Optimization methods for permaculture
Bueres y Dominguez, Lisa
Promoteur(s) : Louveaux, Quentin
Date de soutenance : 26-jui-2023/27-jui-2023 • URL permanente : http://hdl.handle.net/2268.2/17488
Détails
Titre : | Optimization methods for permaculture |
Titre traduit : | [fr] Méthodes d'optimisation appliquées à la permaculture |
Auteur : | Bueres y Dominguez, Lisa |
Date de soutenance : | 26-jui-2023/27-jui-2023 |
Promoteur(s) : | Louveaux, Quentin |
Membre(s) du jury : | Wehenkel, Louis
Ernst, Damien |
Langue : | Anglais |
Nombre de pages : | 90 |
Mots-clés : | [en] optimization [en] multistage stochastic programming [en] permaculture [en] precision farming [en] sustainability |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Public cible : | Chercheurs Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] For the last 20 years, the concern for climate change has increased significantly among the population. Global warming is accelerating, the state of the planet is deteriorating, and we urgently need to do something about it. In agriculture in particular, many changes must be done to reach sustainability and resilience. Many methods exist but optimisation has long been used in precision farming as a tool for decision support. Given the random nature of the natural events that occur in agriculture, particularly weather and plant growth, stochastic optimisation is the most appropriate.
The aim is therefore to develop a new multistage stochastic optimisation model for decision support. This work describe the implementation the model. It takes into account weather from the last 30 years to the 20 next as scenarios in order to produce results over a sufficiently long period of time to study the impact of global warming on the production. It also includes forecast yields of three crops : tomatoes, strawberries and potatoes, as parameters depending on the weather. Each plant is modelled according to a model validated in the literature. The implementation of the optimisation model is performed by starting with a small deterministic one and developing it with the final version.
Optimal solutions to the model are computed, thus demonstrating the feasibility and providing a decision strategy maximising the quantity harvested according to the weather. The impact of some variations of the model or in the data are also analysed. The results of model shows the relevance for the problem and the impact of the global warming on the production. This thus brings a new interesting approach to optimisation in precision farming.
Fichier(s)
Document(s)
Description:
Taille: 1.44 MB
Format: Adobe PDF
Description:
Taille: 139.75 kB
Format: Adobe PDF
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.