247 288 650
StandardScaler MinMaxScaler 84 175 830
MinMaxScaler MinMaxScaler 237 307 1000

Table C.5: Performances of the MLP used with different scalers
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C.5.2 Variation of the number of neurons in the hidden
layer

Load forecasting With 80 neurons in the hidden layer, the MAE is equal to 709
W and the RMSE is equal to 1112W.

PV forecasting With 35 neurons, there is a good compromise between the
performances in terms of MAE, RMSE and training. With this value, the MAE is
equal to 89 W and the RMSE is equal to 182.

C.5.3 Variation of the learning rate and number of epochs

Different combinations of numbers of epochs and learning rates have been tested, the
number of epochs being tested in the range [10, 210] by step of 10, and the learning
rates being tested in {0.0005, 0.001, 0.005, 0.01}.

Load forecasting As the learning rate increases, the mean squared error and the
mean absolute error decreases until reaching a learning rate of 0.005 and then it
reincreases slightly with a learning rate of 0.01. For a learning rate of 0.005 and 200
epochs, the MAE and the RMSE are minimal.

PV forecasting When the learning rate equals 0.0005, the error is more important
and then with higher learning rate, the error decreases and it is minimized for the
MAE and the RMSE when the number of epochs is 100 and the learning rate is
0.001.

C.5.4 Dropout rate

Load forecasting With a dropout rate of 0.3, the MAE reaches 712 W and the
RMSE reaches 1106 W

Figure C.17: Performances of the MLP with different dropout rate for forecasting
the load
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PV forecasting With a dropout rate of 50%, the MAE equals 85 W and the
RMSE equals 177 W.

Figure C.18: Performances of the MLP with different dropout rates for forecasting
the PV

C.5.5 Batch size

Load forecasting With a batch size of 20, the MAE is equal to 712W and the
RMSE is equal to 1118 W.

Figure C.19: Performances of the MLP with different batch size for forecasting the
load

PV forecasting With a batch size of 30, the MAE is equal to 86 and the RMSE
is equal to 176.
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Figure C.20: Performances of the MLP with different batch size for forecasting the
PV

C.5.6 Number of layers
In this experiment, a second hidden layer is added to the structure of the MLP. This
layer is simply a dense layer with a number of neurons which is the half of the one of
the first hidden layer and an equal dropout rate.

Load forecasting The introduction of the second layer leads to an increase in
the mean training time but also a decrease in the performances. In the rest of the
experiments, the initial structure using only one hidden layer is thus used.

Number of layers MAE (W) RMSE (W) Mean training time (s)
1 714 1123 0.7
2 746 1245 1.0

Table C.6: Performances of the MLP with different number of layers for forecasting
the load

PV forecasting In this case, the introduction of a second layer leads to a small
decrease of the RMSE and an increase in the MAE. The choice was thus made to
keep the original structure with one hidden layer as the improvement in the RMSE
was small with 2 layers and it leads to an increase in the training time.

Number of layers MAE (W) RMSE (W) Mean training time (s)
1 89 179 0.75
2 100 176 0.96

Table C.7: Performances of the MLP with different number of layers for forecasting
the PV

C.5.7 Variation of the activation functions
The models have been tested with different activation functions both for the hidden
layer and for the output layer. These activation functions where the linear activation
function, the ReLu activation function, the tanh, and the softmax activation function.
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Load forecasting In the remaining of the experiments, the tanh is used as
activation function of the output and the ReLu is used as activation function
of the hidden layer.

