Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 33 | DOWNLOAD 0

Data Modeling Techniques For A Cement Plant

Download
Spits, Laurent ULiège
Promotor(s) : Wehenkel, Louis ULiège ; David, Robert
Date of defense : 24-Jun-2021/25-Jun-2021 • Permalink : http://hdl.handle.net/2268.2/12465
Details
Title : Data Modeling Techniques For A Cement Plant
Translated title : [fr] Techniques De Modélisation Des Données Pour Une Cimenterie
Author : Spits, Laurent ULiège
Date of defense  : 24-Jun-2021/25-Jun-2021
Advisor(s) : Wehenkel, Louis ULiège
David, Robert 
Committee's member(s) : Ernst, Damien ULiège
Geurts, Pierre ULiège
Language : English
Number of pages : 89
Keywords : [en] machine learning
[en] predictive maintenance
[en] autoregression
[en] random forest
[en] support vector machine
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en "signal processing and intelligent robotics"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Many industries, among which the cement industry, have showed growing interest in the exploitation of its gathered data to optimize its production line. In this work, typical problems occuring in cement plant are addressed.
The first one concerns the prediction of cyclones cloggings phenomena. Several methods are discussed in an attempt to solve this predictive maintenance problem. Whilst one method relies on operating points clustering via K-Means, the other one consists in modeling the problem as a binary classification task where samples close to cloggings get a value 1 and the normal samples get a value 0. After some processing to counteract the imbalanced dataset problem and a feature space reduction, the Random Forest, SVM and One-Class SVM algorithms are evaluated to conduct the classification.
The second task was the prediction of the clinker quality based on some measurements inside the production line. Through the collection of raw meal quality, fuels flows and clinker quality measurements, a multivariate time series problem is established and an autoregressive model (VAR) is used in this forecasting task.
In any case, the prediction performance is relatively low. Even if some alternative methods could improve the predictions, the main reasons explaining poor forecast can be found in the available dataset in which the sampling period of some key data was too low.
Ultimately, the understanding of monitoring data obtained from industrial plants could result in efficiency improvements and cost reductions.


File(s)

Document(s)

File
Access abstract.pdf
Description:
Size: 57.27 kB
Format: Adobe PDF
File
Access master_thesis.pdf
Description:
Size: 3.28 MB
Format: Adobe PDF

Annexe(s)

File
Access cement_plant.PNG
Description:
Size: 175.52 kB
Format: image/png
File
Access labelling_for_binary_classification.png
Description:
Size: 20.37 kB
Format: image/png
File
Access time_windowing_features.png
Description:
Size: 27.88 kB
Format: image/png
File
Access predicted_lsf_zoom.png
Description:
Size: 89.09 kB
Format: image/png

Author

  • Spits, Laurent ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promotor(s)

Committee's member(s)

  • Ernst, Damien ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Total number of views 33
  • Total number of downloads 0










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.