Master's Thesis : Machine Learning Techniques for Money Laundering Detection
L'hoest, Julien
Promoteur(s) : Geurts, Pierre
Date de soutenance : 7-sep-2020/9-sep-2020 • URL permanente : http://hdl.handle.net/2268.2/10720
Détails
Titre : | Master's Thesis : Machine Learning Techniques for Money Laundering Detection |
Titre traduit : | [fr] Techniques d'apprentissage automatique pour la détection du blanchiment d'argent |
Auteur : | L'hoest, Julien |
Date de soutenance : | 7-sep-2020/9-sep-2020 |
Promoteur(s) : | Geurts, Pierre |
Membre(s) du jury : | Louveaux, Quentin
Marée, Raphaël Marcos, Alejandro |
Langue : | Anglais |
Nombre de pages : | 99 |
Mots-clés : | [en] money laundering [en] machine learning [en] imbalance problem [en] data generation [en] F1 score [en] outlier detection |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil en informatique, à finalité spécialisée en "management" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] Some economic phenomena have a significant negative impact on financial institutions. Money laundering is one of them. Money laundering is the processing of illicit funds into the financial system to make them appeared from legitimate sources. It is usually detected through rule based monitoring. Unfortunately, it does not exploit the potential of data. Machine leaning approaches learn automatically from data patterns that cannot be captured by rule-based ones. Money laundering in transaction logs are defined as an imbalance problem with regard to machine learning. The challenge is to detect few fraudulent transactions over a huge population which compose a financial database.
This thesis presents the design of a simulator for transaction data generation to answer to the lack of available data needed for machine learning algorithms. Then a theoretical research has been done in order to identify machine learning algorithm designed for classification problem with skew class distribution. The machine learning models which have been selected from this research are the Hellinger Distance Decision Tree (HDDT), the Isolation Forest (iForest), the One-Class SVM (ocSVM) and an approach based on successive hypothesis testing using the Fisher, George and Pearson methods.
These approaches have been tested over synthetic data from the simulator. The model with the highest F1 score is a Random Forest composing of fully expended decision trees using the Gini split criterion. The second best performing model was the Isolation Forest.
Fichier(s)
Document(s)
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.