Activation Activation MAE RMSE Mean training
output hidden layer (W) (W) period (s)
linear linear 695 1139 0.66
relu linear 747 1152 0.78
tanh linear 682 1140 0.98
softmax linear 1257 1445 1.15
linear relu 656 1116 1.39
relu relu 710 1137 1.62
tanh relu 650 1121 1.82
softmax relu 1257 1445 1.94
linear tanh 706 1163 2.17
relu tanh 755 1165 2.34
tanh tanh 675 1145 2.58
softmax tanh 1257 1445 2.79
linear softmax 648 1165 3.04
relu softmax 767 1222 3.30
tanh softmax 656 1179 3.50
softmax softmax 1257 1445 3.59

Table C.8: Performances of the model with different activation functions for
forecasting the load

PV forecasting The best performances were obtained by using the ReLu as
activation function for the output and the linear function as activation function for
the hidden layer.
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Activation Activation MAE RMSE Mean training
output hidden layer (W) (W) period (s)
linear linear 120 199 0.77
relu linear 85 182 0.83
tanh linear 121 202 1.03
softmax linear 2379 2460 1.06
linear relu 109 193 1.25
relu relu 89 182 1.78
tanh relu 108 195 1.81
softmax relu 2379 2460 2.07
linear tanh 120 194 2.12
relu tanh 93 190 2.32
tanh tanh 123 199 2.77
softmax tanh 2379 2460 3.12
linear softmax 209 272 2.90
relu softmax 206 281 3.14
tanh softmax 213 274 3.50
softmax softmax 2379 2460 3.69

Table C.9: Performances of the model with different activation functions for
forecasting the PV

C.6 MLP multi output

C.6.1 Variation of the normalization/scaling

Load forecasting In comparison to what was observed with the single output
MLP, with the multi-output MLP, the choice of the scaler does not change much
the performances. The scaling chosen is the standard scaler for the input and the
output.

Scaler output Scaler input MAE (W) RMSE (W) mean training time (s)
StandardScaler StandardScaler 668 1184 0.79
StandardScaler MinMaxScaler 669 1185 0.93
MinMaxScaler StandardScaler 669 1183 1.08
MinMaxScaler MinMaxScaler 669 1185 1.30

Table C.10: Performances of the MLP used with different scalers

PV forecasting The choice of the scaler doesn’t seem to affect much the performances.
The scalers selected are the standard scalers both for the input and for the output.

93



Scaler output Scaler input MAE (W) RMSE (W) mean training (s) time
StandardScaler StandardScaler 132 252 0.89
StandardScaler MinMaxScaler 132 252 1.09
MinMaxScaler StandardScaler 132 251 1.47
MinMaxScaler MinMaxScaler 133 254 2.97

Table C.11: Performances of the MLP used with different scalers

C.6.2 Variation of the number of neurons

Load forecasting By varying the number of neurons in the hidden layer, we can
observe that the MAE remains in the range [670,680] and the RMSE remains in the
range [1170,1180]. As a consequence, the number of neurons in the hidden layer was
selected to be 2 the number of input neurons by default.

PV forecasting By varying the number of neurons in the hidden layer between
100 and 2880, it can be seen that the MAE starts with a value of 130 and then
stabilize to 120 whatever the number of neurons. The tendency is the same for the
RMSE which is equal to 248 whatever the number of neurons. The hidden layer size
was thus again selected to be 2 times the number of input neurons.

C.6.3 Variation of the Learning rate and of the number of
epochs

Load forecasting Different combinations of numbers of epochs and learning rates
have been tested. The number of epochs has been tested in the range [10, 190] by
step of 10 and the learning rates being tested in {0.0005, 0.001, 0.0020.005, 0.01}.
With a learning rate of 0.002, the MAE and RMSE are smaller and with 130 epochs,
the MAE reached 663 W and the RMSE reached 1186W.

PV forecasting Different combinations of numbers of epochs and learning rates
have been tested, the number of epochs being tested in the range [10, 190] by step
of 10, and the learning rates being tested in {0.0005, 0.001, 0.0020.005, 0.01}. The
learning rate that provided the better performances is 0.001 and the number of
epochs didn’t seem to impact very much the performances but it was selected to be
130.

