Feedback

Gembloux Agro-Bio Tech (GxABT)
Gembloux Agro-Bio Tech (GxABT)
MASTER THESIS

Comparison of the occurence of BNI activity of ribwort plantain (Plantago lanceolata L.) and a common cover crop mixture (phacelia and white mustard) to a bare soil

Download
Beguin, Alice ULiège
Promotor(s) : Dumont, Benjamin ULiège ; Lagerquist, Elsa
Date of defense : 24-Jan-2025 • Permalink : http://hdl.handle.net/2268.2/22343
Details
Title : Comparison of the occurence of BNI activity of ribwort plantain (Plantago lanceolata L.) and a common cover crop mixture (phacelia and white mustard) to a bare soil
Translated title : [fr] Comparaison de l'activité BNI du plantain (Plantago lanceolata L.) et un mélange commun de cultures de couverture (Phacélie et Moutarde blanche) et un sol nu
Author : Beguin, Alice ULiège
Date of defense  : 24-Jan-2025
Advisor(s) : Dumont, Benjamin ULiège
Lagerquist, Elsa 
Committee's member(s) : Meersmans, Jeroen ULiège
De Clerck, Caroline ULiège
Vanderschuren, Hervé ULiège
Beckers, Yves ULiège
Language : English
Number of pages : 88
Keywords : [fr] Biological nitrification inhibtion
[fr] mineral nitrogen
[fr] plantago lanceolata
[fr] sinapis alba
[fr] phacelia tanacetipholia
[fr] nitrous oxide emissions
[fr] catch crop
[fr] potential nitrificaiton rates
Discipline(s) : Life sciences > Agriculture & agronomy
Name of the research project : COMPARISON OF THE OCCURRENCE OF BNI ACTIVITY OF RIBWORT PLANTAIN (PLATAGO LANCEOLATA L.) AND A COMMON COVER CROP MIXTURE (PHACELIA AND WHITE MUSTARD) TO A BARE SOIL
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en bioingénieur : sciences agronomiques, à finalité spécialisée
Faculty: Master thesis of the Gembloux Agro-Bio Tech (GxABT)

Abstract

[fr] Nitrogen (N) management in agriculture plays a critical role in addressing environmental challenges such as nitrate leaching and greenhouse gas emissions. Sustainable practices, including the use of cover crops, and Biological Nitrification Inhibition (BNI) offer a promising approach to mitigate these issues. This study investigated the potential of three cover crops—plantain (Plantago lanceolata) and white mustard (Sinapis alba) + phacelia (Phacelia tanacetifolia), a common cover crop mixture—to influence soil nitrogen dynamics and emissions across a crop rotation cycle. The objective is to assess whether these crops could reduce nitrification rates and contribute to more sustainable nitrogen management.
Field experiments were conducted in a randomized block design, with cover crops sown as intercultures according to two main comparisons: late ploughing (Lp) versus early ploughing (Ep) and control (C) versus cover crops (M). Soil samples were collected periodically to measure nitrate (NO₃⁻), nitrite (NO₂⁻), and ammonium (NH₄⁺) concentrations, while gaseous emissions of nitrous oxide (N₂O) were monitored using static chamber techniques. Laboratory analyses were performed to determine potential nitrification rates. Statistical analyses included a univariate analysis of variance (ANOVA) and multivariate approaches to explore the influence of treatments on nitrogen dynamics.
The results showed that white mustard had a highest biomass production, which was linked to more pronounced interactions with soil nitrogen dynamics compared to phacelia. Nitrate concentrations were significantly reduced by cover crop mixture. N₂O emissions were principally influenced by soil moisture levels, with wetter conditions leading to increased denitrification. The study highlighted variability in nitrogen dynamics impacted by weather conditions, emphasizing the complexity of predicting the impact of the type cover crop on nitrogen dynamics. The termination treatment also showed effects on nitrogen dynamics.
In conclusion, the results partially met the initial objectives by demonstrating the influence of cover crops on nitrogen management. White mustard emerged as the most effective in reducing nitrate leaching risks. For producers, the findings underscore the importance of selecting cover crops adapted to local conditions to optimize their environmental benefits. Future research should focus on long-term studies to confirm the cumulative effects of BNI-capable crops and explore their interactions with other management practices, such as timing of sowing and incorporation into the soil.


File(s)

Document(s)

File
Access S193125BEGUIN2025.pdf
Description:
Size: 2.96 MB
Format: Adobe PDF

Author

  • Beguin, Alice ULiège Université de Liège > Gembloux Agro-Bio Tech

Promotor(s)

Committee's member(s)









All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.