Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 63 | DOWNLOAD 159
Vandenbroucke, Vincent ULiège
Promoteur(s) : Delvigne, Frank ULiège
Date de soutenance : 24-jui-2021/25-jui-2021 • URL permanente : http://hdl.handle.net/2268.2/11602
Détails
Titre : Optimal phenotypic switching model for bacterial populations under fluctuating environmental conditions
Auteur : Vandenbroucke, Vincent ULiège
Date de soutenance  : 24-jui-2021/25-jui-2021
Promoteur(s) : Delvigne, Frank ULiège
Membre(s) du jury : Toye, Dominique ULiège
Singh, Abhyudai 
Martinez Alvarez, Juan Andrés ULiège
Langue : Anglais
Nombre de pages : 70
Mots-clés : [en] Phenotypic heterogeneity
[en] Fluctuating environment
[en] Segregostat
[en] Modelling
Discipline(s) : Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Centre(s) de recherche : TERRA teaching and research centre
Public cible : Chercheurs
Professionnels du domaine
URL complémentaire : https://gitlab.uliege.be/mipi/standalone/vincent-master-thesis
https://gitlab.uliege.be/mipi/segregostat/segdata----python
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil biomédical, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] In a fluctuating environment, cell populations need to adapt to survive. There are several ways to achieve it, but in general cells take benefit from biological noise to switch to alternative phenotypes, leading to improved fitness in the new environment. This is a known phenomenon that gives rise to phenotypically heterogeneous populations, but the dynamics of the adaptation are still unclear.

Understanding those dynamics is key if one wants to control gene expression in bio-processes in general, but the literature on ways to reproduce population behaviours quantitatively in silico is still nascent; and if a few models are available, they have not been validated based on experimental data.

Therefore, in this work, an existing model was applied and improved to better fit experimental data obtained based on the use of high-throughput, automated, flow cytometry. In particular, a simple model derived from the general model developed by Thattai and Van Oudenaarden was applied to data representing populations of Escherichia coli growing under continuous cultivation conditions. The fluctuating environment for the population was based on a constant feed of glucose, but varying amounts of arabinose in the medium.

The existing model used basal stochastic switching to drive the population diversification. It was found insufficient to reproduce the observed data, and several possible new contributions to the model were therefore devised. Each one was considered independently of the others, thanks to a succession of models, each taking into account a different set of contributions, and fitted as well as possible to the data.

Eventually, it was found that several of those contributions could indeed improve the model for this particular case. Moreover, this work also sheds new lights on two important points that are likely applicable in most systems with heterogeneous cell populations: the growth rates of the different phenotypes need to be considered in details if the population is to be modelled correctly, and representing the switching mechanism adequately is likely often easier and more exact by simulating single cells with a stochastic behaviour, rather than using differential equations.


Fichier(s)

Document(s)

File
Access Vandenbroucke_Master_Thesis.pdf
Description: Master thesis
Taille: 6.02 MB
Format: Adobe PDF
File
Access Vandenbroucke_abstract.pdf
Description: Abstract
Taille: 156.39 kB
Format: Adobe PDF
File
Access Erratum_Vandenbroucke_Master_Thesis.pdf
Description: -
Taille: 14.01 kB
Format: Adobe PDF

Auteur

  • Vandenbroucke, Vincent ULiège Université de Liège > Master ing. civ. biomed., à fin.

Promoteur(s)

Membre(s) du jury

  • Toye, Dominique ULiège Université de Liège - ULiège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
    ORBi Voir ses publications sur ORBi
  • Singh, Abhyudai
  • Martinez Alvarez, Juan Andrés ULiège Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 63
  • Nombre total de téléchargements 159










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.