C.6.4 Variation of the dropout rate

Load forecasting The dropout rate was selected to be at 60% as it gives a MAE
of 664 W and a RMSE of 1187W.
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Figure C.21: Performances of the multi output MLP with different dropout rate

PV forecasting As can be seen in figure C.22, the choice of the dropout rate does
not impact very much the performances but it was selected to be 40% as it is the
dropout rate that provides the best performances.

Figure C.22: Performances of the multi output MLP with different dropout rate

C.6.5 Variation of the batch size
Load forecasting The batch size was tested in the range [10,200] with steps of 10
and it showed that independently from the selected batch size, the MAE was always
in the range [664,665] and the RMSE was always in the range [1186, 1191]. The
batch size selected is 20 and it gave a MAE equal to 664W and a RMSE equal to
1189W.

PV forecasting The batch size was tested in the range [10,200] with steps of
10 and it showed that independently from the selected batch size, the MAE was
always in the range [131,133] and the RMSE was always in the range [251, 255]. As
a consequence, the batch size was simply selected to be 50.

C.6.6 Variation of the activation functions
Load forecasting The activation functions that provided the best performances
both in terms of RMSE and MAE are the ReLu activation function both for the
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hidden and for the output layer.

Activation Activation MAE RMSE Mean training
output hidden layer (W) (W) period (s)
linear linear 2038 3225 0.59
relu linear 667 1190 0.67
tanh linear 806 1339 0.84
softmax linear 666 1188 1.07
linear relu 1003 1643 1.15
relu relu 664 1187 1.33
tanh relu 757 1305 1.46
softmax relu 665 1187 1.65
linear tanh 1378 2173 1.80
relu tanh 665 1189 1.99
tanh tanh 757 1293 2.13
softmax tanh 666 1189 2.30
linear softmax 664 1190 2.49
relu softmax 664 1190 2.64
tanh softmax 664 1190 2.83
softmax softmax 665 1187 3.02

Table C.12: Performances of the multi-output MLP with different activation functions
for the forecasting of the load

PV forecasting The softmax was selected as activation function of the hidden
layer and the ReLu was selected as activation function of the output.

Activation Activation MAE RMSE Mean training
output hidden layer (W) (W) period (s)
linear linear 147 289 1.10
relu linear 134 255 0.79
tanh linear 134 265 1.00
softmax linear 131 250 1.23
linear relu 133 258 1.34
relu relu 132 253 1.53
tanh relu 133 256 1.64
softmax relu 131 250 1.83
linear tanh 142 278 2.44
relu tanh 133 254 2.10
tanh tanh 136 265 2.55
softmax tanh 131 250 2.51
linear softmax 130 248 2.79
relu softmax 130 248 3.00
tanh softmax 130 248 3.10
softmax softmax 130 250 3.89

Table C.13: Performances of the multioutput MLP with different activation functions
for the forecasting of the PV
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C.6.7 Number of layers
Load forecasting As can be seen in table C.14, the usage of only one hidden layer
provided slightly better performances and was thus selected.

Number of layers MAE RMSE Mean training
(W) (W) time (s)

1 665 1188 0.57
2 669 1189 0.86

Table C.14: Performances of the MLP with different number of layers for forecasting
the load

PV forecasting As can be seen in table C.15, the performances in terms of MAE
and RMSE are equivalent. As the structure which used one layer leads to shorter
training time, it was selected.

Number of layers MAE RMSE Mean training
(W) (W) time (s)

1 129 248 0.70
2 129 248 1.14

Table C.15: Performances of the MLP with different number of layers for forecasting
the load

C.7 Gaussian process regression
The gaussian process was tested with different kernels and is evaluated in terms of
its CRPS score.

C.7.1 Single output model
With the single output model, the limiting factor is the training time which can be
relatively high depending on the kernel selected.

