Master's Thesis : Ensemble methods applied to electricity demand forecast
Leroux, Camille
Promoteur(s) :
Ernst, Damien
Date de soutenance : 7-sep-2020/9-sep-2020 • URL permanente : http://hdl.handle.net/2268.2/10462
Détails
| Titre : | Master's Thesis : Ensemble methods applied to electricity demand forecast |
| Auteur : | Leroux, Camille
|
| Date de soutenance : | 7-sep-2020/9-sep-2020 |
| Promoteur(s) : | Ernst, Damien
|
| Membre(s) du jury : | Théate, Thibaut
Manuel de Villena Millan, Miguel
Mathieu, Sébastien
|
| Langue : | Anglais |
| Nombre de pages : | 39 |
| Mots-clés : | [en] energy [en] forecast [en] nomination [en] day-ahead [en] machine learning [en] stacking [en] predictions [en] ensemble method [en] electricity |
| Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
| Institution(s) : | Université de Liège, Liège, Belgique |
| Diplôme : | Master en sciences informatiques, à finalité spécialisée en "intelligent systems" |
| Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] This work studies performances of an ensemble method approach based on stacking to forecast energy demand in order to get day-ahead nominations for industrial consumer. This ensemble method's study is conducted with four different models as meta learner, with five learning algorithms as base models. Model training and evaluation are done using historical data composed of one full year meter measurements. This study shows that despite being widely used, ensemble methods need refinement to claim better results than a naive algorithm alone on the case study considered in this work. Summing seasonal naive predictions is the most naive setup evaluated in this work and it shows better performances than almost all other tested methods. However, the best one seems to be the combination of WaveNet as base learner as well as meta learner. Overall, this WaveNet aggregator achieves good performances whatever the base learner we chose to use and except in the seasonal naive case it outperforms any base/meta model combination we tested in this work.
Fichier(s)
Document(s)
Ensemble_methods_applied_to_electricity_demand_forecast.pdf
Description: -
Taille: 10.4 MB
Format: Adobe PDF
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.

Master Thesis Online

