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Abstract

Computational Fluid Dynamics (CFD) analyses have become a tool of choice to deepen phys-
ical understanding and a precious help to solve practical problems. In the light of the continu-
ous enhancement in computer power, the use of this new numerical tool is not planned to stop.
This growth in computing capacity is leading to an increasing interest in scale-resolving turbu-
lence such as detached-eddy simulation (DES). The unsteady pattern of the flow in Formula 1
racing therefore results to simulations that are very computational resources consuming. The
resolution of numerous turbulent scales requires small time steps. In addition, time-dependent
simulations take time to develop from arbitrary initial conditions to a statistically stationary
state such that long samples are necessary for reliable statistical estimates. The initial transient
duration and the required simulation time are highly case-specific, user burden and a priori un-
known.

This work introduces a methodology that automates the initial transient estimation during a
numerical CFD simulation and the prediction of the required simulation time to obtain reli-
able statistics. The techniques rely on statistical considerations for aerodynamic quantities
of interest and have shown satisfactory results, in line with the a posteriori intuitions. In the
two first parts, a rigorous mathematical background is provided and the methodology is de-
scribed as well as its previous versions. In particular, a chapter is dedicated to the estimation
of the statistical error by means of a second order model. The discussions and results provide
a wide range of implementation issues and test cases. Especially, Delayed Detached Eddy
Simulations (DDES) are performed for common bluff bodies (high angle-of-attack airfoil, tri-
angular cylinder, rotating circular cylinder). Finally, the methodology has been implemented
as a User-Defined Function (UDF) in ANSYS Fluent and in the last chapter are exposed the
different interesting quantifications that can be extrapolated from the methodology. A concise
summary of the main outcomes is provided in the conclusion. The latter is written in such a
way that each principle finding is linked to the corresponding section.
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1 Introduction

1.1 Context

Fluid flows analysis appears to be a fundamental topic in numerous fields as it became an ev-
eryday problem in sciences and engineering. In the particular case of the extreme competitive
environment of Formula 1 racing, every team seek to optimize their cars. One way to increase
the performances is to analyse the aerodynamics. In addition with the very first theoretical and
experimental observations of the last years, the use of Computational Fluid Dynamics (CFD)
analyses has become a tool of choice to deeper physical understanding and a precious help
to solve practical problems. In the light of the continuously improvement in computer power,
the use of this new numerical tool is not planned to stop. However, due to a lack of accuracy
for limited computer performances, CFD analyses are still into development and can not be
considered as the perfect tool.

Figure 1.1: CFD simulation illustrating the flow around the RB14.

The inherent turbulent nature of the time-dependent flow around a Formula 1 car represents
a barrier to the accuracy, efficiency and possibilities of CFD application (see Figure 1.1).
Indeed, representing turbulence results in a trade-off between simulation quality and com-
putational cost. Despite direct numerical simulations (DNS) allows the resolution of the
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CHAPTER 1. INTRODUCTION

whole range of turbulence scales in space and in time, the computational cost is still outside
of the possible. Other computational approaches, such as the Unsteady Reynolds-averaged
Navier-Stockes (URANS) equations, Large-eddy simulation (LES) or Detached-eddy simu-
lation (DES) lead to a reduced cost whilst introducing uncertainties coming from modelling
simplifications.

The unsteady pattern of the flow in Formula 1 racing therefore leads to simulations that are
very computational resources consuming. The resolution of numerous turbulent scales needs
small time steps. In addition, time-dependent simulations do not usually converge to a solution
constant in time such that long samples are necessary for reliable statistical estimates. All this
combined highlights the large amount of computing resources needed for CFD analyses and
the challenges that CFD will have to face in the next decades.

1.2 Motivations

A special attention is usually required for unsteady simulations with scale resolution models.
The resolved turbulence structures need a certain time to develop and to be transported through
the fluid domain. After that, it is expected that the solution converges to a statistically steady
solution. However no systematic methodology is able to correctly predict the time required to
settle as it is usually very case specific. That is, the assessment of the needed time to settle is
usually made by visual inspection of relevant quantities.

The usual guidelines to identify the initial transient is to monitor the simulation continuously
during the running time of the simulation. Some monitoring points can be added at interesting
locations and the time traces of their development in analysed. The amplitude and frequency
of the local oscillations should be stabilized. However, the initial transient can correspond to
several thousand of time steps and the self convergence checking can be time and user con-
suming.

In addition, engineers are rather interested in time-averaged quantities than in instantaneous
details of the turbulence. Therefore, once the statistically steady state is reached, a time av-
eraging operation is performed. Once again, there are no general guidelines to estimate accu-
rately the number of time steps required to obtain relevant statistics. The common habit is to
average a long time to be sure that the statistics are satisfactory.

It is therefore clear that the post-processing and averaging part of a numerical simulation is
not robust and requires to pay attention continuously to the time evolution of the solution.
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CHAPTER 1. INTRODUCTION

1.3 Objectives

In line with those issues, the objectives of the thesis are multiple and can be understood more
schematically in Figure 4.1:

i. define and implement a convergence criterion to estimate the transient time tt in a sys-
tematic and automatic way;

ii. define and implement a convergence criterion to estimate the necessary simulation time
te to provide reliable statistics.

This methodology could not only simplify the post-processing and averaging process but also
decrease strongly the computational cost of a simulation.

Indeed, a robust algorithm could allow to minimize both a priori unknown durations in the
sense that no extra time steps would be considered due to a bad visual inspection. Moreover,
by estimating the required simulation time te a quantification of the statistical error made on
the averaging process can be made. This could allow to determine the averaged value with a
certain confidence interval.

tt te0

Statistics computation
x(t)

t

Figure 1.2: Schematic representation to highlight both the initial transient duration tt and the required
simulation time te.

To be really relevant, the algorithm should be able to estimate those durations during a sim-
ulation i.e on the fly. For that purpose, the flow monitor is implemented as a User-defined
function (UDF) in ANSYS Fluent.

1.4 Outline of the thesis

The thesis is wanted to be presented in chronological order. Therefore, informations are pro-
vided step by step to reach the final form of the implementation. Hence, the latter is organized
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into three different parts divided into chapters. The first part is dedicated to the state of the art
and a literature review. It aims at providing the relevant background to understand the latter
discussions (Parts 2 and 3). The theoretical part is then divided into two chapters : chapter
2 provides a brief summary of the probability and statistic theories while chapter 3 extends
those theories to the function of time, i.e the stochastic processes.

The second part explains the methodology used to define the convergence criteria. In chapter
4 is presented and reproduced a previous methodology of initial transient estimate [27]. Based
on this are highlighted several drawbacks which give rise to chapter 5 and 6. The chapter 5 is
dedicated to a theoretical support to expend the methodology of chapter 4 while in chapter 6
is presented an adapted version of the initial algorithm. Finally, chapter 7 is dedicated to the
implementation of the algorithm as a User-Defined function in ANSYS Fluent.

The numerical results are presented and discussed in Part 3. The goal is to make a collection of
investigations to perform a validation of key implementation features. In chapter 7 are collated
the several test cases investigated in ANSYS fluent to check the validity of the implementation.
Chapter 8 is devoted to the discussions and validations of the methodology.
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Part I

State of the art
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Outline of the first part

If you think that statistics has nothing to say about what you
do or how you could do it better, then you are either wrong or
in need of a more interesting job.

Stephen Senn

Turbulence is a state of fluid motion governed by the well-known Navier-Stokes equations.
Although turbulence should simply be a solution of those equations, it results in a high com-
plexity of description. This intricate flow represents a huge amount of information that cannot
usually be fully understood. The engineers thus have to compress the information of this ran-
dom, chaotic flow into a set of more accessible and relevant quantities. Therefore, the analysis
of turbulence is directly linked with a statistical description.

The first chapters of the thesis are thus devoted to introduce some basic theoretical background
of probability and statistical theories. The first section of the chapter about probabilities is
wanted to give a rigorous mathematical formalism and to introduce the different notations that
are used in the further chapters. The second section collates the different methods to extract
relevant quantities from a large set of data. Particularly, it also quantify the possible errors that
are made during this compression of information.

In fluid dynamics, the main quantities of interest are function of the time (e.g velocity) and
thus the theories introduced in the first chapter have to be extended. This succession of random
variables along time is referred to as a stochastic process. That is, the second chapter is
dedicated to those processes and make the bridge with the first one to extend the theories to
time-function. In particular, the concept of possible errors made during the compression of
information is extended to be able to quantify these errors as a function of the time.
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2 Probabilities and statistics background

The theory of probabilities is a branch of mathematics that aims to investigate random phe-
nomenons. Like every mathematical theory, probability is based upon axioms and uses math-
ematical tools to prove theorems. In the other hand, statistics consist in collecting, treating
and interpreting output data from a physical system (real as well as simulated). In particular,
statistics help to build a model (probabilist or not) which represents accurately the measurable
physical world. There is a fundamental interdependency between probabilities and statistics
which uses probability framework as a tool. However, there is also a key point that differenti-
ates both theories : probability is deductive while statistics are inductive.

In this chapter are presented the mathematical bases of probabilities and statistics. It allows
to introduce the different notations and quantities of interest that will be used further in the
thesis. For that purpose, the chapter is divided into two main sections, namely : Probabilist
model and Statistics theory. As stated before, a bridge can clearly be established between both
theories, that is, the chapter has to be read as two pieces from the same puzzle.

2.1 Probabilist model

An experiment is said to be random if there is no a priori prediction of its result, that is,
repeated in the same conditions the latter can lead to a different result [44]. To investigate
such an random experiment one has to define a probability triple (Ω,F ,P) where :

i. Ω is the sample state which contains all possible outcomes of the experiment denoted ω

and called sample point;

ii. F is a σ -algebra and represents all subsets of Ω which can be realized;

iii. P is probability measure which respects the Kolmogorov axioms i.e a function P : F →
[0,1] such that P(Ω) = 1 and ∀F1,F2, ... ∈ F there is P(

⋃
i Fi) = ∑iP(Fi).

In the following, the theoretical concepts are developed for the function X (·), also called
random variable, defined on Ω, with real values and a σ -algebra F such that :

∀F ∈ F : {ω ∈Ω |X (ω) ∈ F} ∈ R (2.1)
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for sake of simplicity, the random variable is denotedX while {ω ∈Ω |X (ω)∈ F} is denoted
X−1(F).

2.1.1 Basic description and properties

A real random variable X is said to be continuous if there is a function fX (·) defined on the
real line such that ∀a≤ b that is

P(X ∈]a;b[) = P(X ∈ [a;b]) = P(X ∈ [a;b[) = P(X ∈]a;b]) =
ˆ b

a
fX (x)dx. (2.2)

The function is called the probability density function which is positive and such that the
integral on R is equal to 1.

Expected value

In a probability triple (Ω,F ,P), the expected value of a random variable X , noted E{X } or
equivalently µX is defined as

E{X }= µX =

ˆ

Ω

X (ω)dP(ω), (2.3)

which is totally equivalent to

E{X }= µX =

ˆ

R
xdP(x) =

ˆ

R
x fX (x)dx. (2.4)

Variance and standard deviation

In the specific case of a finite1 expected value µX =E{X }, the variance of the random variable
X is defined as

V{X }= σ
2
X = E{(X −µX )

2}, (2.5)

when this quantity if finite i.e V{X } < ∞. By definition, the standard deviation σX is the
positive square root of the variance.

Expected value and variance represent respectively the central tendency and dispersion of the
sample. A quantification of the combined tendency and dispersion can be obtained by defining
the mean square value ψ2

X as the variance plus the square of the mean. Moreover, they are

1NB : When the sample state Ω is finite itself, the expected value is always finite. On the contrary, for an
infinite sample state, the expected value may not exist. Indeed, for a discrete random variable, the series might
not converge and thus tends to infinity while for a continuous one the integral might not be defined.
Finally, it is worth to note that if E{X 2} is finite, then the expected value is also finite and the variance exists. [44]

8



CHAPTER 2. PROBABILITIES AND STATISTICS BACKGROUND

linked by the Bienaymé-Tchebyshev inequality which states that ∀a > 0 :

P(|X −µX | ≥ aσX )≤
1
a2 . (2.6)

Covariance and correlation

Let’s consider a couple of real random variables X and Y defined on the same probability
triple (Ω,F ,P). The covariance of X and Y , denoted cov{X ;Y} or CXY , is defined as :

cov{X ;Y}=CXY = E{(X −µX )(Y −µY)}= E{XY}−E{X }E{Y}, (2.7)

when this quantity is finite. Further, the correlation function denoted corr{X ;Y} or RXY is
defined as corr{X ;Y}= E{XY} such that both functions are linked through :

cov{X ;Y}= corr{X ;Y}−E{XY}. (2.8)

2.1.2 Convergence theorem

Central limit theorem

According to the central limit theorem the normal or Gaussian distribution often results from
the sum of a large number of independent random variables [45]. More precisely, let’s consider
that {Xn} is a sequence of n mutually independent random variables of mean and variance µX
and σ2

X , respectively. The central theorem assets that :

(
∑

n
i=1Xi−nµX

σX
√

n

)
L→N (0,1), (2.9)

where (Xn)
L→N (0,1) refers that the sequence (Xn) converges in law toward a normal distri-

bution of 0 mean and unit variance.

In other words, the sampling distribution of the sequence {Xn} tends to a Gaussian distribution
as the sample size becomes large and this, regardless of the distribution of the initial random
variables Xi, with i = 1, ...,n. In practice, the conclusion of the central limit theorem is mostly
verified for n > 4 and becomes true for n > 10 [4].

2.2 Statistics theory

Any variable used to represent a physical phenomenon or any observed data can be qualified
as being either deterministic or random i.e non-deterministic. A quantity is classified as de-
terministic if it is perfectly known, without any incertitudes or imperfections. Therefore these
data can be described by a mathematical function. However, making the assumption of a fully
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Population

Descriptive 
Statistics

Theory of 
Probability

Inferential 
Statistics

Sample

Figure 2.1: Schematic description of the connexions between inferential, descriptives statistics and
probabilities.

predictive world is an illusion and can not match with reality. There is no way to predict
exactly the world at a further time. Indeed, numerous external parameters can influence a
phenomenon and it is therefore impossible to reproduce two times the same experiment with
the same precision.

The result of an experiment can thus not be deterministic and should be treated as a random
variable or random function. In other words, a given observation will represent a value among
any other possible results that might have occurred. A quantity is then described in terms of its
mean tendency and the dispersion around this mean value i.e in terms of probability statements
and statistical averages. This variability of the results is quantified by means of two different
approaches. In the one hand, descriptive statistics describe and quantify the variability. On the
other hand, inferential statistics adjust a probability model for the measured data and thus is
the bridge between probability theory and descriptives statistics (see Fig.2.1).

In the end, treating a phenomenon as deterministic is simply a specific case of probabilistic
model. If several realisations of a same phenomenon always give the same result, the disper-
sion is null and the random variable is known with no incertitudes.

This section is thus divided in two main subsections : Sampling theory and Estimation theory.
The first subsection is a branch of the descriptive statistics which aims to sum-up data collected
during an experiment into quantities more easily understandable. In the other hand, the second
subsection refers to inferential statistics which aims, by means of probabilist assumptions, to
estimate and predict the behaviour of future experiments.
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2.2.1 Sampling theory

Let consider the sample2 Dn containing the n realisations x1, ...,xn of the random variable
X (ω) : xi = X (ωi) defined on the probability triple (Ω,F ,P). In the specific case of an inde-
pendent and identically distributed sample, the subset of events (ΩDn,FDn,PDn) can be seen
as the product, n times, of the subset (ΩX ,FX ,PX ).

A descriptive statistic is defined as every real random variable defined on (ΩDn,FDn,PDn) for
n ∈N0. In the following are described the main used sample statistics. Their naive definitions
in this subsection will be more accurately explained in the next subsection : Estimation theory.
Moreover, the descriptive statistics computed from a sample are denoted by a hat e.g ŝX (Dn)

is the descriptive statistical quantity s computed from a sample Dn from the parent random
variable X . This notation is part of a more general one also explicated in the next subsection.

Sample mean

The sample mean, noted µ̂X , is the random variable defined as :

µ̂X (Dn) =
1
n

n

∑
i=1

xi. (2.10)

Under the assumption of a finite variance i.e σX < ∞, the expected value and variance of
the mean sample are respectively E{µ̂X } = µX and V{µ̂X } = σ2

X /n. Therefore, E{µ̂X }
converges to E{X } as n→∞ and according to the law of large numbers E{µ̂X } will converge
almost surely (and thus in probability also) to the expected value, that is :

µ̂X (Dn)
a.s→ µX ≡ P

(
lim
n→∞

µ̂X (Dn) = µX
)
= 1. (2.11)

Finally, according to the central limit theorem, the expected value of the sample mean con-
verges in law to a Gaussian distribution.

Sample variance

The sample variance, noted σ̂X , is the random variable defined3 as :

σ̂
2
X (Dn) =

1
n−1

n

∑
i=1

(xi− µ̂X )
2. (2.12)

2To be very general, the sample is commonly of size (n× p) : Dn×p where n are the individuals (sample
points) and p the different measured numerical parameters. In this chapter are only introduced the results for a
uni-dimensional sample.

3Several definitions exist for the sample variance. This definition is chosen since this leads to a quantity
unbiased and which does not require any a priori knowledge on the expected value E{X }. The notion of unbiased
is introduced in subsection 2.2.2.
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Under the assumption of a finite variance i.e σX < ∞, the expected value of the variance
sample are respectively E{σ̂2

X } = σ2
X . Therefore, E{σ̂2

X } converges to V{X } as n→ ∞ and
according to both laws of large numbers E{σ̂2

X }will converge in probability and almost surely
to the variance value, that is :

σ̂
2
X (Dn)

a.s→ σ
2
X ≡ P

(
lim
n→∞

σ̂
2
X (Dn) = σ

2
X
)
= 1. (2.13)

Although the sample variance converges to the variance, the descriptive statistic σ̂X under-
estimate the standard deviation according to the Jenssen inequality, namely E{

√
X }≤

√
E{X }.

2.2.2 Estimation theory

In practice, the number of events is finite so that the computation of descriptive statistics can
differ from the true values of the mean and the variance. Therefore, the goal is to estimate
a numerical parameter that is as near as possible from its true value and to define an interval
centred in this parameter that quantify the accuracy of the estimate.

