Travail de fin d'études: Towards predictive allometry for foliage biomass and leaf area in tree enriched areas of semi-deciduous forests in cameroon derived from handheld mobile lidar data
Medou Me Ze, Pauline-Andrée
Promotor(s) : Lejeune, Philippe
Date of defense : 20-Aug-2024 • Permalink : http://hdl.handle.net/2268.2/21455
Details
Title : | Travail de fin d'études: Towards predictive allometry for foliage biomass and leaf area in tree enriched areas of semi-deciduous forests in cameroon derived from handheld mobile lidar data |
Translated title : | [fr] Vers une allométrie prédictive pour la biomasse foliaire et la surface foliaire dans les zones arborées des forêts semi-décidues du Cameroun dérivée de données LiDAR mobile portatif. |
Author : | Medou Me Ze, Pauline-Andrée |
Date of defense : | 20-Aug-2024 |
Advisor(s) : | Lejeune, Philippe |
Committee's member(s) : | Doucet, Jean-Louis
Bastin, Jean-François Momo Takoudjou, Stéphane Vermeulen, Cédric |
Language : | English |
Number of pages : | 30 |
Keywords : | [en] Keywords: Functional traits, allometry, tropical forest, LiDAR, forest plantation, Congo Basin |
Discipline(s) : | Life sciences > Environmental sciences & ecology |
Funders : | RESSAC |
Name of the research project : | RESSAC Projet Bilan Carbone |
Target public : | Researchers Professionals of domain Student |
Institution(s) : | Université de Liège, Liège, Belgique |
Degree: | Master en bioingénieur : gestion des forêts et des espaces naturels, à finalité spécialisée |
Faculty: | Master thesis of the Gembloux Agro-Bio Tech (GxABT) |
Abstract
[fr] In tropical rainforests, leaf area (LA) and leaf mass (LM) are essential metrics that influence key physiological processes and contribute to the assessment of forest productivity and carbon stocks. This study examines the relationship between structural parameters, LA and LM derived from both destructive sampling and handheld mobile laser scanning (HMLS) in tree-enriched areas of Central Africa.
By using this combination of sampling methods, we developed predictive allometric models for LA and LM. The calibrated models for LM showed strong performance criteria with R² values ranging from 74% to 81.81% and lower values for LA ranging from 72.5% to 79.32%.
Although the sample size in this study remains modest, our results highlight the potential of HMLS as a non-invasive and reliable method for estimating LA. Despite the promising results, the study notes limitations in the applicability of the models, particularly when it comes to extending the models to larger diameter trees.
File(s)
Document(s)
Cite this master thesis
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.