Load forecasting

Kernel CRPS (W) Mean training time (s)
RationalQuadratic 829 151
RBF 813 10
Matern 813 15

Table C.16: CRPS in function of the type of kernel for the forecasting of the load

PV forecasting The model built with a Matern kernel is better than the other
models but the training time is large.
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Kernel CRPS (W) Mean training time (s)
RationalQuadratic 256 95
RBF 268 10
Matern 219 64

Table C.17: CRPS in function of the type of kernel for the forecasting of the load

C.7.2 Multi-output model
In comparison to the single output gaussian regressor, the multi-output model leads
to significantly lower training time and it provides also better performances.

Load forecasting

Kernel CRPS (W) Mean training time (s)
RBF 841 0.13
Rational Quadratic kernel 808 0.15
Matern 825 0.15
ExpSineSquared(periodicity = 96) 895 0.08
1.0 * RBF(1.0) 743 0.16
1.0 * Matern(length_scale=1, nu=1.5) 732 0.18

Table C.18: CRPS in function of the type of kernel for the forecasting of the load

PV forecasting

Kernel CRPS (W) Mean training time (s)
RBF 218 0.09
Rational Quadratic kernel 266 0.16
Matern 231 0.11
ExpSineSquared(periodicity = 96) 154 0.06
Rational Quadratic kernel 237 0.20
1.0 * RBF(1.0) 205 0.14
1.0 * Matern(length_scale=1, nu=1.5) 214 0.14

Table C.19: CRPS in function of the type of kernel for the forecasting of the load

C.8 Summary of the results
Load forecasting In table C.20, the performances of the different models after
tuning of their hyperparameters are provided. The models based on gradient boosting
have the lowest MAE and RMSE. Then, the methods based on MLP and EST seem
to have also good performances compared to the naive forecaster. The models based
on linear regression comparatively have worst performances and in the case of the
multiple output linear regression, the performances are worst than the ones of the
naive forecaster.
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Model Output
mode

MAE
(W)

RMSE
(W)

Mean training
time (ms)

Naive forecaster / 776 1458 /
EST / 648 1239 520
MLR single 763 1219 10

multi 1084 1821 560

GBR single 591 1064 150
multi 628 1122 2.1k

MLP single 650 1121 1.8k
multi 664 1187 1.3k

Table C.20: Performances of the models for forecasting the load after optimization
of their hyperparameters

PV forecasting In table C.21, the performances of the different models for
forecasting the PV production are summarized. The exponential smoothing not
being adapted, its performances are worst than the one of the naive forecaster. As a
consequence, this model was not used in the remainder of the experiments. The linear
regression model has a lower RMSE than the naive forecaster. The multi-output
linear regressor has worst performances than the naive forecaster.

Model Output
mode

MAE
(W)

RMSE
(W)

Mean training
time (ms)

Naive forecaster / 104 238 /
EST / 154 340 24
MLR single 104 192 2

multi 127 268 370

GBR single 103 172 120
multi 89 176 120

MLP single 85 182 830
multi 130 248 3k

Table C.21: Performances of the models for forecasting the PV after optimization of
their hyperparameters

C.9 Analysis of a change of resolution
The performances of all of the models trained for forecasting the load consumption
are relatively low. These performances are notably due to the inherent characteristics
of the load time-series as it has usually a high standard deviation). To view if a
decrease in the resolution of the forecasts could improve the performances, a test
was performed by using a resolution of one hour rather than a resolution of 15
minutes. To do so, the cross-validation procedure (fig. 4.4) was used similarly to
the previous experiments. The linear regression, the gradient boosting regression,
and the multilayer perceptron were tested with their optimal hyperparameters and
the performances of those models are shown in table C.22. By using this resolution,
the performances of the MLR and the GBR are improved by ∼ 100 W. It is a

99



good improvement but the error with this resolution is still relatively high. The
performances of the MLP are reduced with this new resolution but it would certainly
have required some retuning of the model.

