Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 60 | DOWNLOAD 0

Master's Thesis : Design of a stabilisation mechanism enabling compensation of parasitic accelerations due to oscillations and vibrations of a motorised multi-directional system

Télécharger
Boulanger, Alice ULiège
Promoteur(s) : Vanderbemden, Philippe ULiège
Date de soutenance : 7-sep-2020/9-sep-2020 • URL permanente : http://hdl.handle.net/2268.2/10477
Détails
Titre : Master's Thesis : Design of a stabilisation mechanism enabling compensation of parasitic accelerations due to oscillations and vibrations of a motorised multi-directional system
Titre traduit : [en] Design of a stabilisation mechanism enabling compensation of parasitic accelerations due to oscillations and vibrations of amotorised multi-directional system
Auteur : Boulanger, Alice ULiège
Date de soutenance  : 7-sep-2020/9-sep-2020
Promoteur(s) : Vanderbemden, Philippe ULiège
Membre(s) du jury : Kleinberg, Gregory 
Vanderheyden, Benoît ULiège
Collette, Christophe ULiège
Langue : Anglais
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie électrique & électronique
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] The aim of this master thesis consists in pursuing a camera stabilization project for Manakeen where the internship was completed. This project consists in stabilizing a camera utilising an inertial stabilized platform, the gimbal, actuated in three degrees of freedom. The primary goal of the thesis was to finish the theoretical design of the stabilization control system of the gimbal on which is fixed a camera. To initiate the design of the control system, the dynamic behaviour of the gimbal had to be established. For this purpose, research was carried out to find the correct and accurate modeling of the gimbal behaviour. Different methods were tried to find the equations of motion describing the gimbal behaviour. First the gimbal was divided in three independent mechanical subsystems of one or two degrees of freedom. However the coupling between the different subsystems could not be neglected. Then it was try to apply the Euler’s equations to the whole gimbal. Nevertheless it was not correct to consider the gimbal as one solid submitted to torques originated from each of the three axes of rotation. Finally the Lagrange method was applied. This method proved to be the most accurate to derive the equations of motion of the gimbal. By developing Lagrange method it was found that each rotation of the gimbal was expressed in coupled equations. At first these equations were linearized around a fixed position and implemented on Matlab and Simulink. Then the time and frequency response of the system in open loop were simulated and analysed on the software. Based on these results a simple control system design of the gimbal was analysed on Simulink. These results were considered as the basis for the implementation of a more accurate modeling of the gimbal. The influence of the proportional, integrative and derivative action of a PID controller was discussed in the last section of the thesis.


Fichier(s)

Document(s)

File
Access TFE_Boulanger_Alice.pdf
Description:
Taille: 5.03 MB
Format: Adobe PDF

Annexe(s)

File
Access Abstract_TFE_Boulanger_alice.pdf
Description:
Taille: 618.92 kB
Format: Adobe PDF

Auteur

  • Boulanger, Alice ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promoteur(s)

Membre(s) du jury

  • Kleinberg, Gregory Koveria Group
  • Vanderheyden, Benoît ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
    ORBi Voir ses publications sur ORBi
  • Collette, Christophe ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace struct. and adv. mecha. systems
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 60
  • Nombre total de téléchargements 0










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.