Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Heuristic Methods and Machine Learning for Distribution Network Reconfiguration

Download
Kaci Touati, Melissa ULiège
Promotor(s) : Louveaux, Quentin ULiège
Date of defense : 30-Jun-2025/1-Jul-2025 • Permalink : http://hdl.handle.net/2268.2/23274
Details
Title : Heuristic Methods and Machine Learning for Distribution Network Reconfiguration
Translated title : [fr] Méthodes heuristiques et machine learning pour la reconfiguration de réseaux de distribution
Author : Kaci Touati, Melissa ULiège
Date of defense  : 30-Jun-2025/1-Jul-2025
Advisor(s) : Louveaux, Quentin ULiège
Committee's member(s) : Wehenkel, Louis ULiège
Cornélusse, Bertrand ULiège
Language : English
Number of pages : 75
Keywords : [en] Distribution Networks
[en] DNR
[en] Reconfiguration
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée "Smart grids"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] The problem of distribution network reconfiguration (DNR) has been addressed for some fourty years in scientific literature and industry. The aim of reconfiguration is to find the best radial operational configuration in a given electrical state. The main objectives are to reduce active losses and improve the profile. The reconfiguration problem is combinatorial and non-linear, making it practically impossible to solve for real-size electrical networks. To counter this problem, numerous heuristics and metaheuristics have been proposed in the literature.

In this thesis, we explore and compare different strategies of reconfiguration. The first method used is based on a minimum spanning tree algorithm to generate an initial solution. This solution is then refined using two heuristics: local search (LS) and tabu search (TS). Finally, a machine learning model is trained to mimic the behavior of these heuristics. This model uses various features to predict whether or not a line is part of the optimal configuration.

All methods are tested on different scenarios with and without distributed generators from the IEEE 33 and IEEE 69 networks. Results show that combining classical heuristics with learning-based approaches provides a balance between performance and computational cost, especially for applications requiring fast decision-making. This work contributes to ongoing research into the reconfiguration of constantly evolving electrical distribution networks.


File(s)

Document(s)

File
Access master_thesis_KACI_Melissa.pdf
Description:
Size: 7.12 MB
Format: Adobe PDF

Annexe(s)

File
Access scripts_master_thesis_KACI_Melissa.zip
Description:
Size: 28.38 kB
Format: Unknown

Author

  • Kaci Touati, Melissa ULiège Université de Liège > Mast. ing. civil. electr. fin. spéc. smart grids

Promotor(s)

Committee's member(s)

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Cornélusse, Bertrand ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
    ORBi View his publications on ORBi








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.