Let consider that a population is analysed by means of a random variable X over the sample
Dn and that its probability density function depends on a parameter θ to estimate, that is
fX (x;θ). The numerical parameter is assumed to lie in the subset of possible Θ⊂ R. If θ0 is
the true value of the parameter, the goal is to compute from Dn :

i. a point estimation θ̂ , near θ0 in average;

ii. an interval estimation [θlow;θup] which includes θ0 with a certain uncertainty (resp.
probability) γ (resp. 1− γ).

Point estimation

Let P(·) a function, called estimator, which compute θ̂ with the knowledge of the sample Dn.
Hence, the estimator defines for a fixed sample size n an associated random variable Pn.

The sample mean and the sample variance exposed previously are actually point estimators
µ̂X , σ̂2

X of the true values µX and σ2
X respectively. This thus justifies the hat notation used in

the previous section.

Error in estimation

The estimation error of the estimator P(·) is equal to the difference P(Dn)−θ0 or equivalently
θ̂ −θ0. In terms of the associated random variable Pn, the estimation error can be quantified
by means of the mean square error. Indeed, the latter is the expected value of the dispersion
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of the estimate from its expected value :

MSE{Pn}= E{(Pn−θ0)
2} (2.14)

which can also be written as the sum of the variance of the estimate and the square of the bias
of the estimate4:

E{(Pn−θ0)
2}=V{Pn}+b2{Pn}. (2.15)

The bias of the estimate corresponds to the difference between the expected value of the esti-
mate and the true value. The estimate is said to be unbiased if the expected value equals the
true value. The measure is thus intrinsic to the estimator and is a systematic error that appears
in the same magnitude for each experiment. That is :

b2{Pn}= E{(E{Pn}−θ0)
2}. (2.16)

In the other hand, the variance is referred as the expected value of the squared difference
between the estimate and its mean value. Therefore, the variance is a random error which
differs from a measurement to another (in magnitude as well as in direction). That is :

V{Pn}= E{(Pn−E{Pn})2}. (2.17)

θ

fX (x,θ)

E{Pn} θ0

√
V{Pn}

b{Pn}

Figure 2.2: Schematic representation of the bias (blue) and the standard deviation (orange) of an esti-
mator Pn of the statistical quantity θ generated with the random variable X characterised
by its probability structure fX (x,θ).

A normalised root mean square error or coefficient of variation can be defined to express the

4Expanding Equation (2.14) :

E{(Pn−θ0)
2}=E{(Pn−E{Pn}+E{Pn}−θ0)

2}=E{(Pn−E{Pn})2}+2E{(Pn−E{Pn})(E{Pn}−θ0)}+E{(E{Pn}−θ0)
2}

By linearity of the expected value operator, the middle term is zero E{Pn−E{Pn}} = E{Pn}−E{Pn}, the
mean square error reduces to

MSE{Pn}= E{(Pn−E{Pn})2}+E{(E{Pn}−θ0)
2} ≡V{Pn}+b2{Pn}

with the introduction of V{Pn}= E{(Pn−E{Pn})2} and b2{Pn}= E{(E{Pn}−θ0)
2}.
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error of an estimate in terms of a percentage of the estimated :

ε{Pn}=
√

MSE{Pn}
θ0

=

√
V{Pn}+b2{Pn}

θ0
(2.18)

Interval estimation

In point estimation, there is no information about how does this estimate approach the param-
eter of interest. Another common way to proceed in estimation theory is to provide an interval
a < θ < b, in which the estimated parameter lies with a certain uncertainty.

Let X be a random variable of probability density function fX (x;θ), θ be the statistical quan-
tity of X to be estimated and P(·) the estimator function. A confidence interval for θ with a
given uncertainty γ , is an interval [p1; p2] of probability 1− γ for the estimator Pn, that is :

P(Pn ∈ [p1; p2]) = 1− γ. (2.19)

The functions that bound the interval p1(θ) and p2(θ) are function of γ as well as the esti-
mator function P(·) used. In practice, the functions are chosen to build a symmetric interval
centred in θ i.e p1 = θ −∆θ and p2 = θ +∆φ .

As represented in Figure 2.3, the true value θ0 lies thus in the interval [θlow;θup] where θlow =

p−1
2 (θ) and θup = p−1

1 (θ)

p2(θ)

p1(θ)

P

P

P

θupθlow

Figure 2.3: Schematic representation of the confidence interval for an estimator function P(·) of the
statistical quantity θ built with the lower and upper functions p1(θ), p2(θ). Adapted
from [33].

In the absence of a priori information about the probabilistic distribution of the sample, the
Bienaymé-Chebyshev inequality (Equation 2.6) can be used to define confidence intervals.
The named equation remains valid whatever the distribution of the parent variable X charac-
terized by a finite expected value µX and a finite non-zero variance σ2

X .
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3 Random processes theory

A stochastic process or also called random process is a collection, a family, of random vari-
ables indexed by the time. From every experiment is produced a time history, or also called
a sample function, of a time-dependent phenomenon [4]. By repeating this physical phe-
nomenon, a collection of all possible sample functions is produced. This collection is called a
random process or a stochastic process.

A random variable can either be represented by an infinite sample of realisations or probability
density function. The same principle can be applied for a random process which can be totally
described by an infinite series of sample or by a group of probabilistic quantities. However, in
the real world there is no way to produce an infinity of the same physical phenomenon for an
infinite duration. Therefore, when observed over a finite time interval, the sample function is
rather called a sample record. By means of statistical procedures, the descriptive properties of
the sample can be defined. These properties would be known without incertitudes if the sample
time would be infinite. Only estimates, can be obtained with finite amount of observations as
introduced in the previous chapter.

3.1 Basic description and properties

To really link both first chapters, the same mathematical framework is kept to introduce the
different theoretical concepts. That is, let (Ω,F ,P) be a probability space. The collection
of random variables indexed by the time set T represent a stochastic process which can be
defined as [15] :

{X (t,ω) : t ∈ T and ω ∈Ω} (3.1)

A sample function is a single outcome of the stochastic process, it corresponds to the time
series formed by taking a possible value of each random variable that constitutes the stochastic
process, assumed to be real. For the random process {X (t,ω) : t ∈ T and ω ∈ Ω}, then
∀ω ∈Ω the mapping :

X (·,ω) : T → R (3.2)

is called a sample function. If the set T is the real line, the process is a continuous-time
process. On the contrary, if T is a set of integers, then the process is a discrete-time process.
In this case, the process can be seen as a succession of n realisations x1, ...,xn of the random
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variable X (t,ω) : xi = X (ti,ω).

3.1.1 Statistics of stochastic processes

As stated previously, a random process is a noncountable infinity or a countable number of
random variables X (t,ω) : xi = X (ti,ω). Therefore, the results exposed in the Chapter 2 can
easily be extended to the specific case of a time-dependent problem. In particular, the proba-
bility density function fX (x, t) becomes function of the time index t ∈ T .

The mean and variance definitions, Equations (2.3) and (2.5), are adapted to introduce the
new time-dependent density which yields to time functions µX (t) and σ2

X (t). Regarding the
covariance and correlation functions, Equations (2.7) and (2.8), they are now functions of the
time t as well as a time-shift τ ∈R : CXY(t, t+τ) and RXY(t, t+τ). Indeed, both functions are
built on the joint probability density function of the random processes X (t,ω) : x = X (t,ω)

and Y(t,ω) : y = Y(t + τ,ω).

3.1.2 Classification of stochastic processes

A physical phenomenon has been classified as either deterministic or random. A further clas-
sification is made for the specific case of stochastic processes. They can be categorized in
two main families : stationary or nonstationary (see Fig.3.1). Stationary random processes are
themselves divided into ergodic or nonergodic processes.

Random 
process

NonstationaryStationary

Ergodic Nonergodic Other classifications 
of nonstationarity

Figure 3.1: Classification of random data. Adapted from [4].

The observations in a experiment can potentially be spaced by an infinitesimal time-shift.
The statistical properties of the process could then be estimated at any instant of time t. If
the expected values µX (t) and µY(t) of the random process X (t,ω) and Y(t,ω) are time-
independent together with the covariance function CXY(t, t + τ) independent of any arbitrary
time-shift then the processes are said to be weakly-sense stationary (abbreviated WSS). If
further, the probability density functions related to the processes are also time-translation
independent, then the processes are said to be strongly-sense stationary (abbreviated SSS).
Because of the definitions of the mean and covariance, SSS is a subclass of WSS. In the par-
ticular case of a Gaussian process, where every possible probability density functions can be
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derived with the mean and covariance, both concepts coincide.

The statistical properties can be evaluated by computing ensemble averages at different mo-
ments of time. In other words, they can be computed by averaging over all the realisations
of the process. However, it is also possible to compute statistical properties by averaging in a
different plan, by computing time averages. The difference between ensemble averaging and
time averaging is schematically represented in Fig.3.2

Processus
ergodiques

Processus
stationnaires

Processus
instationnaires

u(t)

t

Moyenne temporelle

E [...]

Figure 3.3.1 – Illustration de l’ergodicité.

mk,x (t) = E
⇥
xk

1

⇤
= lim

T!+1

1

T

T̂

0

xk
i (t) dt, (3.3.6)

et le moment centré d’ordre k par

m̃k,x (t) = E
h
(x1 � µ)k

i
= lim

T!+1

1

T

T̂

0

�
xk

i (t) � µ
�k

dt. (3.3.7)

Concernant les caractéristiques de rang 2, la fonction d’autocovariance calculée à
partir d’un seul échantillon xi (t) d’un processus ergodique 1 s’exprime par

Rx(�t) = E [(x1 � µx) (x2 � µx)] =

+1
¨

�1

(x1 � µx) (x2 � µx) px(x1; x2,�t)dx1dx2

= lim
T!+1

1

T

T̂

0

(xi(t) � µx) (xi(t + �t) � µx) dt. (3.3.8)

L’estimation des paramètres d’un modèle probabiliste à partir de statistiques réa-
lisées sur un seul échantillon du processus aléatoire est à rapprocher de la théorie
des estimateurs en statistique inférentielle [3]. Les estimations statistiques obte-
nues à partir de longs échantillons de processus aléatoires (car il faut limT!+1)
sont donc à interpréter au même titre que l’utilisation de l’histogramme d’une
variable aléatoire pour approcher sa densité de probabilité.

1. la moyenne µx est donc constante

41

Realisations Time ave
ragin

g

Ensemble averaging

t

Figure 3.2: Schematic illustration of ergodicity. Adapted from [13].

According to the ergodicity theorem [4], a random process is said to be ergodic if the ensemble
averaging provides the same result as the time averaging for the sample time tending to infin-
ity. The main advantage is that all properties of an ergodic random process can be computed
by performing time averages for a single sample function i.e with only one realisation of the
physical phenomenon.

In practice, most of stationary random processes are assumed to be ergodic for their simplicity
of description. In the following, every random process will be assumed to be ergodic.

3.2 Ergodic processes

In this section are derived the basic statistical procedures to estimate the descriptive properties
of an assumed ergodic record X (t,ω) where t ∈ T ⊂ R+ and ω ∈Ω. In particular, a specific
attention is given to the autocovariance and autocorrelation functions and the way they can be
linked to the frequency content of the signal. Moreover, as mentioned below, the properties
of an ergodic process can be assessed by performing time averages for a single experiment.
Therefore, for sake of readability, the variable ω related to the sample space is omitted : X (t).
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3.2.1 Mean and standard deviation

Because an ergodic process is a specific case of a stationary process, the mean and variance
are constant and :

µX = lim
T→∞

1
T

ˆ T

0
X (t)dt and σ

2
X = lim

T→∞

1
T

ˆ T

0
(X (t)−µX )

2dt. (3.3)

3.2.2 Autocorrelation and autocovariance functions

The autocorrelation function RXX (τ) of the ergodic process X measures the correlation be-
tween data spaced by a fixed time delay τ . Mathematically, the function corresponds to the
average of the product of the time record and a delay copy of itself by a time τ . This function
can be extended to take into account an arbitrary mean µX so that :

RXX (τ) = lim
T→∞

1
T

ˆ T

0
X (t)X (t + τ)dt and CXX (τ) = RXX (τ)−µ

2
X . (3.4)

Some properties can be observed from equation (3.4). In the specific case of a zero time-
shift τ = 0, the autocovariance function reduces to the variance CXX (0) = σ2

X while the
autocorrelation reduces to the mean square error RXX (0) = ψ2

X . Moreover, from the sta-
tionary hypothesis, the autocorrelation is a non-negative even function1 of the time delay τ :
RXX (−τ) = RXX (τ).

Theses properties are represented schematically in Figure 3.3 for an arbitrary autocorrela-
tion/autocovariance function.

τ

CXX (τ)

σ2
X

τ

RXX (τ)
ψ2
X = σ2

X +µ2

µ2
X

Figure 3.3: Schematic representation of autocovariance CXX (τ) (left) and autocorrelation
RXX (τ)(right) functions of a stationary random process X (t) with mean µX and
variance σ2

X . Adapted from [13].

1The propriety can easily be demonstrated by starting from equation (3.4) with τ = −τ . Since the process
is assumed to be stationary, it is independent of time translation and the property is proved with the change of
variable t→ t + τ .
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3.2.3 Spectral density functions

Under the assumption that the autocorrelation function is Lebesgue-measurable on the real
line, namely that the integral of its absolute value is finite :

ˆ

∞

−∞

|RXX (τ)|dτ < ∞ (3.5)

the Fourier transform of RXX (τ) exists and is defined by

SXX ( f ) =
ˆ

∞

∞

Rxx(τ)e− j2π f τdτ (3.6)

with j =
√
−1 and f is the frequency in Hertz. In practice, the integrability condition (3.5)

is always true for finite record lengths and the Fourier transform SXX exists. This function
is the two-sided spectral density function, with f ∈ ]−∞;+∞[. Given that the autocorrelation
function is a continuous positive real function, the spectral density function is also positive and
real according to Bochner’s Theorem [30]. Moreover, by Fourier transform property, SXX (τ)
is an even function.

By Fourier inversion theorem :

RXX (τ) =
ˆ

∞

−∞

SXX ( f )e j2π f τdτ (3.7)

so that functions RXX (τ) and SXX ( f ) form a Fourier transform pair, Equations (3.6) and (3.7)
are also called the Wiener-Khinchine relations [15]. However, the spectral density function
does not require to be integrable. For instance, the Fourier transform of a step function is the
sinc function. Therefore, the spectral density function of a constant function is bounded and
continuous but not integrable in the Lebesgue sense.

In the case of a non-zero mean, namely µX 6= 0, the spectral density function is function of
this mean value and contains an impulse at f = 0. To avoid this, it is convenient to define
the power spectral density by means of the autocovariance function. Because of their mutual
definition, see Equation (3.4), it follows :

SXX ( f ) = Sc
XX ( f )+µ

2
X δ ( f ). (3.8)

The function Sc
XX ( f ) is called the autocovariance spectrum of X (t).

Finally, the one-sided autospectral density function Gxx( f ) can be defined for f ∈ [0;+∞[ as

Gxx( f ) = 2Sxx( f ) ,0 < f <+∞ ,otherwise 0. (3.9)
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3.3 Important types of random process

In this section are enumerated several analytic random processes that can be useful for theoret-
ical studies. A time, as well as frequency, domain analysis is performed. Two main processes
are presented, namely : the white noise and the sine wave as they represent both ends of the
frequency spectrum.

3.3.1 White noise

The white noiseW(t) is the simplest stationary random process analytically. It is character-
ized by a constant autospectral density function GWW( f ) = G0 for f > 0 only or SWW( f ) =
G0/2 over all frequencies. By Fourier transform, the associated autocovariance function is a
centred Dirac impulsion RWW(τ) = (G0/2)δ (τ) (see Figure. 3.4). The Dirac impulsion in-
dicates that two observations of the random process are uncorrelated, regardless the duration
between both.

τ f

RWW(τ) GWW( f )

G0
G0/2

Figure 3.4: Autocorrelation function (left) and one-sided autospectral density function (right) of a
white noise with constant GWW( f ) = G0.

This kind of process is non-physical since it has an infinite mean square value (see Equations
(3.4) and (3.7) ). Therefore, such an analytic random process cannot be Gaussian because a
Gaussian process is well defined for finite variance value. However, under certain conditions,
real data can be approached by a white noise. This approximation can only be local i.e over a
limited bandwidth, denoted B.

If f0 is the center frequency of the filter of bandwidth B, the limited bandwidth or also called
bandpass white noise is defined by the autospectral density function

GWW( f ) =

{
G0 0≤ f0− (B/2)≤ f ≤ f0 +(B/2)

0 otherwise
. (3.10)

The associated autocorrelation function is [24]

RWW(τ) =

ˆ

∞

0
GWW( f )e j2π f td f = G0B

(
sin(πBτ)

πBτ

)
cos(2π f0τ). (3.11)
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For the specific case of a low-pass white noise, where f0 = B/2, the autospectral and autocor-
relation functions become

GWW( f ) =

{
G0 0≤ f ≤ B

0 otherwise
and RWW(τ) = G0B

(
sin(πBτ)

πBτ

)
(3.12)

and are represented in Figure 3.5. Finally, given that RWW(0) = BG0 = ψ2
x , the bandwidth-

limited white noise signals have a finite mean square value.

τ

RWW(τ)

ψ2 = G0B

f

GWW( f )

G0

B

Figure 3.5: Autocorrelation function (left) and one-sided autospectral density function (right) of a low-
pass white noise with constant GWW( f ) = G0 and bandwidth B.

3.3.2 Sine wave

At the other end of the frequency spectrum, the sine wave Y(t) of amplitude A is characterized
by an autospectral density function modelled by a Dirac impulsion at the wave frequency f0

: GYY( f ) = A2

2 δ ( f − f0). By Fourier transform, the associated autocovariance function is a
cosine RYY(τ) = A2

2 cos(2π f0τ) (see Figure. 3.6).

τ

RYY(τ)

A2

2

f

GYY( f )
A2

2

f0

Figure 3.6: Autocorrelation function (left) and one-sided autospectral density function (right) of a sine
wave with of frequency f0 and amplitude A.

It is worth to note that :

Rxx(0) = ψ
2 =

A2

2
. (3.13)

3.4 Estimation theory for stochastic processes

In this section is introduced analytic developments to quantify the coefficient of variation of
an unbiased estimate as a function of the sample length. Regarding Equation (2.18), since the
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bias is null, the coefficient corresponds to the statistical error i.e the variance or random error.
The two estimators considered are the mean sample and the standard deviation of the sample.
These analytic derivations are based on the autocovariance function of the process X : CXX .
Those developments are directly inspired by [4].

