Master thesis : A Causal Approach to Marketing Mix Modelling through Bayesian Networks
Baré, Alexandre
Promoteur(s) : Louppe, Gilles
Date de soutenance : 27-jui-2022/28-jui-2022 • URL permanente : http://hdl.handle.net/2268.2/15694
Détails
Titre : | Master thesis : A Causal Approach to Marketing Mix Modelling through Bayesian Networks |
Auteur : | Baré, Alexandre |
Date de soutenance : | 27-jui-2022/28-jui-2022 |
Promoteur(s) : | Louppe, Gilles |
Membre(s) du jury : | Wehenkel, Louis
Sacré, Pierre Mohan, Siddharth |
Langue : | Anglais |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Public cible : | Chercheurs Professionnels du domaine Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil en science des données, à finalité spécialisée |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] This thesis deals with the shortcomings of traditional Marketing Mix Models by proposing a new approach based on causality. As in most Machine Learning applications, it is common to rely on black-box models that can be hard to trust and which often translate into a longer adoption time by the industry. We argue that modelling performance is strengthened by combining raw data with business knowledge from domain experts. The alternative methodology that is thus here investigated relies on a proper causal process clearly identifying the cause-to-effect relationships in a Directed Acyclic Graph that describes the journeys from external and marketing factors to sales. For this purpose, we leverage the recent advances in Structure Learning for Causal Discovery and the power of Do-Calculus to build a framework for Marketing Return on Investment projects. Causal discovery allows for a semi-automated construction of Bayesian Networks and Do-Calculus enables interventional causal inference. The ultimate goal is to advise in a transparent way on an optimal mix of marketing channels.
Fichier(s)
Document(s)
Description:
Taille: 15.62 MB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.