Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 51 | DOWNLOAD 6

Intention detection in chatbots

Télécharger
Klapka, Ivan ULiège
Promoteur(s) : Ittoo, Ashwin ULiège
Date de soutenance : 6-sep-2021/7-sep-2021 • URL permanente : http://hdl.handle.net/2268.2/12957
Détails
Titre : Intention detection in chatbots
Titre traduit : [fr] Detection d'intention dans les chatbots
Auteur : Klapka, Ivan ULiège
Date de soutenance  : 6-sep-2021/7-sep-2021
Promoteur(s) : Ittoo, Ashwin ULiège
Membre(s) du jury : Wehenkel, Louis ULiège
Drion, Guillaume ULiège
Langue : Anglais
Nombre de pages : 61
Mots-clés : [en] Intent classification
[en] Transformers
[en] Goal-oriented chatbot
[en] Deep learning
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Public cible : Chercheurs
Etudiants
Grand public
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] As chatbots evolved over the years, researchers realised they could be used in a number
of different applications, ranging from customer service to social companions. This phenomenon led to companies investing resources into the development of their own chatbot.
Although successful implementations can revolutionize their domain of application, their
creation requires expertise and are often very time consuming to produce.
This work explores and explains different methods and mechanisms used for making
chatbots while focusing its attention on the intention detection task. A review of the state
of the art models is conducted with the objective of determining the best performing intent
classifier and look for ways to improve them. Another objective of this work is to find an
effective goal-oriented architecture for chatbots and provide a working example.
A series of experiments aimed at evaluating the performance of neural network models on intent classification has been conducted over multiple different dataset of varying
characteristic. An attempt at improving classification by first identifying domains has
also been attempted. In addition, the overall chatbot accuracy has been compared for
different models taking the role of intent classifier on the hybrid architecture.
The results have highlighted the fact that the performances are closely related to the
quality and quantity of the training data. Despite this fact, the BERT model seems to
perform better overall but it is not systematically better, especially over dataset with a
high number of possible intent and limited utterances. When it comes to the chatbot
architecture, everything depends on the complexity and requirement expected from the
chatbot. Nevertheless, the explored hybrid architecture appears to be a good compromise
between data requirement, scalability and performance.
In the end, this paper concludes by discussing the assumptions made and the limitations
of the systems studied as well as proposing different ideas for future works.


Fichier(s)

Document(s)

File
Access MasterThesis_Ivan_Klapka.pdf
Description:
Taille: 2.35 MB
Format: Adobe PDF
File
Access Abstract_Ivan_Klapka.pdf
Description:
Taille: 74.45 kB
Format: Adobe PDF

Auteur

  • Klapka, Ivan ULiège Université de Liège > Master ingé. civ. info., à fin.

Promoteur(s)

Membre(s) du jury

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi Voir ses publications sur ORBi
  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 51
  • Nombre total de téléchargements 6










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.