3.4.1 Mean value estimate

Under the assumption of integrability of the autocovariance function, the variance of the mean
estimator can be obtained by

V{µ̂X }=
1
T

ˆ T

−T

(
1− |τ|

T

)
CXX (τ)dτ (3.14)

where X (t) is an ergodic stochastic process with t ∈ T .
For large T , and thus |τ|<< T , Equation (3.14) becomes

V{µ̂X } ≈
1
T

ˆ

∞

−∞

CXX (τ)dτ (3.15)

3.4.2 Standard deviation estimate

Following the same steps, the variance of the mean square error estimate can be obtained by :

V{ψ̂2
X }=

2
T

ˆ T

−T

(
1− |τ|

T

)[
C2
XX (τ)+2µ

2
XCXX (τ)

]
dτ (3.16)

≈ 2
T

ˆ

∞

−∞

[
C2
XX (τ)+2µ

2
XCXX (τ)

]
dτ

And the variance of the variance estimate is thus given by :

V{σ̂2
X } ≈

2
T

ˆ

∞

−∞

C2
XX (τ)dτ (3.17)

3.4.3 Bandwidth-limited white noise

Considering the bandwidth-limited white noise introduced in subsection 3.3.1, it can be rewrit-
ten as a function of the descriptive statistics µW and σ2

W :

GWW( f ) =

{
σ2
W
B +µ2

W2πδ ( f ) 0≤ f ≤ B

0 otherwise
and RWW(τ) = σ

2
W

(
sin(2πBτ)

2πBτ

)
+µ

2
W

(3.18)
Often, it is more convenient to work with the autocovariance function CWW(t) = RWW(t)−
µ2
W . The latter cancel for τ = (k/2B), where k is an integer. It means that points spaced by
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(1/2B) are uncorrelated. If the random processW(t) is Gaussian, they will be also statistically
independent. Under this assumption, by use of Equations (3.15) and (3.17) it yields :

εana{µ̂W} ≈
1√
2BT

(
σW
µW

)
and εana{σ̂W} ≈

1√
4BT

. (3.19)

Equations (3.19) allow to assess the value of the statistical errors on the mean and the standard
deviation estimates as a function of the record length T for the specific case of a low-pass white
noise characterized by a bandwidth B, a mean µW and a standard deviation σW . The errors
both tend to zero as T approaches infinity, therefore µ̂W and σ̂W are consistent estimates of
the mean and the standard deviation, respectively.

23



Part II

Methodology : previous work and
contributions
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Outline of the second part

The pictures and vocabulary are the key to physical intuition,
and the intuition makes the sudden leaps of insight... math-
ematics, of course is the ultimate arbiter; only it can say
whether the leaps of insight are correct.

Richard Price and Kip Thorn

The second part of the thesis is dedicated to the description of the methodology employed
to estimate the initial transient duration as well as the required simulation time. This part is
wanted to be written in a chronology order to understand the path followed during the work.
For that purpose, the part is divided into three chapters : previous work and reproduction, a
theoretic analysis to expand the previous work methodology and lastly the final version of the
methodology and its numerical implementation in C programming language and as a Fluent
User-Defined Function. Finally, several post-processing operations have been performed with
functions implemented in Matlab.

The chapter 4 focuses on the previous work on the transient duration estimation. Particularly,
the methodology introduced by Mocket et. al in 2009 [27] is explained. The latter is repro-
duced for several test cases. From it are highlighted some drawbacks which open tracks of
further ameliorations.

In Chapter 5 is introduced the first part of the contributions to the existing methodology. In his
paper, Mockett estimates the transient duration by means of a white-noise scaling of the lift
coefficient (this notion will takes more sense in Chapter 4). The Chapter 5 is therefore dedi-
cated to the introduction of a more general model based on physical inspections and physical
laws.

In Chapter 6 are presented all the contributions to the methodology. A complete summary of
the algorithm is provided and the numerical implementation is briefly described. Finally, the
translation of the methodology to a Fluent UDF is explained in Chapter 7.
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4 Transient duration estimation - Previous work

4.1 Introduction

In unsteady simulations, it is often necessary to detect when the solution has reached a sta-
tistically stationary state. Indeed, the flow exhibits an initial transient due to arbitrary initial
conditions. To obtain valid sampling, statistics have to be performed on a sampling window
(see Figure 4.1) free of transient fluctuations.

Usually, the approaches to highlight the latter are based on visual inspections of relevant vari-
ables time records. Such methods lead to a lack of robustness and accuracy. On the other
hand, in the specific case of an LES simulation, looking at previous experiences can be useful
and particularly the number of large eddies versus time. Indeed, a certain number of periods
is needed to progress the flow and then perform averaging. For instance, for jets and swirling
jets, Shur, Spalart and al. [36] and Tucker [40] required time periods of around 1000L/U and
a total simulation time needed of 2000L/U , respectively, where L is the jet diameter and U the
jet velocity. Therefore, duration considerations are strongly case specific and may become of
poor relevance in an other kind of flow studied.

When the simulations are periodic, i.e with no stochastic behaviour, the periodicity of the flow
can be assessed by fast Fourier transformation (FFT) according to Ahmed & Barber [2]. The
methodology is based on the amplitudes of the dominant frequencies which are used to eval-
uate the convergence to a periodic state. However, this FFT based methodology can require a
huge amount of data and eventually case specific. Furthermore, LES method do not allow a
clear periodic solution which makes this procedure impractical.

Finally, a more reliable and robust technique based on statistical considerations has been pro-
posed by Mockett and al. [27] to estimate, a posteriori, the initial transient duration. It is
assumed that the transient causes a distortion in combination or in isolation of the statistical
errors for the mean and the standard deviation estimates, ε{µ̂CL} and ε{σ̂CL} respectively (see
Equation (2.18)) of the lift coefficient.

The methodology that has been developed (presented in the next chapters) is mainly based on
Mockett’s paper. The latter has been adapted to be used on the fly in the aim of monitoring
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an unsteady simulation. Therefore, this chapter aims to introduce the named methodology.
Especially, the drawbacks of the latter are highlighted to be used as a foundation to the contri-
butions added to the methodology.

4.2 Formulation of the method

Let consider1 a generic time record with t ∈ T ⊂ R+ such that X (t) : T → R. It does not
represent any physical phenomenon (see Figure 4.1) and is only used for sake of visibility.
The signal is assumed to be ergodic which allows the analysis of a single sample function
and to omit the sample space index. Finally, DT denotes the sample i.e the succession of the
realisations xt = X (t).

0 T

X (t)

t

Figure 4.1: Generic time record X (t), of total length T , which does not represent any physical phe-
nomenon.

Two different point estimators are used to sum-up the information contained in the signal :
the sample mean µ̂X (DT ) and the sample standard deviation σ̂X (DT ) as defined in Equations
(2.10) and (2.12). The method is based on the normalised estimation error of both estimators
ε{µ̂X } and ε{σ̂X } defined in Equation (2.18). Because both point estimators are unbiased,
the estimation error is equivalent to the statistical error and :

ε{µ̂X }=
√

V{µ̂X }
µX

and ε{σ̂X }=
√

V{σ̂X }
σX

(4.1)

where µX and σX are respectively the true mean and the true standard deviation.

The methodology can be divided into two main parts : the statistical error estimation and the
initial transient detection. The estimation is performed numerically by means of the available

1For homogeneity, the notations adopted in the Mockett’s paper have been adapted to respect the ones intro-
duced in the state of the art chapter.
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data and a prognosis for longer sample lengths is achieved through the use of analytically-
derived relationships for theoretical low-pass white-noise. This part of the methodology is
explained in detail in subsection 4.2.1. Further, the transient stage is assumed to cause a
distortion in combination or isolation of the random errors. A criterion is therefore used to
highlight this duration.This part of the methodology is explained in detail in subsection 4.2.2.

4.2.1 Quantification of random error

Let P(·) be a point estimator of a numerical parameter; in this case the mean or the standard
deviation, and Pt the associated random variable such that PT = P(DT ). The statistical error
time evolution can be assessed by dividing the sample into shorter windows of length Tw ∈ T .
For Tw << T , the coefficient of variation can be estimated by

εTw{PTw}(Tw,T ) =

√〈
(PTw−PT )

2
〉

PT
, (4.2)

where < > represents averaging over the available windows. Equation (4.2) therefore pro-
vides an error which varies with T and Tw. The error estimation becomes less accurate as
the window size tends to the sample length T since there are only few windows available to
average.

To further clarify, Tw varies to obtain a measure of the error for different Tw. For each fixed
window size, the descriptive statistics are estimated inside each windows (PTw). Then, the
sample statistics of the whole available data (PT ) is subtracted. Finally, each difference is
squared and an average is performed. A schematic example is presented in Figure 4.2 for the
generic signal.

In addition, analytical expressions derived in the first part of this master thesis allow to prog-
nosticate the error trend for longer sample time. Indeed, Equations (3.19) represent the coef-
ficient of variation as a function of sample length for the specific case of a low-pass Gaussian
white noise :

εana{µ̂X (DT )}(T ) =
1√
2BT

(
σX
µX

)
and εana{σ̂X (DT )}(T ) =

1√
4BT

(4.3)

Since the true descriptive statistics µx and σx are unobservable, the coefficient of variation is
also unobservable. However, an estimation of the latter can be made by replacing these by
the best available estimate corresponding to the descriptive statistics using the entire sample :
µ̂X (DT ) and σ̂X (DT ). Therefore, since the statistical error is estimated by windows averag-
ing, the only remaining unknown is the frequency spectrum parameter B.
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t

Figure 4.2: Schematic representation of the division process into series of windows to estimate the
statistical error.

To obtain the value for this parameter, both error expressions defined by equations (4.2) and
(4.3), are equalised for each Tw = T . It results a value of B for each equality. For the method
to be conservative, the lowest value is chosen. For instance, considering the statistical error
on the mean estimate for a Gaussian white noise :

εTw{µ̂X }(Tw,Tw) = εana{µ̂X }(Tw)⇔ B(Tw) =
1

2Tw[ε{µ̂X (DTw)}(Tw,Tw)]
2

(
σ̂X
µ̂X

)2

(4.4)

and the final value of B is chosen as min [B(Tw)]. At the end, an estimation of the statistical
error is obtained for longer sample length that the initial one i.e larger than T .

4.2.2 Estimation of initial transient

The first part of the methodology presented a technique to estimate the statistical error of a
time record as a function of the sample length T and prognosis the trend of the error by a white
noise scaling. In this subsection, a technique to estimate the transient duration is proposed.

Let denote the transient duration tt such that all the transient content lies in the interval 0 < t <
tt with t ∈ [0,T ]. The transient content is assumed to cause a distortion in the statistical error
of the descriptive statistics estimates. To highlight this duration, the start sample is defined as
t0. Moving this initial time forward through the time record is equivalent to shorten the sample
by t0 as represented in Figure 4.3. For each new sample of length (T − t0), generated from the
initial one, an estimation of the statistical error is made following the methodology presented
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in the previous subsection as t0 is varied.

t00 T

X (t)

t

Figure 4.3: Generic time record X (t), of total length T shortened with a shifting start time t0. The
suppressed part of the sample is plotted in light gray while the conserved part is plotted in
black.

The initial content in the sample present for t0 < tt is assumed to lead to an increasing in
ε{PT} compared to the same sample free of any transient i.e for t0 ≥ tt . Once the initial
transient has been suppressed, the dispersion and thus the statistical error is assumed to rise
given the reduction in the sample length (t − t0). Therefore, the transient duration should
correspond to a minimum in ε{PT}(t0). To take into account both variations in mean and in
standard deviation, the transient duration corresponds to the minimum of the product Π(t0) of
ε{µ̂X (DT−t0)}(t0) and ε{σ̂X (DT−t0)}(t0) as represented in Figure 4.4.

t0

Π(t0)

tt

Figure 4.4: Schematic representation of the product of statistical errors on the mean and variance esti-
mates to highlight the transient duration.

As mentioned in the previous section, the error estimation becomes decreasingly accurate
when the number of windows needed for the average is low. Therefore, when the sample is
strongly shortened, i.e when t0 tends to T , the method is limited. Hence, t0 is limited such that
0 < t0 < T/2.
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4.2.3 Summary

In the end, Mockett introduced a methodology to estimate the transient duration by means of
statistical error considerations, with the time series as the sole input. A flowchart summarizing
the methodology is provided in Figure 4.5.

4.3 Method implementation : Reproduction, validation and
drawbacks

This section is dedicated to the numerical results obtained with an in-house C implementation
of the previously introduced methodology. From these results are highlighted drawbacks of
the method and are introduced different tracks of resolution for an adapted methodology in-
troduced in Chapter 6. The analysis is not wanted to go in deep details but only to highlight
thread followed by the thesis in the further chapters.

The methodology relies on the Gaussian white-noise scaling assumption, hence several syn-
thetic relevant cases that are and are not in agreement with the assumptions are investigated.
Moreover, the algorithm is also applied to results obtained by experiment.

4.3.1 White noise

Let consider a low-pass Gaussian white noise characterised by µW = 1 and σW = 0.1 gen-
erated during 1 second with a time-step ∆t : 10−5 [s]. Therefore, the data set is composed of
n = 105 +1 samples.

In theory, two distinct realisations of a white noise are uncorrelated. However, in practice
a numerical discretization is used, corresponding to the non-zero time step ∆t. Thus, there
is no information on what happens between two successive data. According to the Nyquist-
Shannon theorem, for a sampling frequency fs = 1/∆t, the frequency content outside of the
interval [− fs/2; fs/2] cannot be represented [28]. Hence, the analytic bandwidth, called the
Nyquist Bandwidth, of a white noise corresponds to Bnyq = 1/2∆t = 5×104 [Hz] in the present
case.
Therefore, the analytic statistical errors εana are:





εana{µ̂W}(t) =
(

σW
µW

)
1√

2Bnyqt
≈ 3.2×10−4√

t

εana{σ̂W}(t) = 1√
4Bnyqt

≈ 2.24×10−3√
t

(4.5)

Figure 4.6 shows a really good agreement between analytic derivation, computation of the
error by windows division εTw and prediction with a curve-fitting parameter εfit. However,
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Time series :
X (t)

Initialisation :
t0 = 0

Shortening :
X (DT−t0)

Division into windows :

σTw{PTw}(Tw,T ) =
√〈

(PTw−PT )
2
〉

For each window size :

σTw {PTw}(Tw,Tw) = σana{µ̂X }(Tw)⇒ B(Tw)

Final value Bfit = min [B(Tw)]

Criterion computation :

Π(t0) = σfit{µ̂X } ·σfit{σ̂X }

t0 < T/2

NO

tt = min [Π(t0)]

YES

Increase t0

Figure 4.5: Flowchart of the methodology introduced by Mockett.
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small divergences can be seen for large Tw,T . Indeed, as the window size tends to the sample
time, the number of windows to average and compute the error becomes small and the method
is less accurate. Despite these spurious differences, the methodology remains efficient for the
theoretical signal of a Gaussian white noise.

ε{µ̂W}

ε{σ̂W}

10−5 10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

Tw, t [s]

ε
{P

T
}[

%
]

εana(t)
εTw(Tw)
εfit(t)

Figure 4.6: Comparison of analytic, estimated and fitted statistical errors in the special case of a Gaus-
sian white noise with σW = 0.1, µW = 1 and ∆t = 10−5. The analytic error is in dotted
line, the estimated in dashed line and the fitted in continuous line. The errors on the mean
estimate are plotted in orange while the standard deviations ones are plotted in blue.

It is important to highlight the influence of the time-discretization on the error curves. Indeed,
the bandwidth is directly function of the time-step through the Nyquist-Shannon theorem. In
addition, the first value (i.e the first point the x-axis) computed corresponds to the value for
the smallest window which is directly limited by the time-discretization.

Finally, the methodology has also been tested for a white noise whose pseudo-random numbers
are extracted from a uniform density of probability. It provides a similar level of satisfaction.

4.3.2 Sine wave

Let consider a sine wave Y(t) characterised by µY = 1, σY = 0.1 and f0 = 10 Hz generated
during 1 second with a time-step ∆t : 10−5. Therefore, the data set is composed of n = 105+1
samples.

33



CHAPTER 4. TRANSIENT DURATION ESTIMATION - PREVIOUS WORK

The periodic oscillations of the statistical error εTw (Figure 4.7) are expected due to the periodic
nature of the signal. Indeed, the average of a periodic signal over an entire period is zero which
explains the sharp decrease of the mean error every period 1/ f0, while the standard deviation
is zero each half period 2/ f0. To highlight this behaviour, the statistical error is plotted with
respect to a normalized time T ∗w or t∗ obtained by multiplying the time with the wave frequency
f0. It can thus easily be seen in Figure 4.7 that the sharp drops occur when the normalized
time is an integer for the mean and half of this integer for the standard deviation.

ε{µ̂W}

ε{σ̂W}

10−2 10−1 100 101 102
10−5

10−4

10−3

10−2
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100

T ∗w , t
∗ [s]

ε
{P

T
}[

%
]

εTw(Tw)
εfit(t),Bfit = 42.1

Figure 4.7: Comparison of estimated and fitted statistical errors in the special case of a sine wave with
σY = 0.1, µY = 1, f0 = 10 [Hz] and ∆t = 2×10−2. The estimated error is in dashed line
and the fitted in continuous line. The errors on the mean estimate are plotted in orange
while the standard deviations ones are plotted in blue. The time (x-axis) is multiplied by
the wave frequency : T ∗w = Tw f0 and t∗ = t f0.

Once again, the time-discretization has a real influence on the error curves. It can be seen a
first horizontal plateau (in a log-log plot, which is actually an illusion due to logarithm scale)
whose first value (i.e the first point the x-axis) computed corresponds to the value for the
smallest window, which is directly limited by the time-discretization. Therefore, the smaller
the time step, the longer the plate is (for a same frequency f0). Moreover, two sine waves
which have multiple frequencies can produce the same sample in function of the sampling
frequency, which is called the aliasing. The discretization should thus be chosen to be able to
catch the actual frequency of the sine wave. This is also a direct application of the Nyquist-
Shannon theorem. In a more general form, the latter states that if the signal contains no fre-
quencies higher than BNyq, it is completely covered by use of ∆t = 1/(2BNyq). In the specific
case of a deterministic signal with frequency f0, the bandlimit should therefore be BNyq = f0.
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It can clearly be noticed that the latter cannot be used to estimate the curve fitting parameter
(BNyq/Bfit ≈ 0.25). Finally, different curve fitted parameters have been computed for different
time step and it appears that the parameter Bfit is independent of the time discretization.

