Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 70 | DOWNLOAD 225

Master thesis : Knowledge Graph Construction to Facilitate Chemical Compound Hazard Assessment in the TOXIN Project

Download
Vrijens, Guillaume ULiège
Promotor(s) : Debruyne, Christophe ULiège
Date of defense : 27-Jan-2023 • Permalink : http://hdl.handle.net/2268.2/16763
Details
Title : Master thesis : Knowledge Graph Construction to Facilitate Chemical Compound Hazard Assessment in the TOXIN Project
Author : Vrijens, Guillaume ULiège
Date of defense  : 27-Jan-2023
Advisor(s) : Debruyne, Christophe ULiège
Committee's member(s) : Louppe, Gilles ULiège
Fontaine, Pascal ULiège
Language : English
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This master thesis presents a method for integrating multiple data sources from the field of toxicology into a knowledge graph and linking it with the TOXIN knowledge graph to facilitate the hazard assessment of new compounds. The proposed method uses a hybrid approach, combining an ontology and Linked Data to capture the granularity of the toxicological domain and provide a consistent representation while maintaining the flexibility of Linked Data. The ontology used in the method is the ToXic Process Ontology (TXPO), which offers a structured and reliable representation of the relationships between toxicological processes. The method also incorporates the use of named graphs and provenance information to store different opinions on data and track the integration of different sources. The feasibility and utility of the proposed method for building the knowledge graph are demonstrated through the development of a prototype, the TOXIN enriched knowledge graph (TEKG). Finally, this project illustrates the potential value and usefulness of a knowledge graph such as TEKG for improving access to relevant information, offering a satisfactory representation of the toxicological domain and supporting domain-specific tagging mechanisms.


File(s)

Document(s)

File
Access Guillaume_Vrijens_Thesis.pdf
Description:
Size: 3.32 MB
Format: Adobe PDF
File
Access Guillaume_Vrijens_Abstract.pdf
Description:
Size: 71.66 kB
Format: Adobe PDF

Author

  • Vrijens, Guillaume ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promotor(s)

Committee's member(s)

  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Fontaine, Pascal ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes informatiques distribués
    ORBi View his publications on ORBi
  • Total number of views 70
  • Total number of downloads 225










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.