Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 123 | DOWNLOAD 18

Object detection for waste sorting

Télécharger
Rumfels, Océane ULiège
Promoteur(s) : Louppe, Gilles ULiège ; Rebbouh, Leila
Date de soutenance : 24-jui-2021/25-jui-2021 • URL permanente : http://hdl.handle.net/2268.2/11486
Détails
Titre : Object detection for waste sorting
Auteur : Rumfels, Océane ULiège
Date de soutenance  : 24-jui-2021/25-jui-2021
Promoteur(s) : Louppe, Gilles ULiège
Rebbouh, Leila 
Membre(s) du jury : Boigelot, Bernard ULiège
Sacré, Pierre ULiège
Langue : Anglais
Nombre de pages : 65
Mots-clés : [en] object detection
[en] waste sorting
[en] waste classification
[en] detection benchmark study for waste sorting
[en] classification
[en] YOLO
[en] ResNet
[en] RetinaNet
[en] Faster R-CNN
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Public cible : Chercheurs
Professionnels du domaine
Etudiants
URL complémentaire : https://github.com/oceanerumfels/Object-detection-for-waste-sorting
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] As household waste increases, it becomes more and more important to sort and recycle. However European studies suggest that there is still an important part of incorrect sorting, and that many citizens could use an assistance of some sort. In the last few years, computer vision algorithms have been used to tackle this problem with high classification accuracies. However, fewer works required a sorting with more than six classes, as some features might become too difficult to distinguish. This thesis presents a comparative study of several object detection algorithms, for sorting of trash pieces following IDELUX's sorting directives and real-time constraints. IDELUX's dataset of 10050 waste images is divided into 12 classes. Some of those classes are very similar and with an important imbalance in the number of samples per class, this dataset presents a new challenge in the waste detection field. Four algorithms were specifically trained and tested in order to determine which architecture was the fittest to perform the task, whether it could be performed by a simple classifier, a one stage or a two stage detector. The proposed objects detectors are RetinaNet, YOLOv5 and Faster R-CNN, while the chosen classifier is a ResNet model. The models were evaluated on their accuracy, their mean average precision, their IOU, their inference time and their training time. For this specific project, ResNet outperforms all of the other models and achieves an accuracy of 90 \%. Overall, the results show that classification and detection algorithms are capable of tackling more complex waste sorting problems than the ones currently explored in the literature.


Fichier(s)

Document(s)

File
Access Rumfels_Oceane_Master_Thesis.pdf
Description:
Taille: 167.41 MB
Format: Adobe PDF

Auteur

  • Rumfels, Océane ULiège Université de Liège > Master ingé. civ. info., à fin.

Promoteur(s)

Membre(s) du jury

  • Boigelot, Bernard ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
    ORBi Voir ses publications sur ORBi
  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 123
  • Nombre total de téléchargements 18










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.