A further and more important observation is that the white noise scaling introduced by Mockett
tends to strongly overestimate the error for a periodic signal which presents a scaling as ε ∼ t−1

instead of ε ∼ t−1/2 for the white noise (for the sake of visibility, only the fitted error for the
standard deviation is represented). This particular drawback should be strongly kept in mind
since it has driven the major part of the next chapter of the thesis.

4.3.3 Experimental data

After having investigated synthetic signals, the methodology is applied for a real turbulent
signal. As emphasised in subsection 4.3.2, the white-noise assumption is not verified for peri-
odic signal, a relevant investigation is therefore bluff-body flow, with a strong quasi-periodic
behaviour from the large scale vortex shedding added to a broadband turbulent fluctuation.
The measurements2 of the unsteady aerodynamic coefficients for a NACA0021 airfoil in deep
stall at angle-of-attack α = 60◦ and Reynolds number 2.7× 105 provided by Swalwell et al.
appears to be an ideal test. Time traces of the aerodynamic coefficients are computed from the
pressured measured by a Pitot upstream of and above the model3.

Time histories of the sectional coefficients correspond to 32.000 points over the time interval
T ∗ ≈ 9000(c/ |U∞|) with c the chord and |U∞| the free stream velocity. This is equivalent to
around 1760 vortex shedding periods. The sectional lift coefficient Cl(t∗) is represented in
Figure 4.8 with respect to the non-dimensionalized time. For clarity, the signal is truncated
such that 0≤ t∗ ≤ 500.

2The experiment data are available in open source access at http://qnet-ercoftac.cfms.org.uk/w/
index.php/UFR_2-11_Test_Case, Last view May 22th 2020.

3A complete description of the test facility and measurement techniques used in the experiments are available
in Annex.

35

http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-11_Test_Case
http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-11_Test_Case


CHAPTER 4. TRANSIENT DURATION ESTIMATION - PREVIOUS WORK

0 50 100 150 200 250 300 350 400 450 500

0.8

1

1.2

1.4

t∗ [-]

C
l

[-
]

Figure 4.8: Time trace of the measured sectional lift coefficient (Cl) from [39]. The time axis is non-
dimensionalised as t∗ = t(|U∞|/c) with c the chord and |U∞| the free stream velocity. The
data is truncated as 0≤ t∗ ≤ 500.

In Figure 4.9 are represented the estimated errors εTw and the corresponding fitted curves εfit

for the mean and standard deviation. The same curve-fitting parameter is considered for both
estimators (the one for the mean). The agreement with the white noise assumption is sat-
isfactory for large t∗; typically for t∗ > 18 which barely corresponds to 4 periods of vortex
shedding. The theoretical limitations of the analytic formula for εana introduced in section 3.4
states that the formula is valid for BT ≥ 5. This lower limit, represented in dotted green line
in Figure 4.9, allows therefore to quantify the deviation from the white noise scaling ε−1/2.

Intuitively, those divergences from the white-noise scaling could be explained by the strong
correlation of the data at the begin of the sampling. The analytic error expressions being de-
rived by means of the autocovarriance function4 RXX (τ∗) of a white noise, it is expected that
the estimated error εTw divergences from the fitted εfit for time scales where the correlation is
the more important i.e at usually at the beginning of the sampling. A usual measure of corre-
lation corresponds to the autocorrelation coefficient ρXX (τ∗) which is defined as a the ratio
of the RXX (τ∗) and its value at the origin RXX (0) = σ2

X .

In practice, two data shifted by τ∗ are said to be weak-correlated if ρXX (τ∗) ∈ [−0.2;0.2]
(see [4] for more details). A representation of the autocorrelation coefficient5 is represented in
Figure 4.10 as well as the sigma-interval. It is interesting to highlight that the time needed for
the data to be said weakly-correlated corresponds to τ∗ ≈ 20 which is the value from which
the white-noise scaling becomes accurate. This observation thus reinforce the fact that the
methodology produces accurate results for uncorrelated signals (which is the definition of a
white noise) or at least for signals with a highly decreasing autocorrelation function.

4The notation τ∗ is employed in this context to make reference to the non-dimensionalised time t∗ such that
τ∗ corresponds to the time shift between two different non units time .

5The autocorrelation coefficient has been computed using the Matlab function autocorr with a pre-defined
number of lags T −1.
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Figure 4.9: Comparison of estimated and fitted statistical errors for the measured sectional lift coef-
ficient (Cl) from [39]. The estimated error is in dashed line and the fitted in continuous
line. The errors on the mean estimate are plotted in orange while the standard deviations
ones are plotted in blue. The time axis is non-dimensionalised as t∗ = t(|U∞|/c) with c the
chord and |U∞| the free stream velocity.
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Figure 4.10: Autocorrelation coefficient as a function of the time shift τ∗ for the sectional lift coeffi-
cient Cl measured by Swalwell et al. for a NACA0021 at angle-of-attack α = 60◦ [39].
The data is truncated as 0 ≤ τ∗ ≤ 500 (up) and a zoom is performed between 0 and 100
non-dimensional units (low).

Regarding probabilistic considerations, the probability density function of the sectional lift
coefficient is clearly non-Gaussian (Figure 4.11). This is mainly due to the turbulent nature
of the flow. However, as expected according to the central limit theorem, the distribution of
the window averages tends to fit a normal distribution. If T (n)

w refers to the window size with
n sample points inside, it can be seen that for low n the sampling distribution is similar to the
parent random variable Cl while for larger n the distribution becomes normal. This is in line
with expectations since a certain number of windows is needed to overcome correlation while
a certain number of points inside each window is also required. Therefore for n << and n >>

the correlation between sample points leads to a non-Gaussian probability density function.
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Figure 4.11: Frequency histograms of the sectional lift coefficient Cl (left) and of the sample mean
in each window for different sizes of windows (right). The probability distributions are
compared to the Gaussian one (dashed red line) characterised by µ̂Cl and σ̂Cl .

The operation of windows division introduced in section 4.2.1 has its importance regarding
probabilities and statistics. The statistical error εTw{PT} of a point estimator PT represents
a random variable corresponding to a succession of averaged values for a fixed window size
Tw. To clarify, when the sample of length T is divided into windows of size Tw it consists
in sampling the original random variable into random variables PTw such that

⋃Nw
i=1 T (i)

w = T .
Each random variable PTw is therefore characterised by its own probability structure fTw .

According to the central limit theorem, the distribution of the window averages converges in
law toward a Gaussian random variable. Therefore, the fitted error εfit can be used to build
a confidence interval for the true value θ0 as introduced in Equation (2.19). The latter is
rewritten for convenience :

P(PT ∈ [p1; p2]) = 1− γ, (4.6)

which yields in the specific case of a Gaussian random variable and small statistical error
magnitude6

PT

1+ εfit
≤ θ0 ≤

PT

1− εfit
with 68% confidence (4.7)

or PT

1+2εfit
≤ θ0 ≤

PT

1−2εfit
with 95% confidence (4.8)

The confidence intervals for the points estimator µ̂Cl and σ̂Cl are represented in Figure 4.12.
For both estimators, the running statistics is almost completely enveloped for the 68% confi-
dence interval and totally enveloped for the 95%. It confirms that the methodology could be
suitable to predict the total run time in terms of a targeted statistical accuracy.

6b
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Figure 4.12: Running average (above) and standard deviation (below) of the measured sectional lift
coefficient (Cl) from and confidence intervals (orange 68% and blue 95%) computed by
means of the fitted error εfit. The best estimate, µ̂Cl and σ̂Cl , is represented in green
dashed line. The time axis is non-dimensionalised as t∗ = t(|U∞|/c) with c the chord and
|U∞| the free stream velocity. The data is truncated as 0≤ t∗ ≤ 500.

4.3.4 Transient estimation

In the present subsection, the transient detection algorithm is tested for simple synthetic tran-
sient signals. In particular are investigated oscillatory negative exponentials with and without
additional white-noise. The previous list of transient signals is obviously far from exhaus-
tive but allows to have a first insight of the methodology capabilities. Moreover, the negative
exponential are characterised by a time-constant, denoted τc that quantify the duration be-
fore the signal stabilizes and becomes fully developed. Therefore, those kind of signals allow
to compare the results of the methodology to a well-known quantity. Indeed, for a negative
exponential of time-constant τc and amplitude A :

X (t) = Ae−t/τc , (4.9)
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the expected value after which the signal converges to an asymptotic value is approximately
Aτc.

Let consider an oscillatory negative exponential of time-constant τc = 10, frequency 5 Hz,
an amplitude A = 4 to which is added a pseudo-random white noise of unit amplitude (see
above graph in Figure 4.13) simulated during 300 seconds. Therefore, the expected transient
duration is around 40 seconds. After that, the signal stabilizes to the noisy contribution.

The middle graph in Figure 4.13 represents the product of both statistical errors for the mean
and the standard deviation for the total sample length i.e T = 300 s. As expected, the product
decreases as the sample is shortened or similarly as t0 increases. Then a minimum is reached
for t0 = tt = 35.5 s, which corresponds more or less to the expected transient duration from
analytic definition of the time-constant. After that, the product increases with t0 because of
the shortening of the sample. It can also be seen that there are some spurious drop for t0 ≈ T
which is a drawback intrinsic to the methodology itself and its numerical implementation. As
the sample is shortened drastically, less windows are available to average and estimate the
statistical error. It justifies therefore the fact that the transient duration estimate is computed
as the minimum of the product in the interval [0;T/2]. However, the truncation can be a bit
too conservative as the unwanted drop occurs for very large t0.

The third graph in Figure 4.13 represents the estimated transient duration tt as a function of the
sample length T i.e as the simulation progresses. It can be seen that the methodology requires
a certain time to estimate accurately the transient duration (≈ 2.2tt). Before converging to
the asymptotic value, the transient duration varies linearly as tt = T/2. It is due to the fact
that the shortening variable t0 is limited to T/2. Moreover, the methodology is derived in
the specific assumption that the signal is free of any initial transient. Therefore, it requires a
certain sample of stationary signal to become accurate and efficient. However, once the actual
transient duration is estimated, only small oscillations occur but the value of tt does not vary
any more.

4.3.5 Summary

In the end, the methodology introduced by Mockett to estimate a posteriori the initial transient
has demonstrated satisfactory outcomes as well as major drawbacks. This drawbacks will def-
initely influence the further chapters and a subsection is thus dedicated to summarize the latter.

First of all, the white noise scaling introduced by Mockett tends to strongly overestimate the
error for a periodic signal which presents a scaling as ε ∼ t−1 instead of ε ∼ t−1/2 for the white
noise. This drawback is the purpose of the next Chapter. Parallel to this point, the agreement
with the scaling is satisfactory for large simulation time, when the correlation between data
has significantly decreased.
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Figure 4.13: Time trace of the synthetic signal X (t) (above). Variation of the product Π(t0) highlight-
ing a minimum at tt (mid). Prediction of the transient estimate tt as a function of the
sample length T (below).
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Finally, due to the unwanted variations in the product of σ{µ̂CL} and σ{µ̂CL} for large t0
(compared to the simulation time T ) the interval on which the minimum corresponding to tt
is computed is truncated to T/2. This increases the required time to estimate the converged
value of tt . In addition, the estimation of tt can converge toward different values. Highlight-
ing the more realistic one on the fly therefore requires engineering judgement or additional
informations.
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5 Influence of the frequency content on the statis-
tical error

A major outcome of the Mockett’s methodology introduced in the previous chapter is that it
produces highly accurate results for a white noise while it cannot handle the periodic signals,
or more precisely, it highly overestimates the statistical error. From this drawback comes the
intuition that the frequency content has a direct influence on the time-dependence of ε . It
actually makes sense since the time variation of V{µ̂X } (resp. V{σ̂X }) is computed by means
of the time integral of the autocovariance function CXX (τ) in Equation (3.14) (resp. Equa-
tion (3.17)) which forms a Fourier pair with the power spectral density SXX ( f ). This short
reminder allows to introduce the main mathematical tools that will be used in this analysis and
the chronological order in which they are employed.

The path followed through this chapter is then :

SXX ( f )−→CXX (τ)−→ ε{PT}= g(t), (5.1)

where g(t) denoted a function of time.

In other words, a pre-defined frequency content of a signal X (t) is imposed through its power
spectral density. From the latter can be derived the autocovariance function and finally the
statistical error.

However, the analytic derivation of the autocovariance function by means of Fourier trans-
form can be a hard task and sometimes even not possible (at least with the author knowledge
of mathematical tools). Therefore, the analysis is performed firstly for well-known synthetic
signals which forms the both ends of the PSD range : the white noise and the sine wave. Based
on those results is introduced an intermediate case that allows to approach, to the limit, the
white noise or the sine wave.

Finally, the idea that the bandwidth of a signal can influence the mean square error made
through estimation is not new. Steen Krenk from the Denmark Technical University has intro-
duced pieces of answer in the context of the dynamic response to pedestrian loads on a bridge
modelled by a 1 degree-of-freedom oscillator [22]. He has highlighted that the displacement
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response amplitude for the pedestrian load modelled as a deterministic periodic signal varied
like ξ−1 whereas the amplitude for a stochastic load varied as ξ−1/2 with ξ the structural
damping ratio of the structure. The parallelism with the variation of ε as t−1 for a sine wave
and t−1/2 for a white noise is therefore immediate. The further analysis is hence performed
with this similarity in mind and the intermediate case is directly influenced by the structural
engineering field.

5.1 Context and motivations

Turbulent flows are defined as three-dimensional and unsteady in nature. The fluctuating
velocity takes the form of overlapping eddies due to vortex stretching over a wide range of
scales, called the spectrum of turbulence. The largest scales in the spectrum are the most
energetic. They generally have a length scale similar to macroscopic quantities such as the
geometry or flow features. These large eddies are produced by the velocity gradients and
thus strongly depends on the mean flow. Further, the energy is continuously transferred to
smaller scales by vortex stretching. Finally, the energy is dissipated to heat at smaller scales
by molecular viscosity. The origin of the cascade of energy is usually attributed to Richardson
while twenty years later, Kolmogoroff provided relevant dimensional analysis of the energy
spectrum. Particularly, Kolmogoroff’s theory sates than the turbulent spectrum can be scaled
as a «−5/3 law »

E(κ) ∝ k−5/3. (5.2)

For instance, let consider the experimental sectional lift coefficient introduced in subsection
4.3.3. The −5/3 variation can clearly be seen in Figure 5.1 representing the power spectral
density of Cl with respect to the Strouhal number.

The key physics of this type of flow is predominantly characterised by the unsteady, massively-
separated wake region. The flow can be seen as the superposition of a nominally periodic
shedding of large scale and of a finer random turbulent fluctuation. There is thus an energetic
contribution for lowest frequencies as well as an energetic contribution in the neighbourhood
of the shedding frequency.

Therefore, it can easily be understood that the assumption of a constant spectrum for all fre-
quencies (white noise scaling) can sometimes be strong and lead to a misunderstanding of the
whole flow physics. In particular it has been demonstrated in previous chapter that the white
noise scaling was not efficient for sine wave. Hence the methodology is assumed to provide
inaccurate results for flows with strong periodic characteristic e.g flows around a cylinder with
an URANS simulation.

Several studies aimed at developing mathematical tools to model the turbulent spectrum namely
those of Poppe, Von Karman [42] or Davenport [9]. However, this studies often lead to ex-
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Figure 5.1: Power spectral density of the measured sectional lift coefficient Cl for a high angle-of-
attack (60◦) NACA0021 as a function of the Strouhal number. The measurements are
provided by Swalwell et al [39].

pressions for the for the power spectral density that are hard to manipulate. In this chapter,
a rather simple expression is used to derive analytical expressions that allow to quantify both
effects : periodicity and broadband random fluctuations. For that purpose, the two main limit
cases, namely the white noise and the sine wave are reminded and/or further derived. Based
on these cases is introduced a mathematical model that is able to model both ends of the fre-
quency spectrum. Finally, this mathematical model is introduced in the previous methodology
to make the latter more general.

5.2 Time signal generation

In this section is briefly explained how the signal in the time domain is generated based on
its frequency content. Under the assumption of an ergodic process, the frequency content
GXX ( f ) and its corresponding random process X (t) are linked by [15]

GXX ( f ) = lim
T→∞

1
T
|X( f ,T )|2, (5.3)
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where T is the total length of the signal and

X( f ,T ) =
ˆ T/2

−T/2
X (t)e− j2π f tdt (5.4)

is the truncated Fourier transform of the process.

The limit expression in (5.3) expresses the fact that a finite sample length cannot contain
enough information to model the power spectrum at low frequencies. However, if the fre-
quency content is assumed to lie in a finite frequency interval, say [ fmin; fmax], the lowest
frequencies can be caught for a sample length of at least 1/ fmin [34]. Given that, the limit can
be omitted provided a long enough length record. From (5.3), it yields :

|X( f ,T )|=
√

T GXX ( f ). (5.5)

A solution of this equation is thus

X( f ,T ) =
√

T GXX ( f )e jφ( f ), (5.6)

where φ( f ) is a random variable with uniform probability density function between 0 and 2π .
Finally, the time signal is obtained by inverse Fourier transform.

5.3 Limit cases

As introduced in section 3.3, a white noise is characterized by a constant autospectral density
function and an associated centred Dirac autocovariance function. Given a infinite variance,
the process is unreal but can nevertheless be approximated locally in a limited bandwidth,
denoted B (see Figure 3.5). At the other end of the frequency spectrum, the sine wave is
characterized by an autospectral density function modelled by a Dirac impulsion at the wave
frequency while the associated autocovariance function is a cosine (see Figure 3.6). To really
emphasize the difference, both power spectral densities are depicted in Figure 5.2 withW(t)
the band limited white noise and Y(t) a sine of amplitude A and frequency f0.

f

GWW( f )

G0

B f

GYY( f )
A2

2

f0

Figure 5.2: One-sided autospectral density functions of a low-pass white noiseW(t) (left) with con-
stant GWW( f ) = G0 and bandwidth B and of a sine wave Y(t) (right) of amplitude A and
frequency f0.
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Their corresponding autocorrelation functions (Fourier pair) are represented in Figure 5.3.
That is, the correlation between sample points decreases rapidly for the band limited white-
noise and the rate of decrease varies with the bandwidth B. Regarding the sine wave, the
magnitude of the autocorrelation remains constant with time; in the sense that the amplitude
of the peaks does not decrease.