Model name outputs MAE
(W)

RMSE
(W)

Mean Training
Time (ms)

MLR single 687 1045 1
multi 984 1611 79

GBR single 533 912 47
multi 545 928 380

MLP single 870 1445 1050
multi 777 1251 69

Table C.22: Performances of the model by using a hourly resolution

C.10 Conclusion
In this chapter, several models were tuned. The models that produced point forecasts
were tuned and most of them had good performances except the multiple output
linear regression for forecasting the load and the PV and the exponential smoothing
technique which was not adapted for forecasting the PV production. About the
gaussian regressor which produces probabilistic forecast, it was quite complex to tune
and the single output model had the drawback to be very long to train compared to
other models.

In the next chapter, the impact of the number of days of data for training the
models is studied for the different models
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Appendix D

Impact of the training set size on
performances of the models

D.1 Introduction

In this chapter, the impact of the training set sizes will be analyzed on the different
models. Thanks to these values, an optimal training period can be determined for
all forecasting models. This training period is a trade-off between the mean absolute
error and the mean squared error. The sizes of the training sets are studied in the
range from 1 day of data to 41 days of data.

D.2 Exponential Smoothing Techniques

Load forecasting As can be seen in the figure D.1, the best performances are
obtained when the training set size reaches 31 days.

Figure D.1: Performances of the EST with different training set size for the forecasting
of the load
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D.3 Linear regression

D.3.1 Single output model

Load forecasting Since the performances are very bad, the figure D.2 contains
the graph of the MAE and the RMSE with training set size in [1,42[ and also a zoom
in which the training set size are in the range [10,42[. The MAE is minimal for a
training period of 32 days. Then, the MAE is equal to 760W and the RMSE is equal
to 1218W. The RMSE is minimal for a training period of 25 days and then slightly
increases. To make a compromise, the training period is selected to be 32 days in
the rest of the experiments.

Figure D.2: Performances of the LR with different training set size for the forecasting
of the load (zoom)

PV forecasting The minimum RMSE is obtained with a training set size of 26
days and equals 184 W. The performances in terms of MAE when the training set
size takes values between 19 and 29 days are quite stable (∼ 98 W). The selected
training period has thus been chosen to be 26 days.
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Figure D.3: Performances of the MLR with different training set size for the
forecasting of the PV

D.3.2 Multi-output model

Load forecasting The increase in the training set size produces an increase in
the MAE and RMSE which reach a peak with 7 days of data and then vary. The
performances are relatively bad compared to the simple naive forecaster, it thus
shows that it is not a good model.

Figure D.4: Performances of the LR with different training set size for the forecasting
of the load

PV forecasting The MAE and the RMSE are minimized with a training set
composed of 6 days of data. Then, the MAE equals 105 and the RMSE equals 241.
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Figure D.5: Performances of the multi output LR with different training set size for
the forecasting of the PV

D.4 Gradient Boosting Regression

D.4.1 Single output model

Load forecasting The MAE is equal to 589W and is minimal for a training period
of 32 days. For a training period of 11 days, the RMSE is minimal and equals 1032W.
A training set size of 20 days is selected which corresponds to a MAE of 592 W and
a RMSE of 1042W.

Figure D.6: Performances of the GBR with different training period for the forecast
of the load

PV forecasting When the training period reaches 18 days, the MAE reaches its
minimum and is equal to 79 W. When the training period reaches 21 days, the
RMSE reaches its minimum and equals 170 W (while the MAE is equal to 83 W).
The training set size was chosen to be 21 days.
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Figure D.7: Performances of the GBR with different training period for the forecast
of the PV

D.4.2 Multi-output model

Load forecasting A training period of 23 days minimizes the MAE as well as the
RMSE. With this value, the MAE equals 626 W and RMSE equals 1119 W.

