Machine learning methods to improve insulin sensitivity forecasting in glycemic control
Frambach, Julien
Promoteur(s) : Desaive, Thomas
Date de soutenance : 4-sep-2023/5-sep-2023 • URL permanente : http://hdl.handle.net/2268.2/18224
Détails
Titre : | Machine learning methods to improve insulin sensitivity forecasting in glycemic control |
Auteur : | Frambach, Julien |
Date de soutenance : | 4-sep-2023/5-sep-2023 |
Promoteur(s) : | Desaive, Thomas |
Membre(s) du jury : | Uyttendaele, Vincent
Chase, Geoff Louppe, Gilles |
Langue : | Anglais |
Mots-clés : | [en] Machine learning, Glycemic control, insulin sensitivity |
Discipline(s) : | Ingénierie, informatique & technologie > Ingénierie civile |
Public cible : | Professionnels du domaine Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] Stress-induced hyperglycemia is a common complication among critically ill patients in the in-
tensive care unit. This health condition poses significant dangers, as it can increase the risks
of morbidity and mortality. Glycaemic control has been shown beneficial for these patients but
hard to achieve safely and consistently. STAR is a patient-specific, model-based glucose control
protocol framework successfully providing safe and effective blood glucose control within nor-
moglyceic range using insulin and nutrition as treatments. The STAR protocol has undergone
clinical validation, a challenging task due to glycemic variability and the need to prevent hypo-
glycemic episodes.
Currently, the STAR protocol uses a kernel density approach to predict the 5th and 95th
percentiles of the insulin sensitivity within 1-3 hourly intervals. Forecasting insulin sensitivity is
an important criterion of the STAR protocol to give the best treatment for the patient. Specif-
ically, the STAR 3D model leverages the past two values to predict the distributions of insulin
sensitivity and recommend the optimal treatment based on predicted risks. However, there is
an opportunity to enhance the current model by incorporating machine learning techniques.
This thesis explores the application of various machine learning models using quantile regres-
sion to forecast these percentiles. The aim is to improve prediction accuracy and subsequently
enhance patient safety within the intensive care unit environment.
The findings from these machine learning models highlight the challenge of achieving sub-
stantial prediction improvements using only two input features. The solution lies in increasing
the number of features, thereby enhancing prediction performance and potentially reducing the
occurrence of both hypoglycemic and hyperglycemic episodes among patients.
Fichier(s)
Document(s)
Description:
Taille: 4.28 MB
Format: Adobe PDF
Description: Correct version
Taille: 4.09 MB
Format: Adobe PDF
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.