τ

RWW(τ)

ψ2 = G0B

τ

RYY(τ)

A2

2

Figure 5.3: Autocorrelation functions of a low-pass white noiseW(t) (left) with bandwidth B and of
a sine wave Y(t) (right) of amplitude A and frequency f0.

5.3.1 Bandwidth limited Gaussian white noise

A complete description of the bandwidth limited Gaussian white noise has already been pro-
vided in Part 1 and Chapter 4. Therefore, only the main analytical relations are re-written
:

εana{µ̂W}=
(

σW
µW

)
1√

2πBt
and εana{σ̂W}=

1√
4Bt

. (5.7)

5.3.2 Sine wave

An analytic formula for the time-evolution of the statistical error can be derived for the sine
wave following almost the same steps as for the white noise in section 3.4.2. The variance of
the mean estimate and the variance of the variance estimate are given respectively by :

V{µ̂Y}=
1
T

ˆ T

−T

(
1− |τ|

T

)
CYY(τ)dτ (5.8)

and

V{σ̂2
Y}=

2
T

ˆ T

−T

(
1− |τ|

T

)[
C2
YY(τ)+2µ

2
YCYY(τ)

]
dτ. (5.9)

In the specific case of white noise, the derivation has been simplified by assuming τ << T .
The assumption directly makes sense regarding the autocorrelation function. Indeed, assuming
τ greatly lower than T corresponds to assuming an autocorrelation that decreases rapidly.
Hence, this assumption is not acceptable anymore for a sine wave due to its non decreasing
autocorrelation function (see Figure 5.3). Therefore, whole terms of (5.8) and (5.9) should be
treated. After some derivations, it yields for a sine wave Y(t) of descriptive statistics µY ,σY
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and frequency f0 :

εana{µ̂Y}=
(

σY
µY

)√
1− cos(2π f0t)

2π f0t
and εana{σ̂Y}=

1
2
|sin(2π f0t)|

2π f0t
. (5.10)

Equations (5.10) allow to assess the value of the statistical errors on the mean and the standard
deviation estimates as a function of the time t for the specific case of a sine wave characterized
by a frequency f0, a mean µY and a standard deviation σY . The periodic oscillations of the
statistical error are expected regarding the periodic nature of the signal. Indeed, the average of
a periodic signal over an entire period is zero which explains the sharp decreasing of the mean
error every period 1/ f0 while the standard deviation is zero each half period 2/ f0.

Hopefully, the analytic derivations correspond to the error computed using windows averaging
in the previous chapter (see Figure 4.7). To be convinced, both analytic εana and window
averaging εTw have been represented on the same graph in Figure 5.4. It can be seen that there
is a perfect correspondence as both errors are almost superimposed (the only divergences come
from the numerical appreciation of the sharp drop to ε = 0) . Therefore, the error computed
by windows averaging can be assumed to be a «reference »in the further analysis.

ε{µ̂Cl}

ε{σ̂Cl}

10−1 100 101

10−4

10−3

10−2

10−1

100

Tw∗, t∗ [-]

ε
{P

T
}[

%
]

εTw(Tw)
εana(t)

Figure 5.4: Comparison of estimated εTw and analytic εana statistical errors in the special case of a sine
wave with σY = 0.1, µY = 1, f0 = 10 [Hz] and ∆t = 2× 10−2 [s]. The estimated error
is in dashed line and the analytic in continuous line. The errors on the mean estimate are
plotted in orange while the standard deviations ones are plotted in blue. The time (x-axis)
is multiplied by the wave frequency : T ∗w = Tw f0 and t∗ = t f0.
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The analytic formulas allow to highlight some different features more accurately in the be-
haviour of the error for a sine wave. First, the plateau (in a log-log plot) can be quantified by
the limit :

lim
t→0

εana{µ̂Y}= lim
t→0

(
σY
µY

) |sin(2π f0t)|
2π f0t

=

(
σY
µY

)
, (5.11)

where the well know result for the limit of the cardinal sine1 as t→ 0 is used. The first value
of the statistical error for the mean estimate is thus expected to correspond to this ratio. It is
interesting to notice that a similar plateau has been highlighted in Figure 4.9 corresponding to
the statistical error for the measured lift coefficient. Furthermore, the value corresponding to
this plateau is around 0.11 which exactly corresponds to the ratio (σ̂Cl/µ̂Cl). That is, it con-
firms that the energetic contribution of the vortex shedding in Figure 5.1 can definitely play a
role.

This is with this intuition and final motivation that comes the next section. A mathematical
model will thus be built to take into account both contributions : periodic and broadband.

5.4 Intermediate case

The frequency content and its Fourier transform : the autocorrelation function, definitely in-
fluence how the statistical error varies with the sample length. To highlight this relationship a
bit more, the statistical error can be rewritten as the product of a function of time and a spectral
parameter :

εana{µ̂X }=
(

σX
µX

)
KµX gX (t) and εana{σ̂X }= KσX gX (t) (5.12)

where KµX and KσX are the spectral parameters respectively corresponding to the mean and
the standard deviation and g(t) a function of time which is directly defined by the frequency
spectrum GXX . The summary of these parameters are available in Table 5.1.

1By definition of the cardinal sine sinc(t) :

sinc(t) =
sin(t)

t
and lim

t→0
sinc(t) = 1
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εana{PX } KPX gX (t)

White Noise µ̂W 1√
2B 1√

tW(t) σ̂W 1√
4B

Sine wave µ̂Y 1
2π f0 |sin(2π f0t)|

tY(t) σ̂Y 1
4π f0

Table 5.1: Summary of the spectral parameters and time dependencies for the statistical error on the
mean and standard deviation estimates for a bandpass white noise and a sine wave.

The choice of the mathematical model for the intermediate case is motivated by many factors.
First of all, it should be able to model both limit cases when a quantity of interest of the
spectrum is pushed to the limits. This parameter is naturally chosen as a pseudo-bandwidth
of the signal such that when the parameter tends to zero, the signal is periodic and when
the parameter tends to infinity, the signal is purely random. Secondly, the expression of the
spectrum should be such that the analytic derivations are feasible. Indeed, the process of
the statistical error derivation can be tricky and the expression should be easily manipulable.
Finally, the spectrum should be line with de physical expectations of the turbulence.

5.4.1 Physical considerations about turbulence and correlation

2Correlation between random variables has a central position in turbulence modelling. In the
more general case, the fluid random variables are fields e.g velocity, pressure etc. Despite they
are statistics, the correlation functions are also fields and thus deterministic. Usually, these are
functions of position (or relative position) and time. In this short insight to feel the physics of
turbulence, only time correlation is considered.

To approach a first insight of the autocorrelation function in the context of turbulence, let
consider an instantaneous turbulent velocity ũ and a mean velocity U , linked by U ≡ E{ũ}.
Therefore, the fluctuating velocity u is given by :

u = ũ−U. (5.13)

This simply corresponds to a decomposition of the total velocity into a mean and a fluctuation
ũ =U +u with E{u}= 0.

2This discussion is mainly inspired by [14].
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Lagrangian approach for correlation

This section focuses on the time-autocorrelation i.e the correlation that can exist between a
velocity component and itself delayed by a time shift τ :

Ruu(τ) = corr{u(t + τ)u(t)}= E{u(t + τ)u(t)}. (5.14)

Let consider a simple discrete random process that predicts the fluid velocity at time shifts τ :

u(t + τ) = ρu(t)+ sw(t) (5.15)

with ρ and s real coefficients and w(t) a white noise of unit magnitude and zero mean.
Under the assumption of a statistically stationary process, the variance is a constant and
E{u(t + τ)2} = E{u(t)2} = E{u2}. Therefore, squaring (5.15) and applying the expected
value operator on both sides :

E{u(t + τ)2}= ρ
2E{u(t)2}+ s2E{w2}+2rsE{u(t)w(t)}. (5.16)

Given that w is a white noise, the latter is uncorrelated with the velocity field u and the last
term is zero. Furthermore, by the intrinsic definition of w, E{w2}= 1 and thus

s =
√

(1− r2)E{u(t)2}. (5.17)

If now (5.15) is multiplied by u(t) and the expected value operator is applied :

E{u(t + τ)u(t)}= ρE{u(t)2} (5.18)

and it is directly understood that a is the correlation coefficient3. For a stationary process, the
correlation is only a function of the time shift τ . By expanding ρ in a McLauren series :

ρ = 1+
dρ

dt
(0)τ +o(τ2) (5.19)

and by dimensional analysis, dρ/dt(0) has unit t−1 and thus a correlation length-scale Tc

is introduced such that dρ/dt(0) ≡ 1/Tc. Finally, by pre-multiplying (5.15) by u(t − τ), a
differential equation for Ruu(τ) can be obtained :

dRuu(τ)

dτ
=−Ruu(τ)

Tc
. (5.20)

3It justifies also the nomenclature ρ used, to stay coherent with the previous introduction to the correlation
coefficient in section 4.3.3.
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It appears thus that the autocorrelation of the simple random process introduced in (5.15) has
a negative exponential behaviour and that the correlation length-scale is :

Ruu(τ) = e−|τ|/Tc and Tc =

ˆ

∞

0
R(τ ′)dτ

′. (5.21)

This short investigation for a simple random process allows to highlight a time dependency
for the autocorrelation function as well as a quantity of interest : the correlation length scale.
Both conclusions have mainly driven the choice of further introduced mathematical model.

Frequency spectrum of the correlation

The frequency spectrum Guu( f ) can be obtained by inverse Fourier transform of the autocor-
relation function. It yields :

G( f ) = 2
ˆ +∞

−∞

Ruu(τ)e− j2π f τdτ =
E{u(t)2}Tc

π(1+4π2 f 2T 2
c )

. (5.22)

5.4.2 Mathematical model for the frequency spectrum

Equations (5.21) and (5.22) indicate that the time autocorrelation function of a turbulent ve-
locity field could be in the form of a negative exponential and thus a rational power spectrum
density with G ∝ f−2. Based on these two insights, a general one-sided frequency spectrum
and its associated autocorrelation function can be defined for a random process X (t) :

GXX ( f ) =
σ2
X

π

β

( f − f0)
2 +β 2

and RXX (τ) =
σ2
X√
2π

e−β |τ| cos(2π f0τ) (5.23)

where the parameters β , f0 and σX are positive and real (see Figure 5.5).

f

GXX ( f )

∼ β

2 f0

σ2
X

βπ

f0

τ

RXX (τ)

e−βτ
σ2
X√
2π

Figure 5.5: Schematic representation of the one-sided power spectral density GXX ( f ) (left) and the
autocorrelation function RXX (τ) (right) of a random process X (t) with variance σ2

X , main
frequency f0 and bandwidth parameter β .

Each parameter of (5.23) has its own importance and signification :
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i. σ2
X is the variance of the parent signal X (t). It corresponds to the area under GXX ( f )

i.e the integral of G for all frequencies. It directly influences the magnitude of the power
spectrum i.e the energy of the time signal. This explains therefore the multiplying factor
(1/π) that ensures the validity of the property

´

RGXX ( f )d f = σ2
X .

ii. f0 is the frequency on which the peak is centred, it corresponds to the periodic energetic
contribution.

iii. β is a bandwidth parameter which defines the acuity of the peak. The half-power width
is proportional to β/ f0. In addition, it influences the time autocorrelation as it appears
in the exponential exponent. It can thus be understood as the inverse of a time constant.
That is, a greater β would tend to decrease rapidly the correlation while a small β

would do the opposite. This is one of the justifications for this parameter to be called
«bandwidth »parameter. When the bandwidth is large, the autocorrelation is presumed
to be weak (white noise) in contrast to a sine wave with high correlation and Dirac
bandwidth.

For convenience, the frequency spectrum and the autocorrelation function are non-dimensionalized
by introducing the parameters :

β
∗ = β/ f0 , f ∗ = f/ f0 and τ

∗ = τ f0 (5.24)

so that (5.23) can re-written as :

G( f ∗) =
σ2
X

π f0

β ∗

( f ∗−1)2 +β ∗2
and R(τ∗) =

σ2
X√
2π

e−β ∗τ∗ cos(2πτ
∗). (5.25)

The parameter of interest is therefore β ∗ corresponding to the ratio between the bandwidth
parameter and the centred frequency. Even more, it defines the acuity of the peak and is hence
useful to model the limit cases. A signal with a small β ∗ is qualified as a narrow-band signal
while a large β ∗ corresponds to a wide-band signal.

Influence of β ∗

Different regimes can thus be highlighted with respect to β ∗. For large β ∗� 1 the system is
highly uncorrelated and the peak width is important so that the system behaves like a pseudo
white-noise. On the contrary, for small β ∗ � 1 the correlation between sample points de-
creases slowly and the peak of the frequency spectrum is very sharp, thus the system acts like
a pseudo periodic signal. The intermediate range β ∗ ≈ 1 is the real interest of the analysis and
a dedicated section will be presented further.
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f

GXX ( f )

τ

RXX (τ)

β ∗� 1 β ∗ ≈ 1 β ∗� 1

Figure 5.6: Schematic representation of the one-sided power spectral density GXX ( f ) (left) and the
autocorrelation function RXX (τ) (right) for the three different regimes β ∗ � 1 (dotted),
β ∗ ≈ 1 (continuous) and β ∗� 1 (dashed). The power spectral densities have been scaled
for the sake of visibility.

A schematic representation of the three regimes is represented in Figure 5.6. The power
spectral densities have been scaled for the sake of visibility. It can be seen that both frequency
spectrum and autocorrelation functions are really similar to those of limit cases (see Figures
5.2 and 5.3).

Analogy to the structural engineering

An interesting comparison can be made between the present mathematical model and fre-
quency response function of a standard second order mechanical system [18]. Indeed, by
symmetrically extending the one-sided power spectral density to the full frequency domain :

SXX ( f ) =
1
2
[GXX ( f )+GXX (− f )] =

σ2
X β

π

f 2
0 +β 2 + f 2

( f 2
0 +β 2− f 2)

2
+4β 2 f 2

(5.26)

Introducing the parameters f 2
n = f 2

0 +β 2 and ξ fn = β , it yields :

SXX ( f ) =
σ2

X fn

π

f 2
n + f 2

( f 2
n − f 2)

2
+4ξ 2 f 2

n f 2
(5.27)

The relationship with the response of a simple spring-mass system with natural frequency
fn and damping ratio ξ is therefore immediate. Moreover, the damping ratio takes the well-
known form :

ξ =
β/ f0√

1+(β/ f0)2
=

β ∗√
1+β ∗2

(5.28)
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5.5 Analyses and discussions

Section 5.3 introduced the both ends of the frequency spectrum which allow by their simplicity
to derive useful equations while 5.4 introduced a mathematical expression for the frequency
content that allows to model different configurations as a function of the quantity of interest
β ∗. In this section is investigated how the statistical error varies with this parameter and how
the latter can be quantify to be used in the algorithm presented in the previous chapter.

For that purpose, both limit cases β ∗ � 1 and β ∗ � 1 are investigated. In particular, it is
verified that the model can represent the both ends of the frequency spectrum. After that, the
intermediate case β ∗≈ 1 is studied and the link between the statistical error and the bandwidth
parameter is performed.

5.5.1 Case β ∗� 1

In the case of a small normalized bandwidth parameter, the power spectrum is a very sharp
peak and the autocorrelation function a pseudo cosine wave (see Figure 5.6). Further, in the
limit when β ∗→ 0 :

GXX ( f ∗)∼ σ2
X

π f0
δ (1) and RXX (τ∗)∼

σ2
X√
2π

cos(2πτ
∗) (5.29)

which corresponds to the analytic characteristic of a sine wave of frequency f0 and amplitude
σX /π i.e the multiplicative factor in the definition of GXX ( f ).

It can be seen in Figure 5.7 that the mathematical model can represent a sine wave in the limit
β ∗ → 0. In this case, the statistical error is similar to the statistical error of a sine wave at
frequency f ∗ = 1 with an amplitude σ2

X /(π). Moreover, the statistical error decreases as 1/t
as expected.
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Figure 5.7: Time evolution of the statistical error on the mean estimate for the signal X (t) charac-
terised by the couple of parameters f0 = 1, standard deviation σX = 0.1 and β ∗ = 10−4.

5.5.2 Case β ∗� 1

In the case of a large normalized bandwidth parameter, the power spectrum is a flat and the
autocorrelation function decreases rapidly to zero (see Figure 5.6).

It can be seen in Figure 5.8 that the mathematical model can represent a white noise in the
limit β ∗ → ∞. In particular, the estimated statistical error is almost superimposed with the
analytic formula taking into account the Nyquist bandwidth.
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Figure 5.8: Time evolution of the statistical error on the mean estimate for the signal X (t) charac-
terised by the couple of parameters f0 = 1, standard deviation σX = 0.1 and β ∗ = 5.

5.5.3 Case β ∗ ≈ 1

The case β ∗ ≈ 1 is the one of main interest since it corresponds to the range usually met
in practice. It also corresponds to the range with a lack of understanding. Therefore, this
subsection aims to describe qualitatively and quantitatively the behaviour of the statistical
error for an intermediate bandwidth parameter.

General overview and problem statement

As a first introduction, the shapes of the autocorrelation functions, the power spectra and the
statistical errors for two different values of β ∗ (1 and 0.05) have been represented in Figure 5.9.

The influence of the normalized bandwidth is therefore not negligible in the statistical error
computation. In the first row, it can be seen that the correlation is much more important for
a lower β ∗. For the same x-axis scale, the correlation decreases to almost zero at τ∗ = 4 for
β ∗ = 1 while it remains considerable, around 0.5 for β ∗ = 0.05.

Regarding the frequency content, that acuity of the peak at the resonant frequency f ∗ = 1 is
smaller for a smaller β ∗. In addition, the magnitude of the peak i.e the value at its maximum is
larger for a smaller β ∗. A key value of the bandwidth parameter to analyse would thus be the
one corresponding to a "flat peak". Since the peak is assumed to correspond to the periodic
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contribution to the time signal, the key value of β ∗ would hence be the value at which there is
no periodicity at all and the signal would be like a white noise.

