Master thesis : Embedded Neural Network for Movement classification and Fall Detection
Houart, Robin
Promoteur(s) : Geurts, Pierre
Date de soutenance : 5-sep-2022/6-sep-2022 • URL permanente : http://hdl.handle.net/2268.2/16407
Détails
Titre : | Master thesis : Embedded Neural Network for Movement classification and Fall Detection |
Auteur : | Houart, Robin |
Date de soutenance : | 5-sep-2022/6-sep-2022 |
Promoteur(s) : | Geurts, Pierre |
Membre(s) du jury : | Sacré, Pierre
Boigelot, Bernard Delarbre, François |
Langue : | Anglais |
Nombre de pages : | 63 |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en sciences informatiques, à finalité spécialisée en "intelligent systems" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] With the the evolution of ARM-based SoC and the development of dedicated libraries for intelligent system on microcontrollers, more than ever we
have the possibility of creating powerful, power efficient and cheap connected devices with the capability of solving a wide range of issues.
The goal of this work is to explore the possibility of running a neural network model on a connected bracelet with the higher intent of being able to
identify and classify falls.
This thesis subject was proposed and supported by IoT-D, a young company focused on innovating in the field of connected devices. It centers
around the Iomoov, a connected bracelet of their design.
We conclude this thesis by suggesting multiples clues for improvement as
well as explore the limitations faced during the work and how to address
them.
Fichier(s)
Document(s)
Description:
Taille: 7.22 MB
Format: Adobe PDF
Description: Summary of the thesis
Taille: 207.54 kB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.