Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 156 | DOWNLOAD 4

Master thesis : Kalman filtering solutions in the context of a laser-guided missile application

Download
Bakija, Asad ULiège
Promotor(s) : Sacré, Pierre ULiège ; BALTHAZARD, Benoit
Date of defense : 26-Jun-2023/27-Jun-2023 • Permalink : http://hdl.handle.net/2268.2/17662
Details
Title : Master thesis : Kalman filtering solutions in the context of a laser-guided missile application
Translated title : [fr] Solutions de filtrage de Kalman dans le cadre d'une application d'un missile guidé par laser
Author : Bakija, Asad ULiège
Date of defense  : 26-Jun-2023/27-Jun-2023
Advisor(s) : Sacré, Pierre ULiège
BALTHAZARD, Benoit 
Committee's member(s) : Boigelot, Bernard ULiège
Drion, Guillaume ULiège
Language : English
Number of pages : 80
Keywords : [en] Kalman filter
[en] Line of sight
[en] Inertial navigation
[en] Missile
[en] State estimation
[en] Rocket
[en] Invariant extended Kalman filter
[en] SAL seeker
[en] GNSS
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences informatiques, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Introduced in 1960 by Rudolf Emil Kálmán, the Kalman filter is one of the most widely used filters in various fields. It recursively estimates the state of a system using its transition model and measurements from one or more sensors, and is the optimal estimator in terms of mean-square error under certain assumptions. This thesis explores the implementation, limitations, and comparison of two Kalman filtering solutions in the context of the FZ275 LGR, a laser-guided missile designed and produced by Thales Belgium SA, a Belgian subsidiary of the French multinational Thales Group. The first solution aims to replace the current estimator of the missile, an alpha-beta filter, with a linear Kalman filter. The two models considered perform better with respect to certain defined metrics, and they provide less noisy estimates. However, due to reasons detailed in this work, the current estimator provides better results in terms of impact results. The second solution studies the design and implementation of an inertial navigation system based on an invariant extended Kalman filter. A Global Navigation Satellite System based filter and a semi-active laser seeker based filter are compared to the current implementation and to two extended Kalman filters, which are considered to be the industry standard. The use of an inertial navigation system dramatically improves both the estimates and the impact results compared to the current implementation. There is no significant difference between the two GNSS-based filters. On the other hand, the seeker-based invariant extended Kalman filter provides better results than the seeker-based extended Kalman filter. The performance gain is mainly due to different assumptions that introduce additional constraints. These limitations make a real-world implementation more challenging and would require further research to assess feasibility.


File(s)

Document(s)

File
Access Master_thesis_Asad_Bakija.pdf
Description:
Size: 18.2 MB
Format: Adobe PDF
File
Access Master_thesis_abstract_Asad_Bakija.pdf
Description:
Size: 242.94 kB
Format: Adobe PDF

Author

  • Bakija, Asad ULiège Université de Liège > Master sc. informatiques, à fin.

Promotor(s)

Committee's member(s)

  • Boigelot, Bernard ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
    ORBi View his publications on ORBi
  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Total number of views 156
  • Total number of downloads 4










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.