Finally, the shapes of both statistical error are different but a common behaviour can be high-
lighted. For a short time, the statistical error tends to behave like a sine wave and some
oscillations similar to those in Figure 5.7 can be seen. As the time increases, the oscillations
disappears to become a straight line. More interestingly, different slopes in εTw can be noticed
as the time is increasing. Firstly, when oscillations are noticeable, the error varies like 1/t∗

and thus when the error is a straight line it varies like 1/
√

t∗. It is therefore presumed that
for low t∗ the error is mainly driven by the periodic content while for large t∗, the random
broadband part is the most predominant.

Behaviour for a small t

For a small t, the behaviour of the statistical error is totally driven by the periodic content and
the time signal corresponds to :

X (t∗)∼ σ2
X

π
sin(2πt∗). (5.30)

Therefore, the statistical error can directly be deduced by the analytic formula for a sine wave.

Behaviour for a large t

For a large t, additional derivations have to be done since the first part of the statistical error
is influenced by the periodic content. In particular, the curve-fitting parameter is not relevant
anymore.

For large t, the white noise assumption can be applied i.e it can be assumed that |τ∗|<< T in
(5.8) :

V{µ̂X } ≈
1
T

ˆ

∞

−∞

CXX (τ∗)dτ
∗ =

2
T

ˆ

∞

0
CXX (τ∗)dτ

∗, (5.31)

where the last equality is due to the parity of the autocorrelation function. The computation of
the integral can be direct if one remembers that CXX forms a Fourier pair4 with GXX . Indeed,
it can be reduced to :

V{µ̂X } ≈
1
T

GXX (0)
2

=
1
T

σ2
X

π f 2
0

β ∗

1+β ∗2
. (5.32)

4By definitions of a Fourier pair and of the one-sided power spectrum density:

GXX ( f ) = 4
ˆ

∞

0
RXX (τ)cos(2π f τ)dτ → GXX (0)/4 =

ˆ

∞

0
RXX (τ)dτ
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Figure 5.9: Autocorrelation functions (first row), one-sided frequency spectrum (middle row) and sta-
tistical error for the mean estimate (last row) in the specific cases of β ∗ = 1 (left column)
and β ∗ = 0.05 (right column). Other parameters σ2

X and f0 have been set to unity.
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Therefore, the statistical error for a large t, denoted εt> is given by :

εt>{µ̂X }(t∗) =
√

V{µ̂X }
µX

=

(
σX

µX

)
1√

2Bt>t∗
with Bt> =

π f0(1+β ∗2)
β ∗

. (5.33)

As far as the standard deviation is concerned, the statical error defined in (5.9) can be reduced
as :

V{σ̂X } ≈
2
T

ˆ

∞

−∞

C2
XX (τ)dτ. (5.34)

According to Perseval’s theorem, the integral of the square of a function is equal to the inte-
gral of the square of its Fourier transform (i.e the energy is conserved from time-domain to
frequency domain). Therefore, the previous equation can be re-written as :

V{σ̂X } ≈
1
T

ˆ

∞

0
G2
XX ( f )d f =

8
T

σ2
X

2π

[
β ∗2 +2π2

2β ∗3 +8π2β ∗

]
. (5.35)

Finally, the statistical error is thus given by :

εt>{σ̂X }(t∗) =
√

V{σ̂X }
σX

=
1√

4Bt>t∗
with Bt> =

π

16

[
2β ∗3 +8π2β ∗

β ∗2 +2π2

]
/ (5.36)

Scaling transition

If εsin denotes the analytic expression of the statistical error for a sine wave and εwn for a white
noise, it has been highlighted that the statistical error of the process X (t∗) is similar to εsin(t∗)
for a small t∗ and similar to εwn(t∗) for a large t∗. Let consider a time t∗ = t∗tr, called transition
time, which corresponds to the intersection of both curves εsin and εwn.
It can therefore be written :

ε(t∗)∼
{

εsin(t∗) , t∗ ∈ [0; t∗tr]

εwn(t∗) , t∗ ∈ ]t∗tr;+∞[
. (5.37)

A more visual definition of the transition time is available in Figure ??. Actually, the transition
between the 1/t∗ and the 1/

√
t∗ scaling is not punctual. The latter is realised on a interval of

time centred in t∗tr. However, assessing the punctual parameter t∗tr is easier as a first step.

Mathematically, this trend is well understood if the statistical error of X (t∗) can be assumed
to be the sum of two contributions : the periodic and the broadband one. In that way, it can be
written :

ε(t∗)∼ εsin + εwn = εsin

(
1+

εwn

εsin

)
= εwn

(
1+

εsin

εwn

)
(5.38)
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Therefore, for a small t∗ :

lim
t∗→0

ε(t∗)∼ lim
t∗→0

εsin

(
1+

εwn

εsin

)
∼ lim

t∗→0
εsin

(
1+

t∗−1/2

t∗−1

)
= εsin (5.39)

so that εwn = o(εsin) for (t∗→ 0) and thus ε(t∗)∼ εsin(t∗).
On the contrary, for a large t∗ :

lim
t∗→∞

ε(t∗)∼ lim
t∗→∞

εwn

(
1+

εsin

εwin

)
∼ lim

t∗→∞
εwn

(
1+

t∗−1

t−1/2

)
= εwn (5.40)

so that εsin = o(εwn) for (t∗→ ∞) and thus ε(t∗)∼ εwn(t∗).

Therefore, a point estimate of the scaling transition can be obtained by expressing the latter
as the intersection of εt< and εt>. For convenience, the sine dependence of εt< is omitted to
only consider the 1/t∗ variation. It is thus equivalent to the straight line passing through every
peaks. In the case of the mean estimate, it yields :

t∗tr =
εt<√

1− cos(2πt∗)
∩ εt> ⇔ t∗tr =

2Bt>

π2 . (5.41)

Introducing the expression of Bt> (5.33) :

t∗tr =
(1+β ∗2)
2π f0β ∗

. (5.42)

Summary

In the current subsection has been derived a complete description of the statistical error in
the case β ∗ ≈ 1. It has been shown that the error could be seen as a succession of both
contributions. A periodic behaviour for a small t∗ with a 1/t∗ dependence and a broadband
contribution for a larger t∗ with a 1/

√
t∗ dependence. The transition of scaling ttr has been

estimated punctually. In the end, the statistical error for β ∗ ≈ can be defined as :

ε{µ̂X}(t∗) =





(
σX
µX

)√
1−cos(2πt∗)

2πt∗ , t∗ ∈ [−∞ ; t∗tr]

(
σX
µX

)
1√

2Bt>t∗ , t∗ ∈]t∗tr ; +∞[

, (5.43)

where the bandwidth parameter and the transition point are given by :

Bt> =
π f0(1+β ∗2)

β ∗
and t∗tr =

2Bt>

π2 . (5.44)
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A graphic representation is provided in Figure 5.10 for the parameter β ∗ = 0.05. It can be
seen that the point estimation of the transition is a simplification and a further improvement
would be to estimate a transition band centred in t∗tr whose width would probably depends on
β ∗. However, there is a really good agreement between the estimated statistical error and the
mathematical model derived which gives confidence in the scaling introduced. In particular,
the bandwidth Bt> provides a good scaling for a large t∗ and the transition point is in line with
visual inspection. Numerically, the values are, in the case β ∗ = 0.05 and f0 = 1 :

Bt> =
π1(1+0.052)

0.05
≈ 62.99 Hz and t∗tr =

2Bt>

π2 ≈ 12.76. (5.45)
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Figure 5.10: Time evolution of the statistical error on the mean estimate for the signal X (t) charac-
terised by the couple of parameters f0 = 1, standard deviation σX = 0.1 and β ∗ = 5.

Eventually, the oscillations of the sine dependency can be omitted and the statistical error
would be scaled by linear parts so that :

ε{µ̂X}(t∗) =





(
σX
µX

)
1

πt∗ , t∗ ∈ [−∞ ; t∗tr]

(
σX
µX

)
1√

2Bt>t∗ , t∗ ∈]t∗tr ; +∞[

. (5.46)
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5.6 Prediction of the error

This section aims to make the bridge between the statistical error estimate and the new mathe-
matical model introduced above. Instead of the simple curve fitting parameter Bfit considered
in the Mockett’s paper, there are now two parameters to estimate, namely f0 and β . The
first parameter directly influences the sine wave contribution while the second influences the
broadband part. Moreover, a knowledge of both frequency spectrum parameters are required
to estimate the transition point.

The first step is to check if the statistical error is composed of a periodic component. For
that purpose, the time step is assumed small enough compared to the frequency f0 to lead to
a plateau (in a log-log plot) for a small t. In this specific case, the methodology introduced
by Mockett to compute the curve fitting parameter as min[B(Tw)] can be used to estimate the
frequency. Indeed, the first drop in the statistical error corresponds to a time 1/ f0. Therefore,
the time corresponding to the curve fitting parameter Bfit is thus 1/2 f0 (see Figure 4.7). On
the contrary, if the statistical error does not present any plateau, the simple white-noise scaling
is applied and there is no need to estimate any parameter f0.

The second step is to estimate the bandwidth parameter β . This can be made by estimating the
slope for large Tw. If the first guess of the dependency validates the white noise scaling 1/

√
t

then the transition point ttr can be roughly estimated. After that, the estimation of the curve
fitting parameter is made in the interval [ttr ; T ] and this provides an accurate value for β .
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6 Adapted methodology and numerical implemen-
tation

In Chapter 4 has been introduced a methodology to estimate a posteriori the initial transient
duration. The latter is used as a basis for the final, adapted methodology considered in the
thesis. In particular, some drawbacks have been emphasized, namely : the incapability to han-
dle periodic flows and some spurious oscillations when the window size increases. Chapter 5
therefore aimed to introduce a new mathematical model to overcome the first issue and pro-
vide a more general description of the fluid physics.

In this Chapter, the final methodology is summarized. In the present methodology, the statis-
tical error is estimated by windows averaging coupled with analytical formulas to predict the
further variation. This procedure requires optimal choices, the first section is therefore dedi-
cated to this discussion. Finally, the initial methodology is extended to allow the estimation
of the required simulation time te.

6.1 Statistical error computation

The window averaging methodology to estimate the statistical error has been described in sec-
tion 4.2.1 and some limitations have been highlighted. Indeed, the estimate becomes poorly
accurate as the window size tends to the signal length. Furthermore, this statistical error es-
timation directly influences the prediction by means of analytic formulas through the curve
fitting parameter. Then, the product of both variances of the estimates which allows to high-
light the initial transient is affected and can lead to a bad estimation of tt due to spurious and
unwanted oscillations.

6.1.1 Windows generation

Window generation is of a paramount importance since it influences directly the computational
time and cost of the algorithm. Indeed, the more windows of different sizes are considered,
the more the algorithm is time and resources consuming. It is therefore important to generate
those in a way that minimizes the number of windows while keeping an acceptable overall
accuracy. Let denote Tw the number of time steps per window, NTw the number of windows of
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size Tw and N the number of data in the sample to be discretized.
The three quantities are obviously linked by

NTw =
N
Tw

. (6.1)

However, due to the discretized nature of the sample, to one NTw can be associated several Tw

since it is not necessary that NTw is a multiple of N. Therefore, a choice that can be made to
limit the computational cost is to only consider a unique value of Tw and thus only consider
the NTw associated. To illustrate, let consider the simple example where N = 10 and NTw is
initially chose as [1, · · · ,10], then :

Tw =
N

NTw

= [10, 5, 3, 2, 2, 1, 1, 1, 1, 1]

Therefore, it has been chosen to only keep the unique value of Tw which decreases strongly the
computational cost. Obviously, the inverse path could also have been considered i.e imposing
the Tw and then compute the NTw . However, a particular attention should have been given to
the Tw non-multiple of N.

In the top of Figure 6.1 is represented the evolution of the curve fitting parameter as a function
of the simulation time for the experimental sectional lift coefficient introduced in Chapter 4.
This parameter, denoted Ball is computed with the naive and consuming first guess for the
windows generation. The bottom graph represents the evolution of the ratio between the curve
fitting parameter computed with the uniqueness methodology of window generation and the
naive one.

It can be seen that the robustness of the curve fitting estimators is almost the same. Indeed,
both methodologies take the same time to converge to the same final value. Divergences
only occur when even the parameter Ball has not converged yet. As soon as the latter has
reached its asymptotic value, the ratio between both parameters is almost always equal to one.
It drastically reduces the time of computation. For a naive window generation, the time of
computation varies like N2 while it varies like N with a negligible gradient for the uniqueness
methodology. In particular, less than half a second is required1 to estimate the statistical error
for a sample of 3.5×104 points.

6.1.2 Statistics computation

The estimated error εTw computation requires a huge number of windows and for every win-
dow, the descriptive statistics have to be calculated. Therefore, the operation can become very
consuming in terms of computer resources and time, if an adequate strategy is not employed.

1Computation time estimated with a laptop MacBook Pro 2.7 GHz Intel Core i5.
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Figure 6.1: Running curve fitting parameter Ball computed with a naive windows generation (above)
and running ratio between Ball and Bless, the curve fitting parameter computed with the
uniqueness windows generation methodology. The time axis is non-dimensionalised as
R∗ = T (|U∞|/c) with c the chord and |U∞| the free stream velocity. The data is truncated
as 0≤ T ∗ ≤ 500.
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A foolish and dirty methodology would have been to loop in each window to compute the
mean and the standard deviation. In the end, the sample has to be divided into Nw windows
and N different window sizes Tw are required, this leads to an amount of windows where statis-
tics have to be computed which is not acceptable.

The strategy used in the numerical implementation of the methodology is based on a cumula-
tive sum of the input signal.

Mean computation

Let consider a cumulative sum function cumsumµ(t) = ∑
i=t
i=1 x(i). Assuming that a window Tw

extends from a time t = t1 to a time t = t2, the sample mean value over a window µ̂Cl(DTw)

thus corresponds to2 :

µ̂Cl(DTw) =
1

t2− t1 +1

i=t2

∑
i=t1

x(i). (6.2)

According to Chasles’ rule :

i=t2

∑
i=1

x(i) =
i=t1−1

∑
i=1

x(i)+
i=t2

∑
i=t1

x(i)

⇔ µ̂Cl(DTw) =
1

t2− t1 +1

[
i=t2

∑
i=1

x(i)−
i=t1−1

∑
i=t1

x(i)

]

=
1

t2− t1 +1
[
cumsumµ(t2)− cumsumµ(t1−1)

]
.

Thus, this strategy allows to convert the Nw loop on each window to a succession of arithmetic
sums. In the particular case of t1 = 1, the last term is zero and the mean of the whole sample
is computed.

Standard deviation computation

Let consider a cumulative sum function cumsumσ (t) = ∑
i=t
i=1 x2(i). Assuming again that a

window Tw extends from a time t = t1 to a time t = t2, the sample variance value over a
window σ̂Cl(DTw) thu corresponds to :

σ̂
2
Cl
(DTw) =

1
t2− t1

i=t2

∑
i=t1

[
x(i)− µ̂Cl(DTw)

]2
. (6.3)

2The denominator (t2− t1 +1) is due to the convention adopted that the very first sample point corresponds
to t = 1 and thus an interval t2− t1 = N contains N +1 sample points.
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By expanding the square :

σ̂
2
Cl
(DTw) =

1
t2− t1

[
i=t2

∑
i=t1

x2(i)−2
i=t2

∑
i=t1

x(i)µ̂Cl(DTw)+
i=t2

∑
i=t1

µ̂Cl(DTw)

]

=
1

t2− t1

[
i=t2

∑
i=t1

x2(i)−2(t2− t1 +1)µ̂2
Cl
(DTw)+(t2− t1 +1)µ̂2

Cl
(DTw)

]
.

Finally, using the Chasles’ rule to expand the first sum yields to the final expression :

σ̂
2
Cl
(DTw) =

1
t2− t1

[
cumsumσ (t2)− cumsumσ (t1−1)− (t2− t1 +1)µ̂2

Cl
(DTw)

]
. (6.4)

In the particular case of t1 = 1, the variance of the whole sample is computed.

6.1.3 Moving average filter

In the windows averaging process, the resulting estimated statistical error is noisy and is there-
fore characterised by spurious oscillations. This numerical issue can be of a paramount im-
portance since the shape of the statistical error directly influences the curve fitting parameter.
Hence, the transient estimation, as well as the required simulation time, can become less accu-
rate. Indeed, if a spurious maximum occurs in the statistical error, the curve fitting parameter
is computed to be conservative and therefore adapts itself to this maximum. As a consequence,
the predictive error i.e the fitting error, can be strongly overestimated or not, depending on the
magnitude of this local maximum, the statistical error.

The strategy implemented to overcome this issue is to apply a moving average filter to the
statistical error. In this way, the resulting estimation εTw is free of any spurious oscillation
and the curve-fitting parameter is adapted to the smoothed signal. For instance, the Figure
6.2 highlights the difference between the statistical error of the experimental lift coefficient
smoothed and with the spurious oscillations.

6.2 Required simulation time

The methodology introduced in Chapter 4 can be extended to estimate the required simulation
time to reach a predefined accuracy for the statistical error, say εtol.

Firstly, the initial transient is removed from the sample to only consider the assumed steady
state (see Figure 6.3). Then, the statistical error is estimated as a function of the running
time and to each t is computed a Bfit(t). The procedure is continued until the series {Bfit(t)}
has converged to an asymptotic value, denoted B. Then, the required simulation times are
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Figure 6.2: Comparison of estimated and smoothed statistical errors for the measured sectional lift
coefficient (Cl) from [39]. The smoothed errors are in continuous lines and the noisy in
dashed lines. The smoothed error is in orange for the mean estimator and in blue for the
standard deviation. The time axis is non-dimensionalised as t∗ = t(|U∞|/c) with c the
chord and |U∞| the free stream velocity.
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Figure 6.3: Generic time record X (t), of total length T with an initial transient duration tt . The tran-
sient part of the sample is plotted in light red while the conserved part is plotted in black.

70



CHAPTER 6. ADAPTED METHODOLOGY AND NUMERICAL IMPLEMENTATION

estimated following Equations (4.3) :

te,µ − tt =
1

2Bε2
tol

(
σ̂X
µ̂X

)2

te,σ − tt =
1

4Bε2
tol
. (6.5)

The final value considered for te is chosen as max(te,µ , te,σ ). Eventually, a new curve fitting
parameter can be estimated further during the simulation (t < te) to gain some accuracy.

