Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 75 | DOWNLOAD 18

Final work :Approaches to improve mass conservation in PFEM for the simulation of free-surface flows

Martínez Tejada, Lucía ULiège
Promoteur(s) : Ponthot, Jean-Philippe ULiège
Date de soutenance : 27-jui-2022/28-jui-2022 • URL permanente : http://hdl.handle.net/2268.2/14395
Détails
Titre : Final work :Approaches to improve mass conservation in PFEM for the simulation of free-surface flows
Titre traduit : [en] Approaches to improve mass conservation in PFEM for the simulation of free-surface flows
Auteur : Martínez Tejada, Lucía ULiège
Date de soutenance  : 27-jui-2022/28-jui-2022
Promoteur(s) : Ponthot, Jean-Philippe ULiège
Membre(s) du jury : Noels, Ludovic ULiège
Sanchez, Eduardo 
Langue : Anglais
Nombre de pages : 116
Mots-clés : [en] PFEM
[en] free-surface flows
[en] mass conservation
[en] CFD
[en] sloshing
[en] dam break
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie aérospatiale
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en aérospatiale, à finalité spécialisée en "turbomachinery aeromechanics (THRUST)"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Solving complex simulations while ensuring high accuracy is a challenge, as seen in simulations that involve free-surfaces and large displacements. One way to better solve them is via the Particle Finite Element Method (PFEM). The Particle Finite Element Method (PFEM) is a numerical method that discretizes the body into a set of points. This set of points is used to create a Finite Element mesh that moves in time following the cloud of points. PFEM then combines a Lagrangian description with the classical Finite Element Method. The strength of PFEM is that it solves problems that involve large displacements and severe topological changes. However, current PFEM implementations do not guarantee mass conservation. Therefore, it is necessary to find an approach that improves it. This work focuses on implementing numerical techniques related to the mesh to improve the conservation of mass in PFEM.

In this study, the aforementioned techniques to improve mass conservation are implemented for the in-house PFEM Matlab code of the LTAS-MN2L group at the University of Liege. A study of the proposed methodologies is also presented, including: (1) a sloshing problem, (2) three different dam breaks. It is concluded that the Adjustment of the fluid’s height method that addresses both terms of mass variation yields the greatest improvement in mass conservation. Cruchaga’s approach is physically more coherent, as it corrects the free surface nodes’ positions based on the velocity of each node.


Fichier(s)

Document(s)

File
Access TFE_Report_LuciaMartinezTejada.pdf
Description: Master Thesis Report - Lucia Martinez Tejada
Taille: 32.58 MB
Format: Adobe PDF
File
Access TFE_Summary_LuciaMartinezTejada.pdf
Description: Master Thesis Summary - Lucia Martinez Tejada
Taille: 388.29 kB
Format: Adobe PDF

Auteur

  • Martínez Tejada, Lucía ULiège Université de Liège > Master ingé. civ. aérospat., à fin. (THRUST)

Promoteur(s)

Membre(s) du jury

  • Noels, Ludovic ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
    ORBi Voir ses publications sur ORBi
  • Sanchez, Eduardo
  • Total number of views 75
  • Total number of downloads 18










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.