Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Reliable robotic grasping for uncertain objects through virtual model control

Download
Vanderheyden, Julien ULiège
Promotor(s) : Drion, Guillaume ULiège ; Sacré, Pierre ULiège
Date of defense : 30-Jun-2025/1-Jul-2025 • Permalink : http://hdl.handle.net/2268.2/23305
Details
Title : Reliable robotic grasping for uncertain objects through virtual model control
Translated title : [fr] Préhension robotique fiable d'objets incertains grâce au contrôle par modèle virtuel
Author : Vanderheyden, Julien ULiège
Date of defense  : 30-Jun-2025/1-Jul-2025
Advisor(s) : Drion, Guillaume ULiège
Sacré, Pierre ULiège
Committee's member(s) : Bruls, Olivier ULiège
Forni, Fulvio 
Language : English
Number of pages : 103
Keywords : [en] dexterous grasping
[en] multi-fingered hand
[en] virtual mechanism
[en] hand-centric trajectory planning
[en] object-centric behavior shaping
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Complementary URL : https://youtu.be/Ng_mj9hBu9k
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en Neuromorphic Engineering
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Dexterous robotic grasping remains a central challenge in robotics due to the high-dimensional nature of multi-fingered manipulators and the complex physical interactions involved in object manipulation. This thesis investigates the application of the Virtual Mechanisms (VM) control framework to enhance grasping capabilities in anthropomorphic robotic hands. Building on the principles of passivity-based impedance control, the VM approach introduces virtual mechanical elements such as springs, dampers, and inertial components interconnected in operational space to generate intuitive and modular control behaviors.
The thesis proposes two main application approaches.
The first one utilizes virtual mechanisms as simple and intuitive hand-centered trajectory planners to generate human-inspired grasping motions, employing a taxonomy-based approach to implement the following common grasp types: medium wrap, power sphere, and lateral pinch.
The second one extends this approach toward object-centric behavior shaping, wherein virtual mechanisms are dynamically tailored to object geometry.
Both strategies are implemented and tested on a Shadow Dexterous Hand robotic platform. Results indicate that virtual mechanisms offer a robust and versatile control paradigm, enhancing grasp robustness and adaptability while preserving stability. The thesis concludes with a proof-of-concept integration of position-based feedback into the VM framework, laying the groundwork for future developments. Overall, this work highlights the potential of virtual mechanisms as a promising alternative to traditional grasp control strategies in dexterous robotic manipulation.


File(s)

Document(s)

File
Access TFE_Julien_Vanderheyden.pdf
Description:
Size: 46.59 MB
Format: Adobe PDF

Annexe(s)

File
Access TFE_Abstract_Julien_Vanderheyden.pdf
Description:
Size: 132.84 kB
Format: Adobe PDF

Author

  • Vanderheyden, Julien ULiège Université de Liège > Master ing. civ. électr. fin. spéc. neur. engi.

Promotor(s)

Committee's member(s)

  • Bruls, Olivier ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
    ORBi View his publications on ORBi
  • Forni, Fulvio University of Cambridge, UK








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.