From this pre-defined accuracy, confidence intervals can thus be build as introduced in equa-
tions (4.7) and (4.8). In that way, the time-average quantity of interest can be expressed as the
final averaged value (in te) with a certain residual statistical error.

6.3 Summary

A flowchart of the complete methodology is provided in Figure 6.4. In the end, the latter is
able to estimate the initial transient duration as well the required simulation time with the time
signal as a sole input. Moreover, the methodology is adapted to be used on the fly in order to
monitor an unsteady simulation.

Chronologically, a succession of windows averaging and sample shortening is realized in order
to estimate the initial transient. Once an asymptotic value is reached for the transient duration,
the data sampling and time statistics is triggered to only take into account the assumed steady-
state solution. On this steady solution a succession of windows averaging is applied again to
enable the prediction of the statistical error for a longer sample length than the current time
step. Hence, an estimation of the simulation time required to reach a pre-defined statistical
accuracy can be made and the simulation is stopped as soon as this accuracy is reached.

Due to the high repetition of windows averaging and shortening of the sample, the algorithm
is a bit more costly in terms of time than the simple statistical error estimation. In particu-
lar, for a sample of 2× 104 points, approximately 500 seconds are required to estimate the
transient duration during the whole simulation i.e for a sample length T . Considering that the
methodology is stopped as soon as the transient estimation has converged, it should obviously
take less time. Hence, this computation time, compared to the duration of a CFD numerical
simulation (which lasts several hours) is judged to be acceptable.
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Start simulation

Running time : T
Available solution : X (t), t ∈ [0,T ]

Initialisation :
t0 = 0

Shortening :
X (DT−t0)

Division into windows Tw :

σTw{PTw}(Tw,T ) =
√〈

(PTw−PT )
2
〉

For each window size :

σTw{PTw}(Tw,Tw) = σana{PTw}(Tw)⇒ B(Tw)

Final value Bfit = min [B(Tw)]

B
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Criterion computation :

Π(t0,T ) = σfit{µ̂X } ·σfit{σ̂X }

t0 < T
NOFor t0 ∈ [0;T/2] :
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YES
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YES Truncation :
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End simulation

Figure 6.4: Flowchart of the adapted methodology.
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7 ANSYS Fluent User-Defined function implemen-
tation

In Chapter 6 has been introduced the complete methodology to estimate on the fly the initial
transient duration and the required simulation time to reach a pre-defined statistical accuracy.
The final purpose of the thesis is to implement this algorithm as a User-Defined Function
(UDF) in the commercial software ANSYS Fluent. The main goal is therefore to monitor an
unsteady simulation.

A UDF is a function that the user program and that can be dynamically loaded with the Fluent
solver. The access to data solver is made using predefined macro that are supplied by Flu-
ent [16] and contained in the derive udf.h. In the present Chapter are therefore presented the
main choices for the translation of the algorithm in a UDF. In particular, the main steps in the
flowchart 6.4 are described and justified in terms of the provided macro.

Finally, this Chapter is not wanted to be a description line per line of the implementation but
only to describe in the broad lines the architecture and the fundamental choices.

7.1 General considerations

Two main types of UDF exist in Fluent, namely the interpreted or the compiled UDF. In the
present case, a compiled UDF has been preferred since it executes faster than interpreted UDFs
and it is not restricted in the use of the C programming language.

Furthermore, each UDF has to be defined by means of the predefined macros provided by Flu-
ent. These macros, denoted by DEFINE_NAME are defined in the derive udf.h. The algorithm
is based on statistical considerations for the lift coefficient in unsteady simulations. Therefore,
the general solver macro DEFINE_EXCECUTE_AT_END has been chosen. The latter is general
purpose macro that is executed at the end of an iteration or at the end of a time step depending
on if the simulation is a steady state run of a transient run. The algorithm is thus run at each
end of time step.

That is, the implementation of the UDF can be schematically divided into three fundamentals
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steps :

i. Access the solver data;

ii. The transient detection algorithm ;

iii. The UDF output transmission to Fluent Inc.

Indeed, the algorithm requires to have access to the time history of the lift coefficient. After
that, the statistical errors are computed to estimate the initial transient. Once the transient
duration has been clearly identified, the data sampling and the time averaging are triggered.
Finally, the simulation is stopped when a pre-defined accuracy is reached. These three steps
are therefore investigated in the three following sections.

7.2 Access the solver data

Access the time history of the lift coefficient in a User-Defined Function in ANSYS can be a
hard task. Indeed, the C variables in a UDF are volatile i.e they are automatically freed after
the UDF has been called. In other words, they cannot be stored in memory during the whole
simulation. Therefore, artifices have to be used to store the time trace of the lift coefficient.

The lift coefficient computation is made in fluent through a report definition whose output is
a text file with the current simulation time, time step and value of the lift. A predifined macro
is implemented in fluent to access the data from a report : Get_Report_Definition_Value.
The latter accesses the last calculated value i.e the value of the current time step. Therefore,
one way to have access to the time history of the lift is to write and read the value from an
external file. However, this technique is limited by the rate of I/O and can be really time con-
suming.

Another technique is to use User-Defined Memory (UDM) Storage which allows to store val-
ues computed by the UDF in memory to be used later by another UDF or for post-processing.
However, normally, UDM are not meant for that purpose, they usually store field variables.
Hence, storing the lift coefficient in a UDM is not the most efficient way to proceed since it
requires a loop on all threads and faces of the fluid domain.

Despite those drawbacks, user-defined memories have been considered in the implementation
and further improvements should then be carried out to obtain a more efficient UDF. In par-
ticular, two UDM have been considered to store the cumulative sum of the lift coefficient and
the squared cumulative sum of the lift coefficient as justified in section 6.1.2.
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7.3 Transient detection algorithm

The transient detection algorithm aims to trigger the data sampling and the time statistics.
However, to assess its convergence, the transient estimation has to be stored in memory during
the simulation. Therefore, a UDM is dedicated to the transient estimation. The algorithm is
hence performed until convergence of tt i.e a typical while condition. After that, the data
sampling and statistics are automatically triggered by means of the execute command panel
of the GUI or by text commands.

7.4 UDF output transmission

The last major step in the methodology is to estimate the required simulation time. Hence,
once the sampling is triggered, the statistical error is estimated on the fly until the curve fitting
parameter Bfit has converged. To make the simulation stop when a certain accuracy is reached,
the convergence option of Fluent1 has been used. For that purpose, a boolean variable is
defined and the convergence is imposed to the solver when the boolean variable becomes true.
Hence, this variable is set to be true as soon as the simulation time becomes equal or greater
than the estimated required time te.

1Available for ANSYS R18 and more recent.
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Part III

Discussions and Validations
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Outline of the third part

Progress is made by trial and failure; the failures are gener-
ally a hundred times more numerous than the successes; yet
they are usually left unchronicled.

William Ramsay

The final part of the manuscript is dedicated to the results provided by the implementation
of the methodology introduced in the second part. The main outcomes of the methodology
are respectively the detection and the duration estimation of an initial transient as well as an
estimation of the required simulation time to obtain relevant statistics. Therefore, the analysis
and discussions of the results are mainly focused on these two quantities.

The Chapter 8 gathers the different test cases investigated during the thesis. A particular at-
tention has been devoted to bluff body flows. The computational domains used for numerical
simulations are described as well as main numerical parameters.

The final Chapter aims to expose the different results for the transient duration and the simu-
lation time estimations. These results are discussed and analysed to possibly highlight further
improvements of the methodology. Moreover, the different choices made in the methodology
are validated and justified. Finally, the results obtained by the User-Defined Function are sen-
sitively the same as those obtained with the C and Matlab implementations. Hence, only the
results obtained by an a posteriori computation are presented for the sake of visibility.
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8 Description of test cases

The first chapter of the discussions and validations aims to introduce the different test cases
employed for the further investigations. The choice of a dedicated chapter to gather the cases
is considered advantageous compared to a mix of descriptions and results since the validations
are investigated by themes.Hence, results for different cases can be cited in multiple sections.

For each test case, an overview of the flow type as well as a description of the numerical pa-
rameters of interest are given. In particular, the turbulence modelling, the numerical settings
and the grids or setup issues are provided and justified.

Finally, it has been chosen to investigate particularly the bluff body flows. They are charac-
terised by a strong separated flow and an unsteady wake. Even if highly unsteady, the wake
downstream of the body is characterised by a periodic and asymmetric vortex shedding known
as the von Karman vortex street. It is therefore expected that the lift force has a fluctuating
behaviour. The vortex street frequency f is commonly described by the non-dimensional
Strouhal number

St =
f L
|U∞|

, (8.1)

where L is a characteristic length of the geometry e.g the diameter for a cylinder of rather
csinα for an airfoil at angle-of-attack α .

8.1 General considerations

In the formula one context, modelling turbulent flows as accurately as possible is of a paramount
importance. The unsteady pattern of the flow in Formula 1 racing therefore leads to simula-
tions that are very computational resources consuming. The resolution of numerous turbulent
scales needs small time steps. A wide range of turbulence models exist and it is increasingly
clear that the model should be chosen in line with the classes of flows that are investigated.
Although today’s CFD simulations are mainly performed with (Usteady) Reynolds-Averaged
Navier-Stokes (U)RANS turbulence model, it is not suitable for the present application. In-
deed, it is shown by experience that these models do no provide enough information of the
frequency content of the flow, even with a very small grid resolution. It is actually a direct con-
sequence of the RANS averaging procedure that acts as a "filter of turbulence" in the velocity
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field. In the specific case of bluff bodies flow, the latter is globally unstable and is characterised
by the apparition of a «new »turbulence downstream of the body. RANS models usually pro-
vide poor results for that typical flows as they only highlight the main frequency contribution
to the flow i.e the pseudo-periodic vortex shedding downstream of the body. However, ex-
periences (see Figure 5.1) rather show a broadband turbulence spectrum with an additional
periodic contribution (represented by a peak in a frequency spectrum). Therefore, it can be
concluded that RANS formulation is not an optimal choice to solve turbulence in the Formula
1 context.

The need for additional knowledge on the flow frequency content that RANS model cannot
provides motivates the use of Scale-Resolving Simulation (SRS). In those models, only cer-
tain scales of turbulence are resolved e.g the Large Eddy Simulation (LES) model resolves
the largest turbulence scales. This model is particularly suitable for free shear flows as the re-
solved scales are of the order of the shear layer thickness. However, for wall boundary layers
flows the turbulence length scale decreases strongly near the wall and becomes small com-
pared to the boundary layer thickness. This effect is increasingly noticeable as the Reynolds
number increases. Therefore, LES model can become outside of the possible in an academic
context (and even for most of the computer power available in industry). Hence, the choice of
turbulence model that is considered in the following is an hybrid model which combines large
eddies resolution far from the wall and RANS in the wall boundary layer.

ANSYS fluent provides different hybrid models as for instance Detached Eddy Simulation
(DES) or Scale-Adaptive Simulation (SAS). From those two other more specific models have
been developed such as the Delayed Detached Eddy Simulation (DDES), the Shielded De-
tached Eddy Simulation (SDES). In the following, DDES have been considered.

8.1.1 Meshing requirements

The choice of an hybrid model of turbulence directly influences the grid refinement. Indeed,
the attached flow regions are solved in RANS while detached regions away from walls are
resolved in LES. Therefore, the grid should be of RANS quality inside the boundary layer and
of LES quality far from walls.

Different guidelines for the RANS grid have been considered. First, a value of y+ ≈ 1 at the
wall is required which directly influences the first cell thickness. Then, the whole boundary
layer is covered by a high grid resolution : typically 15 structured cells in the boundary.

Regarding the LES grid zones, a first approximation of the mesh resolution can be obtained
under some assumptions. For a bluff body of characteristic length D, the largest relevant
scales are assumed to be of the same order as the this instability zone. Experiences provide
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the following guideline for the maximum cell size [25] :

∆max ≤ 0.05D (8.2)

which roughly corresponds to more than 20 cells per characteristic length D. Moreover, cells
with high aspect ratio are avoided as possible.

8.2 Case 1 : NACA0012 airfoil in deep stall

The first test case is the three-dimensional flow around a symmetric NACA0012 airfoil at
angle of attack α = 60◦ and a Reynolds number Rec = U∞c/ν = 2.7× 105 with a chord of
1m and air standard condition. The NACA airfoil is symmetric and characterised by a 12%
thickness-to-chord ratio (see Figure 8.1). Several studies have already investigated this test
case which makes it easy to compare and verify (see Spalart et al. [35] or Mockett [26]).

ex

ey

Figure 8.1: Schematic representation the geometry and coordinate system for NACA0012 test case.
The vectors ex and ey are orthonormal vectors.

The computational grid is a C-topology with the origin coordinate system at the profile nose.
The far field domain boundary is located at a distance 10c upstream and 20c downstream
the airfoil and expanted of 1c in the spanwise direction. The NACA is treated as a no-slip
wall condition. The grid is fine enough in the boundary layer to ensure the condition y+ < 1
during the whole simulation (see Figure 8.2). The time step is fixed to ∆t = 0.0025c/U∞ as
preconised by [26]. It gives a Courant number of CFL∼ 0.7 inside de boundary layer and CFL
∼ 1 in the major part of the unsteady wake. Finally, the simulation has been performed during
T ∗ = TU∞/c ≈ 600 i.e around N = 27000 time steps and hence represents a large statistic
sample.
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Figure 8.2: Computation grid for the NACA 0012 test case. A zoom is realised near the airfoil.

8.3 Case 2 : Flow past a triangular cylinder

The second test case is the two-dimensional flow around a tryangleand a Reynolds number
Rec =U∞c/ν = 2×106 with a edge of 1m and air standard condition. The triangle is equilat-
eral.

Figure 8.3: Computation grid for the triangular cylinder test case. A zoom is realised near the cylinder.
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9 Demonstrations and analysis

In Chapter 6, the methodology to estimate the initial transient and the required simulation time
has been completely described. The different choices of implementation have been summa-
rized. Finally, in Chapter 8 have been collated the different test cases considered to analyse
the robustness and the acuity of the algorithm.

In the present chapter, each individual section is devoted to a particular topic and is based on
multiple test cases. This is why a dedicated chapter for the test cases description has been
favoured. The results are wanted to be presented in chronological order i.e in the same order
as in a numerical simulation. Hence, the first section is dedicated to the transient detection
while the second one is dedicated to the required simulation time. Each section is then divided
into subsections that investigate a different topic and introduce discussions.

9.1 Initial transient estimation

9.1.1 General results

The different test cases allow to investigate different fluid flows. The NACA0012 test case
corresponds to highly separated flow in the downstream with an unsteady wake. Therefore, a
superposition of a nominally periodic shedding of large scale and of a finer random turbulent
fluctuations is expected. There is an energetic contribution for lowest frequencies as well as
an energetic contribution in the neighbourhood of the shedding frequency. As far as the trian-
gular cylinder is concerned, even if it is not the most relevant test case in the F1 framework,
it enables to investigate the capabilities of the methodology for highly periodic flows which
require a certain time to develop and reach a periodic oscillation almost constant in amplitude.

The results provided by the methodology are in line with the visual expectations for every test
cases (above graphs in Figures 9.1, 9.2). Regarding the deep stall airfoil, an initial transient
around t∗t ≈ 78.5 is computed. It approximately corresponds to the duration required for
the fluid flow to become independent of the initial condition (uniform free stream velocity).
Therefore, it gives confidence in the validity of the implementation. For the triangular test
case, an initial transient of t∗t ≈ 42 is found. This duration corresponds to the time needed
for the flow to settle down and for the periodic vortex shedding to reach an almost constant
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amplitude. Therefore, it is satisfactory to see that the capabilities of methodology can be
extended to periodic flows even with a white noise scaling.
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Figure 9.1: Time trace of the integrated sectional lift coefficient CL (above) as a function of the non-
dimensionalised time t∗ = t(|U∞|/c) with c the chord and |U∞| the free stream velocity.
Variation of the product Π(t∗0) highlighting the minimum at t∗t (mid). Prediction of the
transient estimate as a function of the sample length (below). The data set is truncated as
0≤ t∗ ≤ 500.

The middle graph in Figure 9.1 shows some spurious discrepancies in the product Π(t∗0) for
t∗0 increasing i.e when the signal is highly shortened. Indeed, the shorter the sample, the less
windows are available for the estimation of the statistical error. Hence, the results become
less accurate and can lead to totally wrong values for a t∗0 tending to T ∗. It justifies therefore
the truncation of the interval in which t∗t is computed i.e t∗0 ∈ [0;T ∗/2]. However, a smooth
and continuous increasing shape after the transient duration can be observed for the triangular
cylinder (see mid Figure 9.2). This is probably due to the «smoothness»of the signal itself.
Indeed, for a deep stall airfoil, the lift coefficient has a strong noisy pattern due to the broad-
band contribution in the unsteady wake. As far as the triangular cylinder is concerned, the
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lift coefficient is strongly periodic and weakly noisy. This double contribution in the NACA
lift coefficient can therefore influence the curve fitting parameter and therefore the product.
Hence, in the framework of the formula 1 with strongly noisy signals, the truncation with an
upper limit T ∗/2 is justified and even more : it is recommended.

−0.5

0

0.5

t∗ [-]

C
l

[-
]

t∗0/2

t∗t

t∗t

1

2

3

t∗0 [-]

Π
(t
∗ 0
)
×

10
5

[-
]

0 50 100 150 200 250 300 350 400
0

20

40

T ∗ [-]

t∗ t
[-

]

t∗t = T ∗/2

Figure 9.2: Time trace of the sectional lift coefficient Cl (above) as a function of the non-
dimensionalised time t∗ = t(|U∞|/c) with c the chord and |U∞| the free stream velocity.
Variation of the product Π(t∗0) highlighting the minimum at t∗t (mid). Prediction of the
transient estimate as a function of the sample length (below).

An insight of the robustness of the methodology can be obtained by the time evolution of the
estimated transient duration (below graphs in Figure 9.1 and 9.2). The shape of the curve
t∗t (T

∗) is the same for both test cases. The transient duration initially varies linearly with
the simulation time with a slope corresponding to the upper limit of the truncation interval,
namely t∗t = T ∗/2. It was expected since the initial transient corresponds to the minimum
of Π(t∗0). After that, the estimation drops to a lower value and then remains almost constant
during several time units. This first plateau extends from T ∗ ≈ 60 to T ∗ ≈ 125 for the airfoil
and from T ∗ ≈ 27 to T ∗ ≈ 45 for the cylinder. It is interesting to notice that the plateau
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always contains the final estimation for the initial transient. For the sample length values
in the neighbourhood of the first plateau, the signal is almost totally composed of the initial
transient. Hence, the methodology cannot distinguish the transient pattern to the following
steady state signal. This also means that the product Π is a decreasing function before the
lower limit of the first plateau. Then, the product is an increasing function and reaches a local
maximum since its minimum corresponds to a lower value than T ∗/2.