Figure D.8: Performances of the multi output GBR with different training set sizes
for the prediction of the PV

PV forecasting The MAE reaches a minimum when 11 days of data are included
in the training set and the RMSE reached a minimum when 13 days of data are
included in the training set. Above this value, the performances of the model decrease.
For the remaining of the experiments, a training set size of 13 days was selected.
With this value, the MAE equals 78W and the RMSE equals 177W.
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Figure D.9: Performances of the multi output GBR with different training set sizes
for the prediction of the PV

D.5 MultiLayer Perceptron

D.5.1 Single output model

Load forecasting When observing the RMSE as a function of the training set size,
we can view that it decreases sharply until being composed of 1 week of data and
that above this value, the RMSE restarts to increase slightly. By contrast, the MAE
seems to decrease until using 35 days of data and then starts to increase slightly. To
have a trade-off between the performances in term of MAE and RMSE, a training
set size composed of 26 days of data was selected. With this value, the MAE is equal
to 704 W and the RMSE is equal to 1472 W.

Figure D.10: Performances of the MLP with different training period of the load

Pv forecasting Both the MAE and the RMSE are minimized with a training set
composed of 22 days of data. With this value, the MAE is equal to 77 W and the
RMSE is equal to 168W.
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Figure D.11: Performances of the MLP with different training period of the PV

D.5.2 Multi-output model

Load forecasting The error reaches very high values when trained on a small
number of days of data. Then, it decreases until reaching a minimum in terms of
MAE and RMSE when 22 days of data are used. Above this value, the error restarts
to increase. With a training set size of 22 days, the MAE is equal to 656 W and the
RMSE is equal to 1152 W.

Figure D.12: Performances of the MLP with different training period of the load

PV forecasting As can be seen in figure D.12, a training period 10 days yields
the lower MAE and RMSE which respectively reach 89 W and 187W.
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Figure D.13: Performances of the MLP with different training period of the PV

D.6 Gaussian process regression

D.6.1 Single output Model

Figure D.14: CRPS for different training
set sizes for forecasting of the load

Figure D.15: CRPS for different training
set sizes for forecasting of the PV

D.6.2 Multi-output Model

Load forecasting As can be seen in figure D.16, the CRPS reaches a minimum
when the training period is composed of 38 days of data.
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Figure D.16: CRPS multioutput GBR for
the forecasting of the load

Figure D.17: CRPS multioutput GBR for
the forecasting of the PV

D.7 Summary the results

Load forecasting

Model Output
mode

TSS
(days)

MAE
(W)

RMSE
(W)

EST / 31

MLR single 32 760 1218
multi 24 1018 1724

GBR single 20 592 1042
multi 23 626 1119

MLP single 26 704 1472
multi 22 656 1152

Table D.1: Performances of the models in cross validation for forecasting the load
with respect to the training period selected

Model outputs Training period (days) CRPS (W)

GPR single 41 812
multi 38 732

Table D.2: Performances of the GPR models in cross validation for forecasting the
load with respect to the training period selected
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PV forecasting

Model Output
mode

TSS
(days)

MAE
(W)

RMSE
(W)

MLR single 26 98 184
multi 6 105 241

GBR single 21 83 170
multi 13 78 177

MLP single 22 77 168
multi 10 89 187

Table D.3: Performances of the models in cross validation for forecasting the PV
with respect to the training period selected

Model outputs Training period (days) CRPS (W)

GPR single 10 203
multi 27 187

Table D.4: Performances of the GPR models in cross validation for forecasting the
PV with respect to the training period selected

D.8 Conclusion
Thanks to the study made in this chapter, the adequate training set size for each
model was studied. Now that this training set size is known, the next chapter can
be devoted to the study of the retraining frequency.
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Appendix E

Retraining frequency analysis

In this chapter, the strategy developed in section 4.5.4 was used to evaluate the
impact of the retraining frequency on the performances of the different models. This
reduction of performances is represented graphically as can be seen on the various
pictures from this chapter. The blue line from the charts represents the performance
of the models depending on the time separating the training of the models from the
forecasting. These performances are expressed in terms of the NRMSE ( eq. 3.3).
The red line from the charts represents the level at which the performance of a model
declines by 5% compared to a model that is trained daily (i.e. by training the model
each time that forecasts are produced).

