Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 39 | DOWNLOAD 7

Modeling of anisotropic hyperelastic material

Télécharger
Hault, Sarah ULiège
Promoteur(s) : Ponthot, Jean-Philippe ULiège
Date de soutenance : 24-jui-2024/25-jui-2024 • URL permanente : http://hdl.handle.net/2268.2/20507
Détails
Titre : Modeling of anisotropic hyperelastic material
Auteur : Hault, Sarah ULiège
Date de soutenance  : 24-jui-2024/25-jui-2024
Promoteur(s) : Ponthot, Jean-Philippe ULiège
Membre(s) du jury : Duchene, Laurent ULiège
Boman, Romain ULiège
Langue : Anglais
Nombre de pages : 97
Mots-clés : [en] HGO model
[en] hyperelasitc
[en] anisotropic
[en] continuum mechanics
[en] Metafor
[en] Gent-Thomas model
[en] Yeoh model
[en] Generealized Neo-Hookean model
[en] fibers
[fr] Modèle HGO
[fr] hyperélastique
[fr] anisotrope
[fr] mécanique des milieux continus
[fr] Metafor
[fr] Modèle de Gent-Thomas
[fr] Modèle de Yeoh
[fr] Modèle Néo-Hookien généralisé
[fr] fibres
Discipline(s) : Ingénierie, informatique & technologie > Science des matériaux & ingénierie
Centre(s) de recherche : LTAS-MN2L
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil physicien, à finalité approfondie
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] This master’s thesis presents a general study of isotropic and anisotropic hyperelastic models. Different ap-
proaches are proposed to model anisotropic materials in the literature. In this work, only anisotropic materials
with one and two fiber families are considered. The chosen approach considers an additive decomposition of
the strain energy density into an isotropic contribution and an anisotropic contribution for each fiber family.
It neglects the coupling effects between the fibers and the matrix and between the fiber families. The materi-
als are tested under moderate and large deformation although they may not represent practical feasible cases.
This work contains four parts: (i) a presentation of the important notions and concepts, followed by the
different approaches found in the literature to model hyperelastic materials; (ii) a study of isotropic material
models; (iii) a study of anisotropic material models with one fiber family; and (iv) a study of anisotropic
material models with two fiber families.
Firstly, the principles of continuum mechanics are reminded to apply them to the hyperelastic materials.
Then, the expression of the stresses as a function of the strain energy density is introduced. It is expressed
thanks to a representation theorem for the isotropic materials but different approaches coexist for anisotropic
materials in the literature. In this work, coupling effects are neglected. Therefore, two anisotropic invariants
are required to model each fiber family. Based on it, several isotropic and anisotropic constitutive models
are presented such as the generalized Neo-Hookean model, the Yeoh model, the Gent-Thomas model, and
the Holzapfel-Gasser-Ogden (HGO) model.
Secondly, three isotropic models are studied and compared in detail: the generalized Neo-Hookean model, the
Yeoh model, and the Gent-Thomas model. They behave distinctly. On the one hand, the stresses obtained
with the generalized Neo-Hookean and Yeoh models are similar in small deformation while they differ with
the Gent-Thomas model; on the other hand, in large deformations, the ones obtained with the generalized
Neo-Hookean and Gent-Thomas models are similar while they differ with the Yeoh model. Then, parameters
found in the literature enable to compare the stresses for rubber and porcine gray matter. They are qualita-
tively identical, the difference is only quantitative.
Finally, the HGO model is chosen to simulate the behavior of anisotropic materials with one and two fiber
families. Simple deformations are first studied analytically and with a Python procedure to study the influ-
ence of the fiber orientation and the addition of a second fiber family. For a simple shear, the maximum shear
stresses are obtained for different fiber orientations during the deformation as the fiber orientation changes.
However, for an isochoric tension, the components 11 of the stresses are always maximum for fibers in the
direction of the tension. Then, the HGO model is implemented in the software Metafor as a user-defined material. The previous simple deformations are tested to validate the implementation. Afterwards, more complex deformations in 2D and 3D are considered, highlighting the effect of the fibers and their orientations on the deformations and the stresses.


Fichier(s)

Document(s)

File
Access TFE_Sarah_Hault.pdf
Description:
Taille: 7.27 MB
Format: Adobe PDF

Auteur

  • Hault, Sarah ULiège Université de Liège > Master ing. civ. phys., fin. approf.

Promoteur(s)

Membre(s) du jury

  • Duchene, Laurent ULiège Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles des matériaux et struct. du gén. civ.
    ORBi Voir ses publications sur ORBi
  • Boman, Romain ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 39
  • Nombre total de téléchargements 7










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.