9.1.2 Additional constraint on the initial transient

The first plateau that occurs in the transient duration estimation as a function of the simulation
time can be a dramatic issue since it yields to a highly underestimated value of the initial
transient. Therefore, an additional constraint or information is required to assess the numerical
convergence to the actual asymptotic value of tt . The first point of the following has been
implemented in the UDF while the two last are let as a further improvement.

Lower limit for the initial transient

In unsteady simulations, the flow requires some time to settle into a statistically stationary
state. Indeed, the resolved turbulence must first develop itself and then be transported through
the fluid domain. Therefore, the strategy adopted to avoid a convergence toward an underes-
timated value as in Figure 9.1 and 9.2 is based on physical and dimensional considerations.
However, the initial transient is highly dependent of the flowfield and this strategy must be
considered as a rule of thumb and not as a general guideline.

A first guess of the initial transient tt can be obtained by estimation of the throughflow time,
denoted tT F . It corresponds to the required time for the mean flow to pass through the fluid
domain. Therefore, by dimensional analysis, if LT F is the length of the domain and U∞ the
upstream velocity it yields :

tLF =
LT F

U∞

. (9.1)

In practice, the transient duration (even if highly case specific) corresponds to a rough estimate
of 3-5 throughflow times [25]. Hence, the initial transient should be at least greater than tLF .

For instance, regarding the high angle-of-attack airfoil simulation introduced in the previous
chapter, a fluid domain of length LT F = 30c is used with c the chord and a free stream velocity
U∞. In terms of the non-dimensionalized time it yields :

ct∗T F
U∞

=
30c
U∞

→ t∗T F = 30. (9.2)

Therefore, by means of this first guess the first plateau at t∗t = 20 in the curve t∗t (T
∗) is judged

to be unreliable and the only remaining acceptable converged value of the transient duration

85



CHAPTER 9. DEMONSTRATIONS AND ANALYSIS

0

20

40

T ∗ [-]

t∗ t
[-

] t∗t = T ∗/2

Figure 9.3: Time trace of the initial transient estimation for the triangular cylinder. Every time vari-
able is non-dimensionalised as T ∗ = T (|U∞|/c) with c the chord and |U∞| the free stream
velocity.

is the actual one t∗t = 78.5.

The same rule can be applied for the triangular cylinder which gives t∗T F = 20. Hence, for
every test cases, this rule of thumb provides satisfactory results. An additional advantage that
can be obtained with this strategy is to reduce the number of numerical operations needed to
estimate tt . Indeed, if the rule of thumb is assumed to be verified, the operations to find tt(t)
for t < tLF becomes not relevant and not necessary.

However, there is no certitude of this real dependence between the transient duration and the
fluid domain. In particular, a very short domain does not insure a very short transient duration.
Additional tests are then required as well as additional information about the fluid flow.

Additional aerodynamic quantity

An additional constraint has to be imposed for the transient duration to be able to catch nu-
merically the convergence toward the actual asymptotic value. In the present methodology, the
transient duration is estimated by means of statistical considerations for the lift coefficient. In
particular, the transient duration corresponds to the minimum in the product of the statistical
errors for both mean and standard deviation estimates. However, there is no certitude for this
quantity to be the most relevant. After investigations, it appeared that the drag coefficient does
not provide any additional information (see Figure 9.3).

Interesting quantities could also be those that would be zero for RANS simulation e.g span-
wise forces since they are influenced by a scale resolution. Moreover taking into account the
symmetry of the flow, they should oscillate around zero.
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Continuously transient estimation

As soon as the transient estimate is assumed to have converged, the data sampling and the
time statistics are triggered. Therefore, another option can be to continuously estimate the
transient duration and allow a reset of the statistics if the transient estimate appears not to
be the final one. Practically, the data sampling would be triggered as soon as the simulation
reaches the first plateau. Once the latter reaches the second, and definitive one, the statistics
are reset and then resume starting from 0. Even if this solution can be more costly in terms of
time a priori, it allows to estimate the actual transient duration without any rule of thumb or
additional aerodynamic quantity.

9.1.3 Time needed to estimate tt

The methodology requires a certain time to estimate the transient duration, typically around
2tt . This is a direct consequence of the truncation of the shortening variable t0 in the interval
[0; 0.5T ]. Therefore, a legitimate question would be to know if this truncation is highly con-
servative or on the contrary, highly necessary.

In Figure 9.4 are represented the initial transient estimation of a triangular cylinder for dif-
ferent upper limits of the truncated interval, namely 0.5T , 0.7T and 0.9T . The first linear
variation of tt is clearly seen for every truncations and the slopes correspond to every upper
limit of the interval considered. While 0.7T and 0.5T curves are maximum at the transient
duration, 0.9T reaches a higher value before converging to the asymptotic tt . In the end, both
curves 0.7T and 0.9T reach the asymptotic value almost at the same time (≈ 1.3t∗t ).
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Figure 9.4: Time traces of the transient duration estimates of the triangular cylinder test case for dif-
ferent upper limits of the truncated interval for t∗0 .
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Regarding the smoothness of the time traces, as soon as the latter have converged, additional
oscillations are seen for larger upper limits as expected. Indeed, the larger the upper limit the
lower the number of available windows to estimate the transient duration for large t0.

More interestingly, the width of the first plateau decreases with the upper limit increasing.
Hence, an evaluation of tt for different upper limits at a same T ∗ could be a solution to the
first plateau issue. Indeed, it can be assumed that if a plateau is noticed numerically for a low
upper limit, then it should be noticed by a upper limit to confirm it. Regarding Figure 9.4,
both curves 0.5T and 0.7T experience a plateau for T ∗ ≈ 30 but not 0.9T . Therefore, the first
plateau could be treated as a numerical issue and not as an actual convergence.

9.1.4 Importance of the moving average filter

As introduced in Chapter 6, a moving average filter is applied to the statistical error to over-
come some numerical oscillations due to the windows averaging. This choice appeared to
be fundamental in terms of robustness and accuracy. The smoothness of the statistical error
had led to a better curve fitting parameter estimation and therefore a more accurate and robust
estimation of the initial transient.

To highlight these improvements, the evolution of the initial transient and the product Π are
represented with and without the filter in Figure 9.5. It can be seen that even if the asymptotic
value for tt is almost the same between the filtered and the non-filtered transient estimation,
some important oscillations occur when the statistical error is not filtered. This is a direct
consequence of the fact that the product Π is greatly noisy (above graph Figure 9.5). That
is, the minimum corresponding to the initial transient can be affected if a spurious oscillation
is interpreted as this minimum. The same phenomenon can be highlighted for the other test
cases.

These oscillations in the product may be due to the uniqueness windows generation introduced
in Chapter 6 which reduces the number of windows. However, it has been judged advanta-
geous in terms of computation time to favour this method and then apply a moving average
filter. Indeed, the number of windows influences a lot more the computation time than the sin-
gle loop required to filter the data. In other words, it is privileged to consider less information
(less windows) which yields less accuracy and then filter the signal. To quantify and reinforce
this choice, after numerous tests1, it appeared that the windows average process represents
70% of the the total computation time while the filtering only 4%.

1The different tests have been performed with the tool Run and Time implemented in Matlab. It allows to
quantify the time spent in each line of code and therefore highlight the most consuming part of the algorithm.
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Figure 9.5: Comparison of the product Π(t∗0) of the statistical errors on the mean and the standard
deviations estimators (above) and of the transient estimation (below) for the filtered sta-
tistical errors (blue) and non-filtered (black). The time axis is non-dimensionalised as
T ∗ = T (|U∞|/c) and t∗0 = t0(|U∞|/c) with c the chord and |U∞| the free stream velocity.
The data is truncated as 0≤ t∗ ≤ 500.
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9.2 Required simulation time estimation

The required simulation time te is computed as the time necessary to reach a pre-defined sta-
tistical accuracy εtol. However, obtaining accurate estimates can require a large statistical
sample. In the framework of a highly computationally expensive turbulence-scale resolving,
it is therefore also relevant to quantify the error bar on a statistical quantity if only a limited
number of time-steps are executed. Indeed, as it has already been described in the beginning
of the chapter, the lift coefficient of a deep airfoil is noisy and a long time samples can be
required to obtain an accurate mean.

In Figure 9.6 are represented the truncated sectional lift coefficient (above) for the NACA
airfoil, the time evolution of the curve fitting parameter (middle) and finally the evolution of
the sampling window as a function of the predefined tolerance. It can be seen that even with the
noisy nature of the signal, the curve-fitting parameter converges rapidly : ≈ 170 convective
units that corresponds to roughly 90 additional units after the initial transient. From this
parameter the required simulation time can be estimated by :

t∗e =

(
σ̂CL

µ̂CL

)2 4.55
ε2

tol
× 1

1002 , (9.3)

where the factor 1/1002 is due to the fact that the coefficient of variation ε is normalized and
thus expressed in percent.

Furthermore, it can be seen in the graph below in Figure 9.6 that a window sampling of 300
convective units is required to reach a statistical accuracy of the order of 10−4. However, the
solution seems to be already known to the second decimal after the transient duration since the
sampling window is really small. As far as the triangular cylinder is concerned, the truncated
signal (free of any initial transient) is almost purely periodic with small variations of amplitude
and additional noise due to the numerical resolution (above graph in Figure 9.7). The curve
fitting parameter requires more time to converge to its asymptotic value. Therefore, more time
is required to estimate the simulation time te. In addition, it can be seen in the graph below
in Figure 9.7 that a larger sampling window is required to reach a same accuracy compared to
the NACA test case. This can be explained by the incapability of the methodology to handle
purely periodic signals (section 4.3.2). In particular, the overestimation of the statistical error
results in an overestimation of the required simulation time.

9.2.1 Importance of the statistical error scaling

As shown in Figure 9.7, the truncated signal for the triangular cylinder is strongly periodic.
Given that the required simulation time is estimated by means of the statistical error, the
white-noise scaling highly overestimates te (see Figure 9.8). It highlights the important im-
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Figure 9.6: Time trace of the integrated sectional lift coefficient CL (above) as a function of the non-
dimensionalised as t∗ = t(|U∞|/c) with c the chord and |U∞| the free stream velocity.
Variation of the product Π(t∗0) highlighting the minimum at t∗t (mid). Prediction of the
transient estimate as a function of the sample length (below). The data set is truncated as
0≤ t∗ ≤ 500.
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Figure 9.7: Time trace of the sectional lift coefficient Cl (above) as a function of the non-
dimensionalised as t∗ = t(|U∞|/c) with c the chord and |U∞| the free stream velocity.
Variation of the product Π(t∗0) highlighting the minimum at t∗t (mid). Prediction of the
transient estimate as a function of the sample length (below).
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provements that are made due to the new mathematical model introduced in Chapter 5. Indeed,
the statistical error for the triangular cylinder is firstly influenced by the periodic contribution
and then by the additional noise generated by the DDES model. The scaling with the param-
eters f0 = 14 [Hz] and β ∗ = 0.1388 provides a good agreement between the mathematical
model and the statistical error. As expected, the bandwidth ratio β ∗ is smaller than the unity
which is characteristic of a strong periodic contribution.
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Figure 9.8: Time evolution of the statistical error on the mean estimator of the lift coefficient for the
triangular cylinder test case (black). The signal is freed of any initial transient. Both white
noise scaling (orange) and the new mathematical model (blue) are represented.

It can then be seen that a huge gain of accuracy is achieved. To quantity this improvement, the
difference between the estimated required simulation time for both scaling can be computed
as :

∆ |t∗e − t∗t |= |t∗e − t∗t |wn−|t∗e − t∗t |new (9.4)

= σ̂
2
CL

1
2ε2

tol

(∣∣∣∣
1

Bwn
− 1

Bnew

∣∣∣∣
)

where Bwn and Bnew are respectively the curve fitting parameter of the white noise scaling
and of the new mathematical model. For the white noise scaling, the parameter is equal to
29.89 while for the new mathematical model it is equal to 297. For instance, considering a
pre-defined error of 10−2, the difference in required simulation time is thus in the order of 25
convective units i.e more or less half of the initial transient.
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10 Conclusions and perspectives

This work aimed to present a robust algorithm to monitor unsteady CFD simulations. In
particular, a methodology to estimate the initial transient has been introduced as well as an
estimation of the required simulation time to reach reliable statistics. The algorithm is based
on statistical considerations and especially on the statistical error encountered by a point esti-
mator. In the present thesis, the statistical error has been evaluated on the mean and standard
deviation estimators of the lift coefficient. This statistical error has been evaluated as a func-
tion of the running time to be able to monitor a numerical simulation. In particular, the algo-
rithm has been implemented as a User-Defined function in the CFD software ANSYS Fluent.
Moreover, by means of analytic formulas, a prognosis of this error has been derived. For that
purpose, the first part of the thesis has been dedicated to the literature review. It aimed to pro-
vide a complete summary of the main tools and concepts used throughout the manuscript. In
the part 2 has been described the complete algorithm to detect the initial transient and estimate
the required simulation time. Finally, the third part was dedicated to the discussions and the
validations of the implementation for several test cases. Beyond the numerical implementation
of the algorithm, this thesis has studied the influence of the frequency content on the statistical
error and has open the doors to a wide field of investigations. Therefore, in the following are
summarized the main findings and outcomes of this thesis.

10.1 Summary of findings and major outcomes

The major outcomes and findings of the thesis are wanted to be summarized in a concise way.
References to the different relevant sections of the thesis are made to ease the reader to obtain
more details.

In Chapter 4 has been introduced and reproduced a previous work to compute/prognosis the
statistical error and estimate the initial transient. This methodology is based on a combination
of windows averaging of a time series and a white-noise scaling to prognosis the statisti-
cal error (section 4.2.1). Furthermore, the initial transient of a numerical simulation has been
estimated by shortening the sample to make the transient totally disappear. By means of an ad-
equate criterion, it has yielded a robust algorithm of initial transient detection (section 4.2.2).
However, this methodology has presented some limitations regarding the periodic flows. In
particular, the white-noise scaling appeared to strongly overestimate the statistical error of this
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particular kind of flow. Indeed, while the statistical error of a white noise varies as 1/
√

t, the
one of a periodic flow varies as 1/t (section 4.3.2).

Directly influenced by the above outcomes, the Chapter 5 has been dedicated to an analysis
of the influence of the frequency content on the statistical error. The starting point of this
idea has been to notice that the white-noise and the sine wave were totally opposed regarding
their spectral content (section 5.3). Indeed, a white-noise is characterised by a uniform power
spectral density while the sine wave has a Dirac impulsion as frequency spectrum. Based on
this observation a mathematical model has been introduced allowing to model, in the limit,
both ends of the frequency domain. That is, a rational function has been considered as power
spectral density whose shape presents a peak centred in a frequency f0. In particular, a band-
width parameter β has been defined to control the acuity of the peak. In that way, a large β

leads to a pseudo white-noise while a small β leads to a pseudo sine wave (section 5.4.2). In
the end, this mathematical model has been able to reproduce the statistical error of signal with
both a periodic and a broadband contributions.

In the Chapter 9 the discussions and validations of the implementation have been collated for
different test cases . The methodology has provided satisfactory results and an interesting
robustness. In particular, the methodology to estimate the initial transient has allowed to
handle noisy as well as periodic flows, which was not a certitude regarding the limitations
of the statistical error estimation. Regarding the required simulation time, a non-negligible
improvement has been made on the estimation by introducing the new mathematical model.

10.2 Closing comments and perspectives

The perspectives for this thesis are multiple, challenging and above all, motivating. In the one
hand, the idea to obtain a robust, efficient and more complete algorithm to detect the initial
transient should definitely be further investigated given its great utility. In particular, the im-
plementation of this kind of methodology in an industrial software such as ANSYS Fluent
could be highly valuable for any user which performs unsteady simulation. On the other hand,
this master thesis has introduced a beginning of analysis regarding the intrinsic relationship
between frequency content and statistical error. This piece of insight suggests that a more
complete and rigorous analyse can be made and that rigorous mathematical links exist be-
tween both entities.

As far as the transient detection algorithm is concerned, the latter is obviously perfectible.
In the section 9.1.2 the issue of a first plateau in the evolution of the transient estimation
has been highlighted . This issue has been overcome numerically by imposing an additional
constraint taking into account the throughflow time required for the turbulence to pass one time
through the fluid domain. This constraint is a rule of thumb and not a rigorous mathematical
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condition. Therefore, an other option should be considered to assess the relevant convergence
of the transient duration.
Several tracks of answer can be enumerated :

i. The initial transient algorithm could be applied continuously during the simulation to
allow a reset of the statistics if the transient duration considered appears not to be the
asymptotic value ;

ii. Other quantities of interest could be used to check and validate or note the estimated
transient duration. In particular, in the case of an airfoil for instance, the spanwise forces
are expected to be null for a RANS simulation and are thus dependent on the scale
resolving model. Furthermore, they should oscillate around zero. Hence, they could
provide an additional information to estimate the initial transient. Monitoring points
could also be considered to investigate different variables along the time at specified
relevant position e.g the analysis of the instantaneous pressure or velocity in the wake
downstream of a bluff body.

In general, a methodology gains in credibility with the number of cases investigated. Hence,
additional test cases should be considered to better highlight the capabilities and the limita-
tions of the implementation.

Regarding the analysis of the relationship between frequency content and statistical error, the
field of possibilities seems infinite given the links between every quantity : power spectral
density, autocorrelation function, statistical error, time series etc. The mathematical model in-
troduced in Chapter 5 should therefore be considered as a small piece of a much larger puzzle.
In particular, a better understanding of the statistical error could perhaps, in the end, help to
express the input time series as a rigorous sum of a pseudo-periodic signal and an additional
noise. Indeed, it has been shown that the shape of statistical error is directly influenced by the
presence or not of a periodic content. Therefore, by means of a scaling with the parameters
β ∗ and f0 it should be possible to clearly highlight the two contributions. Following the same
philosophy, an investigation of the noise due to the numerical integration could be feasible. In
particular, an expression for the signal-to-noise ration could be deduced.
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