A Unified Library for Action Spotting in Sports Videos
Benzakour, Yassine
Promoteur(s) :
Van Droogenbroeck, Marc
;
Cioppa, Anthony
Date de soutenance : 24-jui-2024/25-jui-2024 • URL permanente : http://hdl.handle.net/2268.2/20139
Détails
Titre : | A Unified Library for Action Spotting in Sports Videos |
Titre traduit : | [fr] Bibliothèque unifiée pour la détection d'actions dans des vidéos de sport |
Auteur : | Benzakour, Yassine ![]() |
Date de soutenance : | 24-jui-2024/25-jui-2024 |
Promoteur(s) : | Van Droogenbroeck, Marc ![]() Cioppa, Anthony ![]() |
Membre(s) du jury : | Louppe, Gilles ![]() Drion, Guillaume ![]() |
Langue : | Anglais |
Nombre de pages : | 165 |
Mots-clés : | [fr] deep learning [fr] Video understanding Action spotting [fr] Sports Analytics [fr] Python library [fr] Benchmark [fr] Algorithms |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[fr] Action spotting is crucial in sports analytics as it enables the precise identification and categorization of pivotal moments in sports matches, providing insights that are essential for performance analysis and tactical decision-making.
The fragmentation of existing methodologies, however, impedes the progression of sports analytics, necessitating a unified codebase to support the development and deployment of action spotting for video analysis.
In this work, I introduce OSL-ActionSpotting, a Python library that unifies different action spotting algorithms to streamline research and applications in sports video analytics.
OSL-ActionSpotting encapsulates various state-of-the-art techniques into a singular, user-friendly framework, offering standardized processes for action spotting and analysis across multiple datasets.
I successfully integrated three cornerstone action spotting methods into OSL-ActionSpotting, achieving performance metrics that match those of the original, disparate codebases. This unification within a single library preserves the effectiveness of each method and enhances usability and accessibility for researchers and practitioners in sports analytics.
By bridging the gaps between various action spotting techniques, OSL-ActionSpotting significantly contributes to the field of sports video analysis, fostering enhanced analytical capabilities and collaborative research opportunities. The scalable and modularized design of the library ensures its long-term relevance and adaptability to future technological advancements in the domain.
Fichier(s)
Document(s)
Annexe(s)
Citer ce mémoire
APA
Benzakour, Y. (2024). A Unified Library for Action Spotting in Sports Videos. (Unpublished master's thesis). Université de Liège, Liège, Belgique. Retrieved from https://matheo.uliege.be/handle/2268.2/20139
Chicago
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.