Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 91 | DOWNLOAD 176

Application of modern machine learning techniques to the detection of micro-awakenings on a midsagittal jaw motion signal

Hockers, Pierre ULiège
Promotor(s) : Sacré, Pierre ULiège ; Geurts, Pierre ULiège
Date of defense : 22-Jan-2021 • Permalink : http://hdl.handle.net/2268.2/11239
Details
Title : Application of modern machine learning techniques to the detection of micro-awakenings on a midsagittal jaw motion signal
Translated title : [fr] Application de méthodes d'apprentissage machine modernes à la détection de micro-éveils dans un signal de mouvement de mâchoires.
Author : Hockers, Pierre ULiège
Date of defense  : 22-Jan-2021
Advisor(s) : Sacré, Pierre ULiège
Geurts, Pierre ULiège
Committee's member(s) : Louppe, Gilles ULiège
Drion, Guillaume ULiège
Beckers, Bernard 
Language : English
Number of pages : 66
Keywords : [en] AI
[en] Machine Learning
[en] Arousals
[en] Sleep Disorders
[en] Nomics
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Sleep Disorder Breathing are pathologies happening during sleep that can hurt its resting benefits and induce more damaging pathologies. The company Nomics has developed a sensor measuring the jaw motions which can be used to detect the micro awakenings that tend to happen after one of these SDBs. Modern machine learning methods will be explored to tackle this issue.


File(s)

Document(s)

File
Access TFE_Report_Final_Pierre_Hockers.pdf
Description: -
Size: 4.43 MB
Format: Adobe PDF

Author

  • Hockers, Pierre ULiège Université de Liège > Master ingé. civ. info., à fin.

Promotor(s)

Committee's member(s)

  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Beckers, Bernard Nomics
  • Total number of views 91
  • Total number of downloads 176










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.