E.1 Linear regression

E.1.1 Single output model

With the model used for forecasting the load, the 5 % threshold is reached after 19
days without retraining. For the forecasting of the pv, the 5% threshold is reached
after 15 days without retraining.

Figure E.1: NRMSE for forecasting the
load with a LR

Figure E.2: NRMSE for forecasting the
PV with a LR
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E.1.2 Multi-output model

For the forecasting of the load, the 5% is never reached so the retraining period has
been chosen to 7 days. For the forecasting of the PV, the increase being too sharp
at the beginning, the retraining was selected to be performed each day.

Figure E.3: NRMSE for forecasting the
load with a MLP

Figure E.4: NRMSE for forecasting the
PV with a multioutput MLP

E.2 Gradient Boosting Regression

E.2.1 Single output model

For the forecasting of the load, the 5% threshold is reached after 10 days. For the
forecasting of the PV, the 5% threshold is reached after 13 days.

Figure E.5: NRMSE for forecasting the
load with a GBR

Figure E.6: NRMSE for forecasting the
PV with a GBR

E.2.2 Multi-output model

For the forecasting of the load, the threshold is reached after 8 days. For the
forecasting of the PV, the threshold is reached after 5 days.
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Figure E.7: NRMSE for forecasting the
load with a multi output GBR

Figure E.8: NRMSE for forecasting the
PV with a multi GBR

E.3 MultiLayer Perceptron

E.3.1 Single output model

For the forecasting of the load, the threshold is reached after 5 days. For the
forecasting of the PV, the retraining should be performed every 8 days.

Figure E.9: NRMSE for forecasting the
load with a MLP

Figure E.10: NRMSE for forecasting the
PV with a MLP

E.3.2 Multi-output model

For the forecasting of the load, the threshold is reached after 7 days. For the
forecasting of the PV, the threshold is reached after 1 day.
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Figure E.11: NRMSE for forecasting the
load with a MLP

Figure E.12: NRMSE for forecasting the
PV with a MLP

E.4 Summary of the results
Load forecasting The selected retraining period for each model are shown in
table E.1. For most of the models, the retraining could be done at a low frequency. A
weekly retraining of the models provides a maximum degradation of the performances1

of 5%.

PV forecasting The selected retraining period for each model are shown in table
E.2. It can be seen that in the case of the forecasting of the PV production, the
single output models can be trained at a lower frequency compared to the multi
output models. Indeed, they can be retrained weekly while the multi output models
need to be retrained every 2 to 6 days.

Model Output
mode

Retraining
time (days)

EST / 1

MLR single 7
multi 7

GBR single 7
multi 6

MLP single 7
multi 7

Table E.1: Best selected retraining period
for different models for forecasting the load

Model Output
mode

Retraining
time (days)

MLR single 7
multi 2

GBR single 7
multi 6

MLP single 7
multi 2

Table E.2: Best selected retraining period
for different models for forecasting the PV

1in term of NRMSE (Eq. 3.3)
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Appendix F

Hyperparameters of forecasting
models

Load forecasting PV forecasting
Output mode single multi single multi
Maximal depth 7 5 4 5
Number of estimators 19 12 40 29
Minimum number of samples per split 5 5 5 5
Minimum number of samples per leaf 51 5 5 5
Learning rate 0.1 0.15 0.1 0.1

Table F.1: Hyperparameters of the Gradient boosting model

Load forecasting PV forecasting
Scaling input Min-Max Standard scaling Standard scaling Standard scaling
Scaling output Standard scaling Standard scaling Min-Max Standard scaling
X 36 8× 96 17 15× 96
M 80 2×X 35 2×X
N 1 96 1 96
Learning rate 0.005 0.002 0.001 0.001
Nepochs 200 130 100 130
Dropout rate 0.3 0.6 0.5 0.4
Batch size 20 20 30 50
Σh ReLu ReLu Linear Softmax
Σo Tanh ReLu ReLu ReLu

