Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 109 | DOWNLOAD 123
Ponnet, Juliette ULiège
Promoteur(s) : Drion, Guillaume ULiège
Date de soutenance : 27-jui-2022/28-jui-2022 • URL permanente : http://hdl.handle.net/2268.2/14570
Détails
Titre : Master thesis : Neuromodulation of calcium-based plasticity rules
Auteur : Ponnet, Juliette ULiège
Date de soutenance  : 27-jui-2022/28-jui-2022
Promoteur(s) : Drion, Guillaume ULiège
Membre(s) du jury : Phillips, Christophe ULiège
Sacré, Pierre ULiège
Seutin, Vincent ULiège
Langue : Anglais
Nombre de pages : 96
Mots-clés : [en] synaptic plasticity
[en] neurons
[en] calcium-based rules
[en] neuromodulators
[en] neurosciences
[en] computational study
Discipline(s) : Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Grand public
Autre
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil biomédical, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] In the age of navigation systems, online reminders, and calendars, there is little room left for our
memory capacity. Once disconnected from these tools, we constantly check our pockets and wonder: how do I get to that friend’s house again? Due to this more-than-connected world, it sometimes becomes difficult to even take the time to sleep. However, many people know that sleep is one of the keys to our well-being. But what if sleep was actually our secret memory weapon?
During learning, neurons are able to rewire their neuronal connection to encode and store information, a property known as synaptic plasticity. While during wakefulness thalamic neurons are activated according to tonic firing pattern to process information, during sleep there is a change in neuronal firing pattern and these neurons are bursting. Experimental studies provide evidence of the link between this switch in brain neuronal patterns and the memory function of sleep. It has been shown that during sleep following learning, neurons in specific areas of the brain are activated. This activity remodels the neuronal connections (i.e., synaptic plasticity) that mediate the formation and storage of memories. Despite ample evidence pointing to the role of sleep in memory consolidation, the detailed cellular mechanisms remain to be understood.
Different approaches can be taken to understand how sleep shapes our memories. In this thesis, we apply a computational approach to model the evolution of the synaptic strength. These synaptic plasticity rules are divided into two categories: phenomenological models and biological models. We focus on biological rules that are based on calcium dynamics (i.e., calcium-based plasticity rules) to predict the direction of the synaptic plasticity (i.e., strengthening or weakening of neuronal connections). While these models accurately describe the dynamics of neuronal components during wakefulness, they are not adapted to changes in neuronal firing patterns that take place during the switch from wake to sleep state as shown by [Jacquerie et al., 2022]. They observed that, no matter how important a piece of information is received during the day (important vs irrelevant), it is consolidated in the same way during sleep. They named this phenomenon, which is inconsistent with memory consolidation, the "homeostatic reset".
Since we want to observe a behavior that is consistent with memory consolidation during sleep
(i.e, memorization of important information and forgetting of irrelevant ones), this thesis aims at
adapting the calcium-based plasticity rules to bypass this "homeostatic reset". With this aim in mind, we ask whether, during sleep, neuromodulators could act as regulators of synaptic plasticity and affect the different signaling cascades linked to it to allow the consolidation of important information. To this end, we conduct a literature review detailing the role of principal neuromodulators on synaptic plasticity and related signaling cascades. Then, based on these biological facts, we suggest modification of computational biological plasticity rules that are inconsistent regarding memory consolidation due to the "homeostatic reset". While the outcomes are convincing, they prove to be fragile and artificial. Finally, insights are given regarding another approach that would instead benefit from the "homeostatic reset" rather than trying to overcome it.


Fichier(s)

Document(s)

File
Access MasterThesis_JuliettePonnet.pdf
Description:
Taille: 27.27 MB
Format: Adobe PDF

Annexe(s)

File
Access Abstract_JuliettePonnet.pdf
Description:
Taille: 2.5 MB
Format: Adobe PDF

Auteur

  • Ponnet, Juliette ULiège Université de Liège > Master ing. civ. biomed., à fin.

Promoteur(s)

Membre(s) du jury

  • Phillips, Christophe ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
    ORBi Voir ses publications sur ORBi
  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi Voir ses publications sur ORBi
  • Seutin, Vincent ULiège Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 109
  • Nombre total de téléchargements 123










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.