Travail de fin d'études et stage[BR]- Travail de fin d'études : Optimization of collective battery storage systems usage in energy communities[BR]- Stage d'insertion professionnelle
Messens, Martin
Promotor(s) : Cornélusse, Bertrand
Date of defense : 26-Jun-2023/27-Jun-2023 • Permalink : http://hdl.handle.net/2268.2/17247
Details
Title : | Travail de fin d'études et stage[BR]- Travail de fin d'études : Optimization of collective battery storage systems usage in energy communities[BR]- Stage d'insertion professionnelle |
Translated title : | [fr] Optimisation de l'utilisation des systèmes de batteries collectives au sein des communautés d'énergie |
Author : | Messens, Martin |
Date of defense : | 26-Jun-2023/27-Jun-2023 |
Advisor(s) : | Cornélusse, Bertrand |
Committee's member(s) : | Lepièce, Marc
Quoilin, Sylvain |
Language : | English |
Number of pages : | 66 |
Keywords : | [en] Energy communities [en] Community battery [en] Value stacking [en] Collective storage |
Discipline(s) : | Engineering, computing & technology > Energy |
Institution(s) : | Université de Liège, Liège, Belgique |
Degree: | Master en ingénieur civil électromécanicien, à finalité spécialisée en énergétique |
Faculty: | Master thesis of the Faculté des Sciences appliquées |
Abstract
[en] This thesis presents an optimization framework for the utilization of collective
batteries within Energy Communities. Community batteries have various ap-
plications, including maximizing self-consumption, mitigating demand peaks,
offering grid services, and participating in wholesale markets. The paper con-
ducts a comprehensive study on the feasibility and advantages of these appli-
cations in Energy Communities, along with a comparative techno-economic
analysis focused on a specific Energy Community project situated in Brussels.
The objective of this research is to develop optimization algorithms that de-
termine an optimal charging and discharging schedule for the batteries, ulti-
mately maximizing asset profitability based on data forecasts. The algorithms
are implemented as Python modules employing constrained mathematical pro-
gramming techniques.
Each application is individually reviewed and optimized. Subsequently, a com-
prehensive assessment is performed by combining the applications to evaluate
the benefits of employing multi-objective community batteries.
File(s)
Document(s)
Description:
Size: 3.35 MB
Format: Adobe PDF
Annexe(s)
Description:
Size: 73.11 kB
Format: Adobe PDF
Cite this master thesis
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.