Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 69 | DOWNLOAD 576

Master's Thesis : Audio frame reconstruction from incomplete observations using Deep Learning techniques

Schils, Minh ULiège
Promotor(s) : Embrechts, Jean-Jacques ULiège
Date of defense : 7-Sep-2020/9-Sep-2020 • Permalink : http://hdl.handle.net/2268.2/10138
Details
Title : Master's Thesis : Audio frame reconstruction from incomplete observations using Deep Learning techniques
Author : Schils, Minh ULiège
Date of defense  : 7-Sep-2020/9-Sep-2020
Advisor(s) : Embrechts, Jean-Jacques ULiège
Committee's member(s) : Van Droogenbroeck, Marc ULiège
Louppe, Gilles ULiège
sarti, Augusto 
Language : English
Keywords : [en] audio inpainting
[en] deep learning
Discipline(s) : Engineering, computing & technology > Computer science
Complementary URL : https://ced211.github.io/
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] In this thesis, we tackle the problem of restoring an audio frame given the
preceding and subsequent one, e.g. audio inpainting, and extend our proposed
solution to the prediction of an audio frame given the last one. We
consider frames of 64 and 128 milliseconds. The proposed solution combines
a signal processing pipeline with a Generative adversarial network (GAN).
Using as input the absolute value of the STFT of the surrounding frames, the
network is able to retrieve the STFT magnitude corresponding to the gap
frame. By applying the Griffin-Lim Algorithm, we are then able to estimate
also the STFT phase and finally through the inverse STFT to reconstruct
the missing audio frame. We compare our method, considering as baseline a
Linear predictive coefficient (LPC) technique. The proposed solution shows
encouraging results with respect to the baseline both for inpainting and prediction.
It outperforms the baseline in term of Signal to noise ratio (SNR)
on the magnitude spectrum and performs equally well or better in term of
the Objective difference grade (ODG) which is a measure used tu assess the
perceived audio quality. Since the phase of the STFT can be only approximately
reconstructed through the Griffin-Lim Algorithm, the baseline shows
better performances in terms of audio SNR. We further show the model generalization
ability, by training and testing on two different types of music
datasets.


File(s)

Document(s)

File
Access report.pdf
Description:
Size: 4.22 MB
Format: Adobe PDF

Annexe(s)

File
Access code.zip
Description:
Size: 84.47 MB
Format: Unknown
File
Access page_web.zip
Description:
Size: 9.52 MB
Format: Unknown

Author

  • Schils, Minh ULiège Université de Liège > Master ingé. civ. info., à fin.

Promotor(s)

Committee's member(s)

  • Van Droogenbroeck, Marc ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • sarti, Augusto
  • Total number of views 69
  • Total number of downloads 576










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.