Faculté des Sciences appliquées
Faculté des Sciences appliquées

Master thesis : Large Scale and Real-Time Cattle Behaviour Recognition by Deep Learning on Video Data

Lievens, François ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 27-Jun-2022/28-Jun-2022 • Permalink :
Title : Master thesis : Large Scale and Real-Time Cattle Behaviour Recognition by Deep Learning on Video Data
Translated title : [fr] Reconnaissance à grande échelle et en temps réel des comportements de bovins par l'utilisation de l'apprentissage profond
Author : Lievens, François ULiège
Date of defense  : 27-Jun-2022/28-Jun-2022
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Van Droogenbroeck, Marc ULiège
Marée, Raphaël ULiège
Garnier, Quentin 
Language : English
Number of pages : 96
Keywords : [en] Data Science
[en] Deep Learning
[en] Livestock
[en] Action recognition
[en] Computer Vision
[en] animal welfare
[en] animal health
Discipline(s) : Engineering, computing & technology > Computer science
Commentary : Travail réalisé en collaboration avec AIHerd
Funders : AIHerd
Target public : Researchers
Professionals of domain
General public
Complementary URL :
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées


[en] Action recognition on video data is an exploding discipline in the deep learning sector. The consequent increase in available computing power combined with improvements achieved in deep learning methods now allow us to use powerful algorithms on real videos. In the frame of this project, we have worked with AIHerd, a company that designs an intelligent video surveillance tool aiming to improve the management of dairy herds. AIHerd already handle the identification and the tracking of every animals covered by a camera sky. The goal of this project was to add to this architecture a new brick capable of characterizing their behaviours and interactions in real time. We first developed an algorithm for extracting and selecting specific video sequences
of animals performing a potentially interesting behaviour. These data were used to encode short videos hosted on an annotation platform modified to our data. Students were selected and trained to annotate these videos, allowing the creation of an action recognition dataset of behaviours on which our models were trained. A prediction algorithm was implemented in order to manage a large number of possible configurations. These configurations allow us to use strategies from the state of the art in terms of action recognition, but also to evaluate several strategies of our creation to ensure a better trade-off between prediction quality and resource cost. Our training and evaluation algorithms have successfully met the technical challenge of classifying in real time a total of 16 behaviours categories simultaneously on 120 cattle covered by 5 high definition cameras. We also demonstrated that adapting old strategies, combined with various components inspired by the state of the art of deep learning, allows us to obtain an algorithm that is light enough to be integrated into the AIHerd software with a restricted decrease in prediction quality compared to the state of the art methods.



Access TFE_FrancoisLIEVENS.pdf
Description: Master Thesis of François Lievens (2022)
Size: 36.29 MB
Format: Adobe PDF
Access Abstract_Francois_LIEVENS.pdf
Description: Abstract
Size: 194.41 kB
Format: Adobe PDF


Description: AIHerd Behavior Network
Size: 5.8 MB
Format: Unknown


  • Lievens, François ULiège Université de Liège > Mast. sc. don. à fin.


Committee's member(s)

  • Van Droogenbroeck, Marc ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Marée, Raphaël ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Garnier, Quentin
  • Total number of views 44
  • Total number of downloads 30

All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.