Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 47 | DOWNLOAD 0

Travail de fin d'études et stage[BR]- Travail de fin d'études : Modelling of composite pressure vessels (carbon-epoxy COPV) for the FEM approach[BR]- Stage

Download
Tshilolo Muepu Malaïka, Josémaria ULiège
Promotor(s) : Bruyneel, Michaël ULiège
Date of defense : 24-Jun-2024/25-Jun-2024 • Permalink : http://hdl.handle.net/2268.2/20462
Details
Title : Travail de fin d'études et stage[BR]- Travail de fin d'études : Modelling of composite pressure vessels (carbon-epoxy COPV) for the FEM approach[BR]- Stage
Author : Tshilolo Muepu Malaïka, Josémaria ULiège
Date of defense  : 24-Jun-2024/25-Jun-2024
Advisor(s) : Bruyneel, Michaël ULiège
Committee's member(s) : Ponthot, Jean-Philippe ULiège
Strepenne, François 
Language : English
Number of pages : 64
Keywords : [en] Composite pressure vessel
[en] Non-geodesic
[en] Filament winding
[en] Winding angle
[en] Slippage coefficient
Discipline(s) : Engineering, computing & technology > Mechanical engineering
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil mécanicien, à finalité spécialisée en mécatronique
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Facing the energy crisis and the necessity to reduce CO2 and greenhouse gas emissions,
hydrogen has emerged as a key option in the decarbonization of fields such as aerospace and
automotive. Indeed, hydrogen constitutes a solution in the storage and transportation of
energy. Typically, hydrogen is stored in Composite Overwrapped Pressure Vessels (COPVs)
which have a better strength-to-weight ratio than traditional metallic pressure vessels. However, COPVs are still subject to improvement in the filament winding process which is greatly
responsible for the damage resistance and the fatigue behavior.
This Master thesis addresses the implementation of a model predicting the evolution of the
winding angle on the dome of cylindrical pressure vessels. The winding angle is an important
parameter in the determination of the mechanical behavior of composite pressure vessels. In
order to enlarge the possibility of winding trajectories, non-geodesic winding is implemented in
MATLAB. The solution of the non-geodesic equation is computed using the 4th-order Runge
Kutta method with a constant discretization over the dome profile. Then, the approach is
extended to a multi-layer structure predicting the winding angle on an arbitrary pseudo-ply
different from an ellipse.
Finally, a methodology to mesh a lay-up is implemented by defining the nodes, the elements,
and the winding angle associated with each element. The finite element model is then exported
in SAMCEF BACON for later simulations. This results in a more realistic dome modelling by
considering the different plies and the non-geodesic trajectories in the filament winding process.


File(s)

Document(s)

File
Access TFE_Josemaria_Tshilolo.pdf
Description:
Size: 7.56 MB
Format: Adobe PDF

Author

  • Tshilolo Muepu Malaïka, Josémaria ULiège Université de Liège > Master ing. civ. méc. fin. spéc. mécatron.

Promotor(s)

Committee's member(s)

  • Ponthot, Jean-Philippe ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
    ORBi View his publications on ORBi
  • Strepenne, François
  • Total number of views 47
  • Total number of downloads 0










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.