Feedback

Gembloux Agro-Bio Tech (GxABT)
Gembloux Agro-Bio Tech (GxABT)
MASTER THESIS

Simulation of hydrodynamics and contaminant transport in artificial wetlands for partial gravity applications

Download
Nasir, Ahsan ULiège
Promotor(s) : Richel, Aurore ULiège
Date of defense : 25-Jun-2025 • Permalink : http://hdl.handle.net/2268.2/23325
Details
Title : Simulation of hydrodynamics and contaminant transport in artificial wetlands for partial gravity applications
Translated title : [fr] Simulation de l’hydrodynamique et du transport de contaminants dans des zones humides artificielles pour des applications en gravité partielle.
Author : Nasir, Ahsan ULiège
Date of defense  : 25-Jun-2025
Advisor(s) : Richel, Aurore ULiège
Committee's member(s) : Dulova, Niina 
Baumberger, Stephanie 
Grove, Patrick 
Fleischer, Louise 
Language : English
Number of pages : 50
Keywords : [en] Vertical Flow Constructed Wetlands, Partial gravity simulation, lunar regolith simulant
Discipline(s) : Life sciences > Environmental sciences & ecology
Engineering, computing & technology > Chemical engineering
Physical, chemical, mathematical & earth Sciences > Space science, astronomy & astrophysics
Funders : Bioceb, French Space Agency (CNES)
Research unit : Gembloux AgroBioTech
Name of the research project : The Marshian
Target public : Researchers
Professionals of domain
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en bioingénieur : chimie et bioindustries, à finalité spécialisée
Faculty: Master thesis of the Gembloux Agro-Bio Tech (GxABT)

Abstract

[en] Wastewater treatment and reuse are vital for sustainability on Earth, and now that long-duration space missions are being planned, developing compact, self-sufficient wastewater treatment systems is a pertinent challenge. This study explores the conceptual feasibility and simulation of a bioregenerative life support system (BLSS) based on a vertical flow constructed wetland (VFCW) for treating highly concentrated wastewater (up to 3000 mg/L COD), including solid waste, under partial gravity. Using the HYDRUS-2D model with the CW2D module, the study simulates variably unsaturated water flow and reactive solute transport through sand and lunar regolith simulant beds in a VFCW, under Earth and lunar gravity. Results show that the low permeability and high air-entry suction of lunar regolith in partial gravity significantly reduce infiltration rates and dissolved oxygen availability, which limits treatment efficiency. However, an optimized intermittent feeding strategy with extended resting periods (10-day downtime) enabled the lunar regolith system to achieve up to 95% COD removal. Comparative analysis revealed that sand outperforms lunar regolith simulant in continuous feeding scenarios but accumulates more inert sludge. The findings suggest that substrate selection, hydraulic properties, and feeding strategy are more critical than gravity alone in determining treatment success. The study provides recommendations for using lunar resources to build and operate a VFCW to treat the waste from a 4-astronaut base and offers insights for minimizing the footprint of CW installations on Earth.


File(s)

Document(s)

File
Access Bioceb MSc. Thesis Report - Nasir Ahsan (ULiége).pdf
Description:
Size: 4.33 MB
Format: Adobe PDF

Author

  • Nasir, Ahsan ULiège Université de Liège > Master bioing. : chim. et bioind., à fin spec. mundus BIOCEB

Promotor(s)

Committee's member(s)

  • Dulova, Niina Tallinn University of Technology > DEPARTMENT OF MATERIALS AND ENVIRONMENTAL TECHNOLOGY
  • Baumberger, Stephanie INRAE > Bioceb
  • Grove, Patrick
  • Fleischer, Louise








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.