Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 141 | DOWNLOAD 14

Drone control through a vocal interface

Download
Bolland, Julien ULiège
Promotor(s) : Redouté, Jean-Michel ULiège
Date of defense : 24-Jun-2021/25-Jun-2021 • Permalink : http://hdl.handle.net/2268.2/11563
Details
Title : Drone control through a vocal interface
Author : Bolland, Julien ULiège
Date of defense  : 24-Jun-2021/25-Jun-2021
Advisor(s) : Redouté, Jean-Michel ULiège
Committee's member(s) : Louppe, Gilles ULiège
Embrechts, Jean-Jacques ULiège
Greffe, Christophe 
Language : English
Number of pages : 71
Keywords : [en] keywords spotting
[en] drone
[en] deep learning
[en] voice control
[en] cnn
[en] resnet
[en] attention
[en] rnn
[en] drone control
Discipline(s) : Engineering, computing & technology > Computer science
Funders : GeneriX
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en informatique, à finalité spécialisée en "management"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This work is an implementation of a voice interface used to control a DJI Tello drone. A signal processing part is used for the analysis of voice and a deep learning part allows the interface to "understand" the commands sent to the drone, through keyword spotting techniques. In order to extract information of the pilot's voice, spectrogram and MFCC are used as features. Deep learning models (convolutional neural networks (CNN), attention-based recurrent neural network (Att-RNN) and residual network (ResNet)) are trained over these features to classify a dataset of words. A regular language is also created to allow a codified communication between the pilot and the drone.

The dataset used in this work is the concatenation of an open-source one and a self-made one, where data has been gathered through volunteers on the web. In terms of prediction accuracy, ResNet and Att-RNN give the best results, respectively 95 % and 97 % in a non-noisy environment, and some tools are given to understand why a model predicts a particular command instead of another for the spectrogram feature.


In real life application, experiments have shown that a ResNet model trained on a quiet dataset and used with the MFCC feature gives the best results in quiet and noisy environments. Furthermore, the drone reacts almost immediately after the pilot has given the entire command, as a delay of less than 0.3 seconds is to be expected. The final interface is a graphical user interface working on a web browser.


File(s)

Document(s)

File
Access summary.pdf
Description: -
Size: 125.57 kB
Format: Adobe PDF
File
Access master_thesis_report.pdf
Description: -
Size: 3.13 MB
Format: Adobe PDF

Author

  • Bolland, Julien ULiège Université de Liège > Master ingé. civ. info., à fin.

Promotor(s)

Committee's member(s)

  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Embrechts, Jean-Jacques ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Techniques du son et de l'image
    ORBi View his publications on ORBi
  • Greffe, Christophe Generix
  • Total number of views 141
  • Total number of downloads 14










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.