Predicting stock market movement using Bidirectional Encoder Representations from Transformers
Zians, Dominik
Promoteur(s) : Geurts, Pierre ; Bury, Gauthier
Date de soutenance : 6-sep-2021/7-sep-2021 • URL permanente : http://hdl.handle.net/2268.2/13295
Détails
Titre : | Predicting stock market movement using Bidirectional Encoder Representations from Transformers |
Auteur : | Zians, Dominik |
Date de soutenance : | 6-sep-2021/7-sep-2021 |
Promoteur(s) : | Geurts, Pierre
Bury, Gauthier |
Membre(s) du jury : | Fontaine, Pascal
Louppe, Gilles |
Langue : | Anglais |
Nombre de pages : | 68 |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques Sciences économiques & de gestion > Finance |
Institution(s) : | Université de Liège, Liège, Belgique Gambit Financial Solutions, Liège, Belgique |
Diplôme : | Master en sciences informatiques, à finalité spécialisée en "intelligent systems" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] The essential motivation of this work was to find out if information found in news articles is relevant for predicting future price movement of stocks. A first part of the work consists of the extraction, processing, and storage of news articles gathered from the internet. A dashboard for monitoring the article collection process and a second one for browsing the collected data have been implemented. Bidirectional Encoder Representations from Transformers (BERT) form the basis of the solution for two major challenges. The first one was to detect organizations spoken of in the articles using a pre-trained Named Entity Recognition model. The second challenge consisted in the development of a model trying to predict the future stock price based on articles about the corresponding organization. The end performance of the latter model was not convincing, but several perspectives for improvement are presented for further studies.
Fichier(s)
Document(s)
Description:
Taille: 56.05 kB
Format: Adobe PDF
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.