Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Robustness Analysis of a Deep Learning based sCT generation algorithm

Télécharger
Delporte, Guillaume ULiège
Promoteur(s) : Phillips, Christophe ULiège
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23235
Détails
Titre : Robustness Analysis of a Deep Learning based sCT generation algorithm
Titre traduit : [fr] Evaluation de la robustesse d’un algorithme de génération de CT synthétique basé sur le deep learning
Auteur : Delporte, Guillaume ULiège
Date de soutenance  : 30-jui-2025/1-jui-2025
Promoteur(s) : Phillips, Christophe ULiège
Membre(s) du jury : Herbin, Geoffroy 
Debruyne, Christophe ULiège
Geurts, Pierre ULiège
Langue : Anglais
Nombre de pages : 114
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] In the context of adaptive proton therapy, a treatment strategy that dynamically adjusts to anatomical changes throughout the course of radiotherapy, generating accurate synthetic CT (sCT) images from cone-beam CT (CBCT) scans remains a major challenge. This is primarily due to the presence of artefacts in CBCT and its limited accuracy in Hounsfield Units (HU), which compromises its reliability for dose calculations. Recent advances in deep learning have enabled promising approaches for direct CBCT-to-sCT translation. However, these methods typically lack robust mechanisms for quantifying uncertainty, which is essential for clinical decision-making, particularly in proton therapy, where dose distribution is highly sensitive to anatomical and HU variations. This thesis investigates the potential of two complementary state-of-the-art uncertainty quantification techniques to enhance the trustworthiness and interpretability of deep learning-based sCT generation models.

The study focuses on two main types of uncertainty: epistemic, which reflects model ignorance, and aleatoric, which captures data-inherent noise. Monte Carlo Dropout (MCD) and heteroscedastic regression are used to model each, respectively, within a U-Net architecture. The models are evaluated on a simulated dataset from IBA and on real patient data, which presented substantial artefacts and was preprocessed accordingly by IBA. Evaluation relies on multiple metrics, including MAE, RMSE, SSIM, PSNR, Expected Calibration Error (ECE), and the Pearson correlation between uncertainty and error (PCC).

In the simulated setting, MCD alone achieves an MAE of 21.08 ± 2.29 HU, and ECE of 14.63 HU, with a moderate correlation between uncertainty and error (PCC = 0.54). The combined model improves these metrics, reaching an MAE of 20.65 ± 2.00 HU, ECE of 4.41 HU, and PCC of 0.65. On the real dataset, where artefacts and noise are more prevalent, the combined model still improves over MCD alone though performance remains limited.

The discussion highlights that while MCD uncertainty maps aligns with general error structure in both datasets, they tend to be overconfident and insufficiently calibrated. The introduction of aleatoric modeling improves calibration and interpretability, particularly in identifying regions of anatomical ambiguity or noise. However, A failure to disentangle both uncertainty types still limit clinical applicability.

These findings suggest that while current uncertainty quantification methods such as MCD and heteroscedastic regression represent meaningful steps toward more reliable sCT generation, they remain insufficient to fully meet clinical trustworthiness and interpretability demands.


Fichier(s)

Document(s)

File
Access guillaume_delporte_thesis.pdf
Description: -
Taille: 20.37 MB
Format: Adobe PDF

Auteur

  • Delporte, Guillaume ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promoteur(s)

Membre(s) du jury

  • Herbin, Geoffroy
  • Debruyne, Christophe ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Représentation et ingénierie des données
    ORBi Voir ses publications sur ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.