Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 39 | DOWNLOAD 120

Master thesis : Deep Learning for Automatic Traffic Sign Inventory on an Embedded Device

Download
Cabay, Jean-Philippe ULiège
Promotor(s) : Geurts, Pierre ULiège
Date of defense : 5-Sep-2022/6-Sep-2022 • Permalink : http://hdl.handle.net/2268.2/16307
Details
Title : Master thesis : Deep Learning for Automatic Traffic Sign Inventory on an Embedded Device
Author : Cabay, Jean-Philippe ULiège
Date of defense  : 5-Sep-2022/6-Sep-2022
Advisor(s) : Geurts, Pierre ULiège
Committee's member(s) : Van Droogenbroeck, Marc ULiège
Louppe, Gilles ULiège
Jourdain, Frédéric 
Language : English
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Traffic signs play an essential role in maintaining road safety by providing drivers with important information about the road and its surroundings. The road infrastructure should encourage a safe and smooth flow of traffic and reduce the risk of evaluation and driving errors on the part of road users. This thesis will focus on the development of a Proof of Concept for an embedded
traffic sign inventory system. The solution runs in real-time and to detect, classify and estimate the precise geo-coordinates of traffic signs.


File(s)

Document(s)

File
Access Master_Thesis_Jean-Philippe_Cabay_NTT.pdf
Description: -
Size: 12.9 MB
Format: Adobe PDF

Author

  • Cabay, Jean-Philippe ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promotor(s)

Committee's member(s)

  • Van Droogenbroeck, Marc ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Jourdain, Frédéric
  • Total number of views 39
  • Total number of downloads 120










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.