Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 130 | DOWNLOAD 0

Master thesis : Multi-material die pressing, an innovative approach to printing near net shape titanium alloy medical implants at reduced cost

Télécharger
Claes, Mathilde ULiège
Promoteur(s) : Mertens, Anne ULiège ; Ruffoni, Davide ULiège
Date de soutenance : 27-jui-2022/28-jui-2022 • URL permanente : http://hdl.handle.net/2268.2/14567
Détails
Titre : Master thesis : Multi-material die pressing, an innovative approach to printing near net shape titanium alloy medical implants at reduced cost
Titre traduit : [fr] La compression uniaxiale multi-matériaux, une approche innovante pour l'impression d'implants médicaux de forme quasi définitive en alliage de titane à coût réduit
Auteur : Claes, Mathilde ULiège
Date de soutenance  : 27-jui-2022/28-jui-2022
Promoteur(s) : Mertens, Anne ULiège
Ruffoni, Davide ULiège
Membre(s) du jury : Geris, Liesbet ULiège
Tchuindjang, Jérôme Tchoufack ULiège
Neirinckx, Bram 
Langue : Anglais
Nombre de pages : 95
Mots-clés : [en] die pressing
[en] powder metallurgy
[en] titanium alloy
[en] selective deposition
[en] compression behaviour
[en] relative density
[en] medical implants
Discipline(s) : Ingénierie, informatique & technologie > Science des matériaux & ingénierie
Ingénierie, informatique & technologie > Ingénierie mécanique
Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Intitulé du projet de recherche : High-accuracy indirect 3D printing of medical devices
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil biomédical, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Conventional die pressing involves filling a die with powder and compacting the powder once the die is filled. This conventional process is used to manufacture parts with simple geometry as the geometry of the die defines the geometry of the part. Aerosint is engaged in a research project with Amnovis, the Bel-SME project, which intends to produce near net shape titanium alloy parts for medical industry at reduced cost. The conventional process can then be replaced by an innovative process, aiming at compacting the powder layers at regular intervals, allowing to achieve higher and more homogeneous densities. The selective powder deposition approach invented by Aerosint results in multi-material, binderless printing, allowing the production of parts with more complex geometry.

The objectives of this thesis were to determine the layer thickness that allows to obtain green compacts that do not show delamination effects; to determine the compaction pressure to be applied to obtain a self-supporting green compact that has the desired relative density after sintering; to characterise virgin and modified Ti-6Al-4V powders, and to quantify the thickness of the ceramic material layer around the modified powders.

Compaction tests on AlSi10Mg and nitrided CuCr1Zr powders proved the value of compacting thin layers at regular intervals, demonstrating that compaction after deposition of 500 µm layers provided green compacts without delamination effects. Analysis of the density variation along the thickness of the green compacts did not reveal statistical significance, suggesting a homogeneous density. A self-supporting Ti-6Al-4V green compact was obtained by gradually compacting 500 µm layers to 305 MPa. The thickness of the ceramic layer on the surface of the modified Ti-6Al-4V powder is in the range 1-2 µm.

The Bel-SME project proposes a unique binder-free powder solidification process that produces parts that are both complex, thanks to the possibility of using a support powder that is different from the part powder and that dictates the geometry of the part, and dense, thanks to the compaction of the powder at regular intervals. This Master thesis contributed to this project, which in the near future will print near net shape medical devices in titanium alloy at reduced prices.


Fichier(s)

Document(s)

File
Access CLAES_Mathilde_Master_thesis.pdf
Description:
Taille: 92.27 MB
Format: Adobe PDF

Annexe(s)

File
Access CLAES_Mathilde_abstract_&_main_figures.pdf
Description:
Taille: 31.7 MB
Format: Adobe PDF

Auteur

  • Claes, Mathilde ULiège Université de Liège > Master ing. civ. biomed., à fin.

Promoteur(s)

Membre(s) du jury

  • Geris, Liesbet ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
    ORBi Voir ses publications sur ORBi
  • Tchuindjang, Jérôme Tchoufack ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Metallic materials for additive manufacturing
    ORBi Voir ses publications sur ORBi
  • Neirinckx, Bram Aerosint
  • Nombre total de vues 130
  • Nombre total de téléchargements 0










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.