Master thesis : 3D synthetic data generation in the waste sorting field
Baudinet, Charles
Promoteur(s) : Louppe, Gilles
Date de soutenance : 27-jui-2022/28-jui-2022 • URL permanente : http://hdl.handle.net/2268.2/14586
Détails
Titre : | Master thesis : 3D synthetic data generation in the waste sorting field |
Titre traduit : | [fr] Génération de données synthétiques 3D pour du tri de déchets |
Auteur : | Baudinet, Charles |
Date de soutenance : | 27-jui-2022/28-jui-2022 |
Promoteur(s) : | Louppe, Gilles |
Membre(s) du jury : | Geurts, Pierre
Sacré, Pierre Beeckman, Amaury |
Langue : | Anglais |
Mots-clés : | [en] Deep learning [en] Computer vision [en] Synthetic data generation [en] Domain randomization [en] Waste sorting |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil en science des données, à finalité spécialisée |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] Deep Learning models need quality labeled data and a huge amount of samples to train. While open datasets exist, it is not usually the case for specific projects. Recent advancements showed that state-of-the-art synthetic data generation can be used to tackle the large data issue and generate infinite synthetic data samples (e.g. GANs, Diffusion models, 3D data augmentation, etc.). In this master thesis, we explore 3D data augmentation techniques for 2D synthetic data generation for cutlery classification and waste sorting. Given a set of 3D objects, the use of a 3D graphics engine (e.g. Unity) allows us to generate various versions of a scene by changing the color, texture, scale, camera angles, lighting conditions, etc. While creating these random scenes, all the labels and segmentation masks could be computed on the fly, allowing to generate an unlimited set of scene-label examples that will be used to train the model. In this work, we study the theory and implement our own protocol based on domain randomization. We design a board in the Unity software to generate synthetic data. From these synthetic datasets, we provide experiments to compare the different training cases (i.e. only synthetic, only real, both real and synthetic) to investigate the potential of the 3D synthetic data generation when only few data is available. These experiments suggest that there is a real potential behind the 3D data augmentation techniques. At the end of this work, we highlight the main improvements that could be made on our synthetic generator.
Fichier(s)
Document(s)
Description:
Taille: 15.21 MB
Format: Adobe PDF
Description:
Taille: 159.09 kB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.