Table F.2: Hyperparameters of the MLP. X is the number of input neurons, M is
the number of neurons in the hidden layer, N is the number of output neurons, Σh is
the activation function of the hidden layer and Σo is the activation fucntion of the
output layer.
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Appendix G

Monitoring system

G.1 Model averaging

Combined models MAE (W) RMSE (W)
Single output GBR and MLP and multi output GBR 614 1080
All models 647 1102

Table G.1: Performances of the model obtained by aggregating several models for
the forecasting of the load

Combined models MAE (W) RMSE (W)
Single output MLP and GBR and multi output GBR 70 154
All models 72 154

Table G.2: Performances of the model obtained by aggregating several models for
the forecasting of the PV

G.2 Truncated mean

Figure G.1: Variation of the cut off fraction for the forecasting of the load

117



Figure G.2: Variation of the cut off fraction for the forecasting of the PV

G.3 Best model selection

G.3.1 Load forecasting

window size (days) MAE (W) RMSE (W)
1 661 1176
7 620 1090

from 14 to all past data 617 1076

Table G.3: Minimization of the RMSE for the forecasting of the load with different
window sizes

window size (days) MAE (W) RMSE (W)
1 663 1097
7 618 1096
14 611 1083
21 617 1091

30 to all past data 623 1109

Table G.4: Minimization of the MAE for the forecasting of the load with different
window sizes
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G.3.2 PV forecasting

Figure G.3: Performances of the multi-model forecast by selecting each day the
model that had the lowest RMSE on a past time window

Window size MAE RMSE MAE
max P

RMSE
max P

(days) (W) (W) (%) (%)
5 80 173 3.71 8.03
10 83 176 3.84 8.19
15 80 172 3.70 7.99
20 79 168 3.66 7.82
25 79 170 3.66 7.88
30 79 170 3.66 7.89

all previous data 80 171 3.70 7.95

Table G.5: Minimization of the RMSE for the forecasting of the load with different
window sizes

Figure G.4: Performances of the multi-model forecast by selecting each day the
model that had the lowest MAE on a past time window
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Window size MAE RMSE MAE
max P

RMSE
max P

(days) (W) (W) (%) (%)
5 80.0 179 3.72 8.34
10 80.0 181 3.72 8.42
15 79.0 178 3.66 8.26
20 79.0 177 3.66 8.22
25 79.0 179 3.67 8.32
30 79.0 180 3.67 8.36

Table G.6: Minimization of the MAE for the forecasting of the load with different
window sizes

G.4 inverse MSE Weighting

G.4.1 Load forecasting

window size (days) MAE (W) RMSE (W)
1 637 1097
7 636 1087
14 637 1089
21 638 1090
30 641 1093

all past data 641 1094

Table G.7: Inverse mse weighting with different window sizes

G.4.2 PV forecasting

Window size MAE RMSE MAE
max P

RMSE
max P

(days) (W) (W) (%) (%)
10 71 152 3.29 7.06
15 71 152 3.29 7.05
20 71 152 3.29 7.05
25 71 152 3.29 7.05
30 71 152 3.30 7.06

all past data 71 152 3.30 7.06

Table G.8: Inverse mse weighting with different window sizes for the forecasting of
the PV
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G.5 OLS weighting

G.5.1 Load forecasting

window size (days) MAE (W) RMSE (W)
1 847 1498
7 675 1082
14 661 1060
21 658 1052
30 664 1055

all past data 667 1053

Table G.9: OLS weighting with different window sizes

G.5.2 PV forecasting

Window size MAE RMSE MAE
max P

RMSE
max P

(days) (W) (W) (%) (%)
5 82 174 3.83 8.10
10 78 167 3.61 7.76
15 75 161 3.48 7.49
20 74 159 3.43 7.37
25 74 158 3.44 7.33
30 75 158 3.46 7.34

all past data 75 157 3.47 7.29

Table G.10: OLS weighting with different window sizes for the forecasting of the PV
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