Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Innovative E-Bike Lighting Systems for Enhanced Safety and Comfort

Télécharger
Dalem, Pierre ULiège
Promoteur(s) : Redouté, Jean-Michel ULiège
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23230
Détails
Titre : Innovative E-Bike Lighting Systems for Enhanced Safety and Comfort
Auteur : Dalem, Pierre ULiège
Date de soutenance  : 30-jui-2025/1-jui-2025
Promoteur(s) : Redouté, Jean-Michel ULiège
Membre(s) du jury : Servaes, Steven 
Sacré, Pierre ULiège
Langue : Anglais
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie électrique & électronique
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] As society transitions towards more sustainable modes of transport, E-bikes play a key role by increasing the accessibility of cycling to a broader range of users. However, their growing adoption introduces new safety challenges. This thesis presents a proof of concept for an intelligent rear-brake light system designed by repurposing a Melexis automotive-grade LED driver. The resulting demonstrator showcases how existing advanced semiconductor technologies can be adapted to support cycling safety and contribute to Melexis' strategic goal of expanding into the alternative mobility market.

A detailed review of existing bicycle lighting solutions, as well as relevant cycling regulations was conducted to identify opportunities for innovation and guide the design strategy. The resulting system integrates an accelerometer alongside an advanced Melexis LED driver, leveraging its internal microcontroller for embedded signal processing. To reliably detect braking events within noisy accelerometer data, both low-pass and Kalman filtering approaches were explored. A constant jerk Kalman filter was ultimately selected, achieving a robust trade-off between responsiveness and noise suppression. Braking events in this project are detected using a threshold-based approach, with the LED brightness being proportional to the measured deceleration intensity. The project also investigated a novel magnetic force sensing concept using a magnet embedded in an elastomer gel, which offers a promising opportunity to build a fully integrated chip containing the LED driver and acceleration sensing.

A custom printed circuit board was designed and assembled to implement the demonstrator, which performed reliably under testing conditions. To further support the evaluation, a competitive analysis of the Supernova TL3 PRO rear light was conducted. This offered a component overview and functional insights on the product that helped contextualise the performance of the demonstrator system. Overall, the prototype confirms the feasibility of using Melexis components in intelligent bicycle lighting applications and serves as a concrete example of how automotive-grade semiconductor technologies can be effectively repurposed for sustainable alternative mobility solutions.


Fichier(s)

Document(s)

File
Access Master_Thesis_DALEM_Pierre.pdf
Description:
Taille: 45.22 MB
Format: Adobe PDF
File
Access Abstract_DALEM_Pierre.pdf
Description:
Taille: 232.14 kB
Format: Adobe PDF

Auteur

  • Dalem, Pierre ULiège Université de Liège > Master ingé. civ. électr., à fin. spéc. electr. syst. dev.

Promoteur(s)

Membre(s) du jury

  • Servaes, Steven
  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.