Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 24 | DOWNLOAD 2

A Unified Library for Action Spotting in Sports Videos

Download
Benzakour, Yassine ULiège
Promotor(s) : Van Droogenbroeck, Marc ULiège ; Cioppa, Anthony ULiège
Date of defense : 24-Jun-2024/25-Jun-2024 • Permalink : http://hdl.handle.net/2268.2/20139
Details
Title : A Unified Library for Action Spotting in Sports Videos
Translated title : [fr] Bibliothèque unifiée pour la détection d'actions dans des vidéos de sport
Author : Benzakour, Yassine ULiège
Date of defense  : 24-Jun-2024/25-Jun-2024
Advisor(s) : Van Droogenbroeck, Marc ULiège
Cioppa, Anthony ULiège
Committee's member(s) : Louppe, Gilles ULiège
Drion, Guillaume ULiège
Language : English
Number of pages : 165
Keywords : [fr] deep learning
[fr] Video understanding Action spotting
[fr] Sports Analytics
[fr] Python library
[fr] Benchmark
[fr] Algorithms
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[fr] Action spotting is crucial in sports analytics as it enables the precise identification and categorization of pivotal moments in sports matches, providing insights that are essential for performance analysis and tactical decision-making.
The fragmentation of existing methodologies, however, impedes the progression of sports analytics, necessitating a unified codebase to support the development and deployment of action spotting for video analysis.
In this work, I introduce OSL-ActionSpotting, a Python library that unifies different action spotting algorithms to streamline research and applications in sports video analytics.
OSL-ActionSpotting encapsulates various state-of-the-art techniques into a singular, user-friendly framework, offering standardized processes for action spotting and analysis across multiple datasets.
I successfully integrated three cornerstone action spotting methods into OSL-ActionSpotting, achieving performance metrics that match those of the original, disparate codebases. This unification within a single library preserves the effectiveness of each method and enhances usability and accessibility for researchers and practitioners in sports analytics.
By bridging the gaps between various action spotting techniques, OSL-ActionSpotting significantly contributes to the field of sports video analysis, fostering enhanced analytical capabilities and collaborative research opportunities. The scalable and modularized design of the library ensures its long-term relevance and adaptability to future technological advancements in the domain.


File(s)

Document(s)

File
Access TFE.pdf
Description:
Size: 10.56 MB
Format: Adobe PDF
File
Access abstract.pdf
Description:
Size: 74.21 kB
Format: Adobe PDF

Annexe(s)

File
Access visualize.png
Description:
Size: 1.9 MB
Format: image/png
File
Access abstract.pdf
Description:
Size: 74.21 kB
Format: Adobe PDF

Author

  • Benzakour, Yassine ULiège Université de Liège > Master ing. civ. inf. fin. spéc.int. sys.

Promotor(s)

Committee's member(s)

  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Total number of views 24
  • Total number of downloads 2










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.