Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 74 | DOWNLOAD 0

Master thesis : Predicting sudden infant death syndrome with time series based ML algorithms

Télécharger
Amar, Salah ULiège
Promoteur(s) : Louppe, Gilles ULiège ; Kleyntssens, Thomas
Date de soutenance : 5-sep-2022/6-sep-2022 • URL permanente : http://hdl.handle.net/2268.2/16286
Détails
Titre : Master thesis : Predicting sudden infant death syndrome with time series based ML algorithms
Titre traduit : [fr] Prédire le syndrome de mort subite du nourrisson à l'aide d'algorithmes ML basés sur des séries temporelles
Auteur : Amar, Salah ULiège
Date de soutenance  : 5-sep-2022/6-sep-2022
Promoteur(s) : Louppe, Gilles ULiège
Kleyntssens, Thomas 
Membre(s) du jury : Geurts, Pierre ULiège
Louveaux, Quentin ULiège
Langue : Anglais
Nombre de pages : 60
Mots-clés : [fr] Sudden Infant Death Syndrom
[fr] Forecasting
[fr] Machine learning
[fr] Time series
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Organisme(s) subsidiant(s) : Comunicare Solutions
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[fr] In 2020, in the US, for every 10,000 babies 2.9 died from Sudden Infant Death Syndrome (SIDS).
SIDS is the unexpected death of infants younger than 1 year old. This phenomenon usually happens during sleep and is the leading cause of infant mortality in western countries. Sudden Infant Death Syndrome deaths are inexplicable even after a complete autopsy and analysis of the circumstances of death.

This thesis, promoted by Comunicare Solutions, aims at providing a proof of concept for the task of forecasting crises in infants with the help of a time series based machine learning algorithms. The ultimate goal of the project would be to deploy those algorithms to provide reliable and meaningful support for parents. The machine learning processes will be based on the MIMIC-III database which holds irregularly sampled time series data monitoring health signals of 7874 newborns in ICU.

The forecasting task was formulated as a sequence to sequence multi-output classification and was approached through the following main steps, a data analysis, the solving of the machine learning problem then the best model was studied further through model interpretation tasks.

The data analysis on the MIMIC-III database provided meaningful information about infants and the best time step duration to consider for the sequences. The forecasting task was solved at first for a 30 minutes time horizon with several algorithms. This led to great performances of one particular algorithm which was used in a time horizon generalization that demonstrated the temporal limit of the solution. The model interpretation tasks were split in two ways. The first one was a feature selection which aimed at reducing the number of sensors needed for the forecasting and analysing the model. Two methods were used and led to good performances with fewer features. And finally, the second way was a study of model explanation, with again two main methods, to provide some insight into the model's decisions.


Fichier(s)

Document(s)

File
Access thesis.pdf
Description:
Taille: 1.24 MB
Format: Adobe PDF

Annexe(s)

File
Access summary.pdf
Description:
Taille: 62.73 kB
Format: Adobe PDF

Auteur

  • Amar, Salah ULiège Université de Liège > Master ingé. civ. info., à fin.

Promoteur(s)

Membre(s) du jury

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi Voir ses publications sur ORBi
  • Louveaux, Quentin ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 74
  • Nombre total de téléchargements 0










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.