Faculté des Sciences appliquées
Faculté des Sciences appliquées

Master Thesis : Deblurring of Sports Videos using Deep Learning

Delcour, Florian ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 26-Jun-2023/27-Jun-2023 • Permalink :
Title : Master Thesis : Deblurring of Sports Videos using Deep Learning
Translated title : [fr] Réduction du flou de vidéos sportives par apprentissage profond
Author : Delcour, Florian ULiège
Date of defense  : 26-Jun-2023/27-Jun-2023
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Cioppa, Anthony ULiège
Marée, Raphaël ULiège
Castin, Martin 
Language : English
Number of pages : 78
Keywords : [en] deep-learning
[en] deblurring
[en] EVS Broadcast
[en] sports
[en] videos
[en] fine-tuning
[en] slow-motion
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées


[en] Nowadays, sports videos are among the most consumed forms of entertainment and viewers expect visually appealing and smooth content. Slow-motion replay has become an essential feature in sports broadcasting but typically requires expensive high-technology hardware.
To mitigate these costs, an alternative approach is to interpolate frames from low-frequency cameras to simulate slow-motion. However, motion blur, naturally present in sports videos at normal speed, becomes increasingly disturbing as the playback speed decreases. In this context, video deblurring aims to restore sharpness in blurry videos, using the correlated information present in consecutive frames. In this thesis, we first compare various deep video deblurring methods on commonly used datasets and on real sports videos. Afterwards, we generate our own sports synthetic dataset, which consists of pairs of blurry-sharp frame sequences. The blurry sequences are obtained by averaging consecutive frames of sports videos to simulate motion blur. Using the generated dataset, we then fine-tune a pretrained neural network called RVRT, which showed to be the most promising model. Lastly, a series of experiments are conducted to analyze the deblurring performance of the model in several scenarios. We demonstrate that our fine-tuned model significantly outperforms the pretrained model both quantitatively and qualitatively on our generated blurry sports dataset, achieving PSNR of 35.98 (+3.65dB) and SSIM of 0.9338 (+0.0214) on the validation set. The model successfully restores sharp fine-grained details even in complex real-blur scenarios. Nonetheless, commercial applications are currently unfeasible due to the large inference time and the presence of a few remaining artifacts and blurry local regions.



Access thesis.pdf
Size: 88.57 MB
Format: Adobe PDF
Access abstract.pdf
Size: 185.34 kB
Format: Adobe PDF


Size: 196.59 MB
Format: Unknown


  • Delcour, Florian ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.


Committee's member(s)

  • Cioppa, Anthony ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Marée, Raphaël ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Castin, Martin EVS
  • Total number of views 25
  • Total number of downloads 1

All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.